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Degree-Bounded MST’s

Given an undirected graph G=(V,E), a non-negative 
cost function +ℜ→Ec :

 )(vTδLet be the degree of node v and

and a parameter B.

be the maximum node degree in T)(T∆
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such that c(T) is minimized



Our Result

Theorem: Given G=(V,E) and positive parameter B, we 
compute T with
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where r>1, ω>0 and opt is the cost of the optimum 
degree-B-bounded MST.

e.g.: ω=1 and r=2 yields T with 
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Previous Work

[Ravi et. al., 93]  show how to compute spanning tree T with 
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The authors extend their results to

• Steiner trees and generalized Steiner 
forests

• Node-weighted case
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Minimum-Degree MST’s

Problem: Given an undirected graph G=(V,E) and a 
non-negative cost function c on the edges.

Find a min-cost spanning tree T such that its 
maximum degree ∆(T) is minimum

Idea: locally optimal trees
v

High 
degree 
node

Low degree 
nodes

Call this an 
Improvement for v

red edges
are of same 
cost



Minimum-Degree MST’s

Definition[Fürer, Raghavachari]
A tree T is called pseudo optimal if no improvement is 

applicable to any node node v with 

||log)()( VTvT −∆≥δ

Denote application of this procedure to tree T by Plocal(T)



Fractional Trees

Let be a convex combination of minimum-cost spanning 
trees for cost function c
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Define minimum maximum fractional degree as 
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A Key Lemma

Key Degree Lemma A pseudo-optimal min-cost 
spanning tree T can be computed in poly-time and

Modification of theorem by [Fischer, Fürer,
Raghavachari] due to Éva Tardos

 nrT rc log)( * +∆≤∆
where r>1.
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dualize

A Lagrangean Formulation

IP formulation of the our problem
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Lagrangean relaxation

∑
∈≥

−+=
Vv

Tv
T

LR BvTcz ))(()(minmax
  treespanning0

δλ
λ))(( BLR

Fact: (weak duality) opt≤LRz
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A few Observations

We can rewrite objective function of Lagrangean
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Think of       is being added to each edge
incident to v
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More Observations
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Constant

Inner minimum is just an MST computation! We 
denote this by MST( ).λc

Theorem: Solution to (LR(B)) can be computed in 
poly-time.



Talk Outline

n The Problem 
n Minimum-Degree MST’s
n A Lagrangean Formulation
n Our Algorithm
n The Analysis



Our Algorithm

Given: graph G=(V,E), +ℜ→Ec :
and B>0

1. λ=Solve( LR((1+ω)B) )

2. =MST(      )

3. T =Plocal( )

4. Output T

λc
λT

notice weakened
degree constraints

λT
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η

Lagrangean Properties

Recall
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We can formulate this as an LP !
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LP formulation

comb.convex 
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Lagrangean Properties
Proposition: Let λ be an optimum solution to

then there is a convex combination
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Proof: complementary slackness.

)))1((( BLR ω+



Degree of output tree

Step 3 of our algorithm applies Plocal to 
tree =MST(    )λc

Final tree T has degree at most

by key degree lemma

 nr rc
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by the last Corollary. 
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Proving low Cost

Theorem: opt)/11()( ⋅+≤ ωTc

min. cost of any degree-B-
bounded spanning tree

Proof-Sketch:
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Now bound             by .

Uses the fact that λ is optimum for (1+ω)B
instead of just B critically.
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Open Questions and Conclusion

Can the presented framework be generalized? 

Can the result be extended to Steiner networks?

What about individual node degrees?


