A Matter of Degree: Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees

> J. Könemann (joint work with R. Ravi)

- **n** The Problem
- **n** Minimum-Degree MST's
- **n** A Lagrangean Formulation
- **n** Our Algorithm
- **n** The Analysis

Degree-Bounded MST's

Given an undirected graph $G=(V,E)$, a non-negative cost function $c: E \longrightarrow \Re^+$

and a parameter B.

Let $\boldsymbol{d}_T(v)$ be the degree of node v and

 $\Delta(T)$ be the maximum node degree in T

Find spanning tree \top of G

 $(BMST)$ with $\Delta(T) \leq B$

such that $c(T)$ is minimized

Our Result

Theorem: Given $G=(V,E)$ and positive parameter B, we compute T with

1.
$$
c(T) \leq (1 + \frac{1}{w}) \cdot \text{opt}
$$

2.
$$
\Delta(T) \leq r(1 + w)B + \log_r n
$$

where $r>1$, $\omega>0$ and opt is the cost of the optimum degree-B-bounded MST.

e.g.:
$$
\omega = 1
$$
 and $r = 2$ yields T with

\n $c(T) \leq 2$ opt and $\Delta(T) \leq 4B + \log_2 n$

Previous Work

[Ravi et. al., 93] show how to compute spanning tree \bar{T} with

1. $c(T) \leq O(\log n) \cdot opt$

2. $\Delta(T) \leq O(\log n) \cdot B$

The authors extend their results to

- Steiner trees and generalized Steiner forests
- Node-weighted case

- **n** The Problem
- **n** Minimum-Degree MST's
- **n** A Lagrangean Formulation
- **n** Our Algorithm
- **n** The Analysis

Minimum-Degree MST's

Problem: Given an undirected graph $G=(V,E)$ and a non-negative cost function c on the edges.

Definition[Fürer, Raghavachari]

A tree T is called pseudo optimal if no improvement is applicable to any node node v with

$$
\boldsymbol{d}_T(v) \geq \Delta(T) - \log|V|
$$

Denote application of this procedure to tree T by Plocal(T)

Fractional Trees

Let T^a be a convex combination of minimum-cost spanning trees for cost function c

Let the fractional degree of T^a at v be

$$
\boldsymbol{d}_{c}^{\boldsymbol{a}}(v) = \sum_{\text{min } c \in \mathcal{C}} \boldsymbol{a}_{T} \boldsymbol{d}_{T}(v)
$$

spanning tree T min -cost

Define minimum maximum fractional degree as

$$
\Delta_c^* = \min_{\text{convex comb.}\mathbf{a}} \max_{v} \mathbf{d}_c^{\mathbf{a}}(v)
$$

A Key Lemma

Modification of theorem by [Fischer, Fürer, Raghavachari] due to Éva Tardos

Key Degree Lemma A pseudo-optimal min-cost spanning tree T can be computed in poly-time and

$$
\Delta(T) \le r\Delta_c^* + \lceil \log_r n \rceil
$$

where $r>1$.

- n The Problem
- **n** Minimum-Degree MST's
- **n A Lagrangean Formulation**
- **n** Our Algorithm
- **n** The Analysis

A few Observations

We can rewrite objective function of Lagrangean

$$
\sum_{uv \in T} c_{uv} + \sum_{v \in V} \mathbf{1}_v (\mathbf{d}_T(v) - B)
$$

Think of \bm{l}_v is being added to each edge incident to v

$$
\sum_{uv \in T} \frac{(c_{uv} + l_u + l_v) - B \sum_{v \in V} l_v}{c_{uv}^l}
$$

Inner minimum is just an MST computation! We denote this by ${\sf MST}(c^I)$.

Theorem: Solution to (LR(B)) can be computed in poly-time.

- n The Problem
- **n** Minimum-Degree MST's
- **n** A Lagrangean Formulation
- **n** Our Algorithm
- **n** The Analysis

Given: graph G=(V,E),
$$
c:E \rightarrow \Re^+
$$

and B>0

4. Output T

- **n** The Problem
- **n** Minimum-Degree MST's
- **n** A Lagrangean Formulation
- **n** Our Algorithm

n The Analysis

Lagrangean Properties

Proposition: Let λ be an optimum solution to

 $(LR((1 + w)B))$ then there is a convex combination

$$
T^a = \sum_{\text{min } -\text{cost spanning}} a_T T
$$

such that 1. $\forall v \in V : \mathbf{d}_{c^1}^a(v) \leq (1+w)B$ 2. $I_v > 0 \implies d_{c}^a(v) = (1+w)B$

Proof: complementary slackness.

Corollary [Tardos] $\qquad \Delta_{\mathcal{A}}^* \leq (1 + {\boldsymbol{W}})B$ *c* $\Delta_{c^l}^* \leq (1 + w)$

Degree of output tree

Step 3 of our algorithm applies Plocal to $\textsf{tree} \; \text{T}^I$ =MST(c^I)

Final tree T has degree at most

$$
r\Delta_{c^I}^* + \lceil \log_r n \rceil
$$

by key degree lemma

…and

$$
\Delta_{c^1}^* \leq (1 + w)B
$$

by the last Corollary.

$$
c(T) = c(T) + \sum_{\nu} I_{\nu}(\boldsymbol{d}_{T}(\nu) - B) + \sum_{\nu} I_{\nu}(B - \boldsymbol{d}_{T}(\nu))
$$

\n
$$
\leq \qquad \text{opt} + \sum_{\nu} I_{\nu}(B - \boldsymbol{d}_{T}(\nu))
$$

Now bound $B\sum I_{\nu}$ by $\frac{\text{opt}}{\cdots}$. *v* $B\Sigma$ ^{*l_v*} *w* opt

Uses the fact that λ is optimum for $(1+\omega)B$ instead of just B critically.

Can the presented framework be generalized? Can the result be extended to Steiner networks? What about individual node degrees?