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Abstract

It is proved that, for any prime power q; a 3-connected matroid with no U3;6-minor has at

most ðq � 2Þ! inequivalent representations over GFðqÞ:
r 2004 Elsevier Inc. All rights reserved.

1. Introduction

Recall that a representation of a matroid M over a field F is a matrix A whose
columns are labelled by the elements of M with the property that a set of columns of
A is linearly independent if and only if the labels of that set of columns are
independent in M: Recall also that two representations of a matroid are equivalent if
one can be obtained from the other via a sequence of the following operations:
elementary row operations; multiplying a column by a nonzero scalar; interchanging
two columns along with their labels; deleting zero rows; and applying a field
automorphism to all elements of the matrix. Finally, recall that M is uniquely

representable over F if all F-representations of M are equivalent.
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In his seminal paper [3], where he proves that 3-connected matroids are uniquely
representable over GFð4Þ; Kahn conjectured that for every prime power q; there is
an integer mq such that no 3-connected GFðqÞ-representable matroid has more than

mq inequivalent representations over GFðqÞ: At the time, the conjecture was known

to be true for GFð2Þ; GFð3Þ and GFð4Þ: Moreover, Oxley, Vertigan and Whittle [6]
verified Kahn’s Conjecture for GFð5Þ: However, counterexamples are given in [6]
that show that Kahn’s Conjecture fails for all fields with at least seven elements.

In this paper, we prove that Kahn’s Conjecture holds so long as we exclude the
uniform matroid U3;6 as a minor. Let nqðMÞ denote the number of inequivalent

representations of a matroid over GFðqÞ: Specifically we prove

Theorem 1.1. Let M be a 3-connected matroid. If M has no U3;6-minor then

nqðMÞpðq � 2Þ!

The counterexamples given in [6] contain no uniform minor that is larger than U3;6

so that Theorem 1.1 is best possible in that no analogue of it holds for excluding a
larger uniform matroid. Nonetheless, we do believe that Kahn’s Conjecture can be
recovered in full generality for matroids whose 3-separations are controlled in an
appropriate way, in particular for 4-connected matroids. Moreover, we also believe
that the results of this paper will be of value in establishing Kahn’s Conjecture for 4-
connected matroids.

It is assumed that the reader is familiar with the theory of matroids as set forth in
Oxley [4]. In particular, it is assumed that the reader is familiar with the theory of
matroid connectivity and matroid representation. Terminology and notation follow
[4] with the exception that we denote the simplification and cosimplification of a
matroid M by siðMÞ and coðMÞ; respectively. A line of M is a rank-2 flat of M and a
coline of M is a rank-2 flat of M�:

To prove Theorem 1.1, we use the theory of totally free matroids developed in [2]
and the theory of segment–cosegment exchanges introduced by Oxley, Semple and
Vertigan [5]. While we restate enough material from [2,5] to make this paper
essentially self-contained, familiarity with these papers would be an advantage.

2. Totally free matroids

In this section, we review material from [2] that will be needed for the results of
this paper. Two elements of a matroid are clones if they cannot be distinguished by
matroidal properties. More precisely, the elements e and e0 are clones in the matroid
M if the function that exchanges e and e0 and acts as the identity on EðMÞ � fe; e0g is
an automorphism of M: Recall that a cyclic flat of the matroid M is a flat that is also
a union of circuits.

Proposition 2.1. [2, Proposition 4.9] Two elements e and e0 are clones in M if and only

if the set of cyclic flats containing e is equal to the set of cyclic flats containing e0:
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Evidently two elements are clones in M if and only if they are clones in M�: It is
also easily seen that if e and e0 are clones in M; then they are clones in any minor of
M that contains both e and e0: The relation of being clones is clearly an equivalence
relation on the elements of M: The equivalence classes of this relation are known as
clonal classes. A clonal pair (respectively, clonal triple) is a set of two (respectively,
three) elements that is contained in a clonal class.

Let e be an element of a matroid M: If the matroid M 0 is a single-element
extension of M on the ground set EðMÞ,fe0g such that e and e0 are clones in M 0;
then we say that M 0 is obtained from M by cloning e with e0: As noted in [2], it is
always possible to clone e with e0 by adding e0 in parallel to e; or, if e is a loop of M;
adding e0 as a loop. However, it is not always possible to clone e with e0 in such a way
that fe; e0g is independent in M 0: If fe; e0g is independent in M 0; then we say that e

has been independently cloned with e0: If e is an element of a matroid M such that e

cannot be independently cloned, then e is fixed in M:
For example, note that any loop of M; or any element of M that is contained in a

parallel pair is fixed in M: Also, any element of M that lies on the intersection of two
non-trivial lines is fixed. The next two lemmas provides useful ways to verify that
elements are fixed.

Lemma 2.2. Let F1 and F2 be cyclic flats of the matroid M and x be in F1-F2: If

rðF1Þ þ rðF2Þ ¼ rðF1,F2Þ þ 1; then x is fixed in M:

Proof. Let M 0 be a matroid obtained by cloning x with x0: Since F1 is cyclic,
xAclðF1 � fxgÞ: Since x0 is a clone of x; x0AclðF1 � fxgÞ: This shows that
rðF1,fx0gÞ ¼ rðF1Þ; and similarly rðF2,fx0gÞ ¼ rðF2Þ: Now, by submodularity

rðfx; x0gÞprðF1,fx0gÞ þ rðF2,fx0gÞ � rðF1,F2,fx0gÞ ¼ 1;

so that fx; x0g is not independent in M 0 and hence x is fixed in M: &

Lemma 2.3. [2, Lemma 6.4] Suppose that e is in a triangle T of M: Then e is fixed in

M if and only if there exists a circuit C of M such that clðCÞ-T ¼ feg:

An element e is cofixed in M if e is fixed in M�:

Proposition 2.4. [2, Proposition 4.8] Let e and e0 be clones in M: If fe; e0g is

independent, then e is fixed in neither M nor M\e0: Dually, if fe; e0g is coindependent,
then e is cofixed in neither M nor M=e0:

A matroid M is totally free if:

(i) M is 3-connected; and
(ii) if e is fixed in M; then coðM\eÞ is not 3-connected, and if e is cofixed in M; then

siðM=eÞ is not 3-connected.

Note that the definition of a totally free matroid is self-dual, so that M is totally
free if and only if M� is totally free.
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It is easily seen that if e is fixed in M; then, nqðMÞpnqðM\eÞ; and if e is cofixed in

M; then nqðMÞpnqðM=eÞ: In other words, extending by fixed elements and

coextending by cofixed elements cannot increase the number of inequivalent
representations of a matroid. Using these facts it can be shown that if we wish to find
a bound on the number of inequivalent representations a 3-connected matroid may
have over a finite field, we need only consider the totally free minors of that matroid.

Lemma 2.5. [2, Theorem 2.4] Let M be a 3-connected matroid that is representable

over the finite field GFðqÞ: Then nqðMÞ is bounded above by the maximum, taken over

all totally free minors M 0 of M; of nqðM 0Þ:

The next result shows that totally free matroids cannot occur sporadically in a
minor-closed class.

Lemma 2.6. [2, Theorem 8.12] Let M be a totally free matroid with jEðMÞjX5: If e is

an element of M such that either M\e is 3-connected but not totally free, or M=e is 3-
connected but not totally free, then

(i) e has a unique clone e0 in M;
(ii) M\e=e0 ¼ M=e\e0 is totally free; and

(iii) both M\e and M=e are 3-connected.

Corollary 2.7. [2, Corollary 8.13] Let M be a totally free matroid such that

jEðMÞjX5 and, for all e in EðMÞ; neither M\e nor M=e is totally free. Then the ground

set of M is the union of 2-element clonal classes. Moreover, if eAEðMÞ then both

M\e and M=e are 3-connected, and if e0 is the unique clone of e in M; then M=e\e0 is

totally free.

We note some further properties of totally free matroids that will be needed for
this paper.

Proposition 2.8. [2, Lemma 8.8] If fe; f ; gg is a triangle or a triad of a totally free

matroid M; then fe; f ; gg is a clonal triple.

Proposition 2.9. [2, Proposition 8.9] Let e be an element of the totally free matroid M:
Then either M\e or M=e is 3-connected.

Corollary 2.10. Let M be a totally free matroid such that jEðMÞjX5; and let e be an

element of EðMÞ: If e is an element of a triangle of M; then M\e is totally free, and if e

is an element of a triad of M; then M=e is totally free.

Proof. Say that e is an element of a triangle. By Proposition 2.9 either M\e or M=e is
3-connected. Since M=e contains a parallel pair, M\e must be 3-connected. If M\e is
not totally free, then by Lemma 2.6 the element e has a unique clone in M: But this
contradicts Proposition 2.8, which asserts that e is a member of a clonal triple
in M: &
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3. The generalized D � Y exchange

The generalized D� Y exchange was introduced and studied by Oxley, Semple
and Vertigan [5]. We begin by recalling how Brylawski [1] approached the usual
D� Y exchange of matroids. Recall that a flat F of a matroid M is a modular flat of

M if rðFÞ þ rðF 0Þ ¼ rðF,F 0Þ þ rðF-F 0Þ for every flat F 0 of M: Let M1 and M2 be
matroids such that EðM1Þ-EðM2Þ ¼ T and M1jT ¼ M2jT : Let N ¼ M1jT : If T is a
modular flat of M1 then the generalized parallel connection, denoted PNðM1;M2Þ is
well defined. It is the matroid with ground set EðM1Þ,EðM2Þ; whose flats are all
subsets XDEðM1Þ,EðM2Þ such that X-EðMiÞ is a flat of Mi for iAf1; 2g:

Let M1DMðK4Þ and let TDEðM1Þ be a triangle of M1: Then T is a modular flat
of M1; so if M2 is a matroid such that EðM1Þ-EðM2Þ ¼ T and N ¼ M2jTDU2;3;
then PNðM1;M2Þ is well defined. The matroid PNðM1;M2Þ\T is said to be produced
by performing a D� Y exchange on M2: This is the operation that is generalized in
[5] and we outline that generalization now.

Firstly, a matroid Yk is introduced which generalizes the role played by MðK4Þ in
the D� Y exchange. The ground set of Yk consists of a k-element line and a k-
element coline with the property that each ðk � 1Þ-element subset of the coline forms
a circuit with an element of the coline. Gluing Yk onto a k-element line of another
matroid M and then deleting the line has the effect of replacing the line of M by a
coline. More precisely, for all kX2; the rank-k matroid Yk is defined on the ground
set A,B; where A ¼ fa1;y; akg and B ¼ fb1;y; bkg: In Y2 the sets A and B are
independent and fa1; b2g and fa2; b1g are both parallel pairs. For k42 the non-
spanning circuits of Yk are as follows:

(i) All 3-element subsets of A; and
(ii) All subsets ðB � fbigÞ,faig for iAf1;y; kg:

If X is a set of the matroid M such that jX jX2 and MjADU2;jAj then X is a segment

of M: A cosegment of M is a subset of EðMÞ that is a segment in M�: Now A is a
modular flat of Yk [5, Lemma 2.4], so if M is a matroid such that EðYkÞ-EðMÞ ¼ A

and A is a segment of M; then PAðYk;MÞ is well defined. In order to preserve the
dual nature of the exchange we require A to be coindependent in M: In this case A is
a strict segment of M: If A is a strict segment of M; then PAðYk;MÞ\A is said to have
been obtained from M by a segment–cosegment exchange on A; and is denoted by
DAðMÞ: It will be convenient for M and DAðMÞ to have the same ground set, so for
iAf1;y; kg the element biAEðDAðMÞÞ is relabelled ai:

Dually, a strict cosegment of M is an independent cosegment of M: In this case a
segment–cosegment exchange on A may be performed on M�: Now rAðMÞ is

defined to be ðDAðM�ÞÞ�: The matroid rAðMÞ is said to be obtained from M by a
cosegment–segment exchange on A: In [5, Lemma 2.11] it is proved that these
operations are inverse to each other, that is, rAðDAðMÞÞ ¼ M:

Note that if A is a strict segment containing exactly two elements then
DAðMÞDM; and dually, if A is a strict cosegment of size two then rAðMÞDM:
In both cases, the isomorphism is simply the function that exchanges the two
members of A and fixes every other element.
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It follows from [5, Lemma 3.5] that if M is representable over the field F and A is a
strict segment of M then there is a canonically associated representation of
PAðM;YkÞ over F: Thus segment–cosegment and cosegment–segment exchange
preserve representability. It is also noted in [5, Corollary 3.6] that segment–
cosegment exchange preserves the number of inequivalent representations. Thus,
we have

Lemma 3.1. If M is GFðqÞ-representable and A is a strict segment of M; then DAðMÞ
is GFðqÞ-representable and furthermore, nqðDAðMÞÞ ¼ nqðMÞ:

It is well known that nqðM�Þ ¼ nqðMÞ for any matroid M and any finite field

GFðqÞ so it follows that if M 0 is obtained from M by a sequence of segment–
cosegment and cosegment–segment exchanges then nqðM 0Þ ¼ nqðMÞ:

4. Quasi-lines

A matroid M is a quasi-line if, for some kX4; M can be obtained from U2;k by a

sequence of segment–cosegment and cosegment–segment exchanges. A detailed
study of quasi-lines is given in [5]. In particular, it is shown that quasi-lines
can be associated with certain labelled trees. We now outline some material
from [5].

It is easily seen that, for kX4; the matroid Uk�2;k is a quasi-line. A del–con tree is a

tree T for which every vertex v of T is labelled either ðEv;delÞ or ðEv; conÞ such that
the following conditions are satisfied:

(i) each Ev is a finite, possibly empty, set;
(ii) if u and v are distinct vertices, then Eu and Ev are disjoint;
(iii) if v is a degree-1 vertex of T ; then jEvjX2; and
(iv) if two vertices of T are adjacent then the second coordinates of their labels are

different.

We also make the assumption that j
S

vAVðTÞ EvjX4: For any vertex v of T we call

Ev a vertex class. If v is labelled ðEv; delÞ then v is a del vertex of T and Ev is a del class

of T : Con vertices and con classes are defined analogously.
Suppose that u is a degree-1 vertex of T ; and that u is labelled ðEu; sÞ: Then the

unique neighbour v of u in T is labelled ðEv; tÞ where fs; tg ¼ fdel; cong: We can
obtain a new tree by deleting u from T and leaving the label of every other vertex
unchanged except for v; which is relabelled ðEu,Ev; tÞ: This operation is called
shrinking u into v:

With any del–con tree T we may canonically associate a quasi-line MðTÞ as
follows. We can find a sequence of del–con trees T1;T2;y;Tn such that Tn ¼ T and
for 1pipn � 1; Ti has i vertices and is obtained from Tiþ1 by shrinking a degree-1
vertex into its unique neighbour. Let E ¼

S
vAVðTÞ Ev: The tree T1 consists of a single

vertex labelled either ðE; delÞ or ðE; conÞ: If the single vertex of T1 is a del vertex, let
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M1 be the matroid on the ground set E that is isomorphic to U2;jEj: If T1 consists of a

single con vertex then let M1 be the matroid on the set E that is isomorphic to
UjEj�2;jEj: For 1pipn � 1; if Ti is obtained by shrinking the degree-1 con vertex v of

Tiþ1 into its unique neighbour, then let Miþ1 ¼ DEv
ðMiÞ: If Ti is obtained from Tiþ1

by shrinking the degree-1 del vertex v into its neighbour, let Miþ1 ¼ rEv
ðMiÞ: Define

MðTÞ ¼ Mn:
Let dTðvÞ denote the degree of a vertex v of T : A del–con tree T is reduced if it

satisfies the following properties:

(i) If dT ðvÞ ¼ 1 then jEvjX3; and
(ii) If dT ðvÞ ¼ 2 then Ev is not empty.

If T is not reduced it can be made so by a sequence of the following
operations:

(i) If v is a degree-1 vertex of T and jEvj ¼ 2 then shrink v into its neighbour.
(ii) If v is adjacent to only two vertices u and w; and v is labelled ðEv; sÞ where Ev is

empty, then contract the edges uv and wv: In the resulting graph the vertices are
u; v and w are identified as a single vertex, which is labelled ðEu,Ew; tÞ; where
fs; tg ¼ fdel; cong:

It is proved in [5, Lemma 4.6] that if T 0 is obtained from T by the above two
operations then MðTÞ ¼ MðT 0Þ: Furthermore, if M is a quasi-line with at least five
elements, then M can be represented by a reduced del–con tree that is unique up to
isomorphism [5, Lemma 4.16]. It is easily seen that the dual of a quasi-line is a quasi-
line. Indeed, if T 0 is obtained from T by interchanging the labels del and con at each

vertex, then MðT 0Þ ¼ ðMðTÞÞ�: We now note some further elementary properties of
quasi-lines.

Proposition 4.1. Let v be a degree-1 del vertex of the reduced del–con tree T : Then Ev

is a line of MðTÞ:

Proposition 4.2. [5, Lemma 4.11] Suppose that T is a reduced del–con tree. Then e and

e0 are clones in MðTÞ if and only if they are contained in the same vertex class of T :

Proposition 4.3. [5, Corollary 4.12] Let T be a reduced del–con tree. If Z is a

triangle or triad of MðTÞ; then the elements of Z are contained in a single vertex

class of T :

It follows from [5, Lemma 4.3] that quasi-lines are 3-connected. The 3-separations
of quasi-lines are also characterized, [5, Lemmas 4.13 and 4.14].

Lemma 4.4. Let T be a reduced del–con tree with at least two vertices. If ðX ;Y Þ is a

partition of EðMðTÞÞ such that jX j; jY jX3; then ðX ;YÞ is a 3-separation of MðTÞ if
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and only if there is some vertex v of T such that if T 0 is any connected component of

T � v; then the set
S

wAVðT 0Þ Ew is contained in either X or Y :

Proposition 4.5. [5, Lemma 4.8] Suppose that MðTÞ is a quasi-line, where T is a

reduced del–con tree and where jEðMðTÞÞjX5: Let v be a vertex of T labelled ðEv; sÞ
where sAfdel; cong: Suppose that eAEv: Let T 0 be the del–con tree obtained from T by

relabelling v with ðEv � e; sÞ:

(i) If v is a del vertex of T ; then MðTÞ\e is a quasi-line and MðTÞ\e ¼ MðT 0Þ:
(ii) If v is a con vertex of T ; then MðTÞ=e is a quasi-line and MðTÞ=e ¼ MðT 0Þ:

Note that in the previous proposition T 0 may not be reduced. If u and v are
degree-1 del vertices of the del–con tree T ; then Eu and Ev are distinct lines
of MðTÞ: Thus rMðTÞðEu,EvÞAf3; 4g: The case where the rank of this set is 3 is quite

special.

Lemma 4.6. Let P be a path of maximal length in the reduced del–con tree T such that

the end vertices u and v of P are both del vertices. If rðEu,EvÞ ¼ 3 then T is

isomorphic to a path of length two. Moreover, if w is the internal vertex of this path,
then jEwj ¼ 1:

Proof. Assume that jEðMðTÞÞ � ðEu,EvÞjX2: We prove that rðEu,EvÞ ¼ 4: Say
zAEðMÞ � ðEu,EvÞ: By Proposition 4.5, either MðTÞ\z or MðTÞ=z is a quasi-line.
Let T 0 be a reduced del–con tree that represents this quasi-line. It is routinely
checked that Eu and Ev are del classes of T 0 corresponding to end vertices of a
maximal length path in T 0: As MðT 0Þ is a minor of MðTÞ; we have
rMðT 0ÞðEu,EvÞprMðTÞðEu,EvÞ: It follows that it suffices to prove that rðEu,EvÞ ¼
4 in the case that jEðMðTÞÞ � ðEu,EvÞj ¼ 2: In this case Eu,Ev is spanning, as
otherwise MðTÞ is not 3-connected. Since Eu and Ev are lines of MðTÞ; rðMðTÞÞ42:
Assume that rðMðTÞÞ ¼ 3: Let EðMðTÞÞ � ðEu,EvÞ ¼ fx; yg: Then, by Lemma 4.4,
ðEu,fxg;Ev,fygÞ is a 3-separation of MðTÞ: But rðEu,fxgÞ ¼ rðEv,fygÞ ¼ 3; so
that this partition is not a 3-separation. It follows from this contradiction that
rðEu,EvÞ ¼ 4:

The fact that T has the claimed structure if rðEu,EvÞ ¼ 3 now follows easily. &

We now work towards showing that quasi-lines are totally free. We first show that
certain minors are not 3-connected.

Lemma 4.7. Let v be an internal del vertex of the reduced del–con tree T and e be an

element of Ev: Then siðMðTÞ=eÞ is not 3-connected.

Proof. It is easily seen that there is a partition ðX ;Y Þ of EðMÞ � feg with the
property that if T 0 is a component of T � v; then ,wAVðT 0Þ Ew is contained in either

X or Y : By Lemma 4.4, ðX,feg;YÞ and ðX ;Y,fegÞ are both 3-separation of
MðTÞ: By Proposition 4.5, MðTÞ\e is 3-connected. Hence rðXÞ ¼ rðX,fegÞ and
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rðYÞ ¼ rðY,fegÞ; and it follows that ðX ;Y Þ is a 2-separation of MðTÞ=e: Thus,
MðTÞ=e is not 3-connected. If siðM=eÞ is 3-connected, then either X or Y is a
parallel class of MðTÞ=e: Assume that X is a parallel class. Then rMðTÞðXÞ ¼ 2: For

some degree-1 vertex w of T ; X contains Ew: If w is a con class, then rðEwÞ42; so w is
a del class. Since Ew is a line of MðTÞ; we must have Ew ¼ X : But, eAclðXÞ
contradicting the fact that Ew is a flat of MðTÞ: Hence, siðMðTÞ=eÞ is not
3-connected as required. &

Lemma 4.8. Let T be a reduced del–con tree and e be an element of MðTÞ: If e belongs

to a del class, then e is not fixed and if e belongs to a con class, then e is not cofixed.

Proof. Say e belongs to the del class Ev: Consider the reduced del–con tree T 0

obtained from T by relabelling v with ðEv,fe0g; del). By Proposition 4.2 fe; e0g is an
independent clonal pair in MðT 0Þ and so by Proposition 2.4 we see that e is not fixed
in MðT 0Þ\e0 ¼ MðTÞ: The second statement follows by duality. &

Lemma 4.9. If M is a quasi-line then M is totally free.

Proof. Let T be the reduced del–con tree such that M ¼ MðTÞ: Now M is certainly
3-connected with at least four elements. Suppose that eAEv is cofixed in MðTÞ:
Then, as the members of Ev are clones, jEvj ¼ 1; so that v is not a degree-1 vertex. By
Lemma 4.8, Ev is a del class. But then, by Lemma 4.7, siðM=eÞ is not 3-connected.
Similarly, if e is fixed, then coðM\eÞ is not 3-connected, and it follows that M is
totally free. &

To conclude the section we consider certain single-element extensions of quasi-
lines.

Lemma 4.10. Suppose that fe; f ; gg is a clonal triangle of M and that M\e ¼ MðTÞ
for some del–con tree T : Then M is a quasi-line and M ¼ MðT 0Þ where T 0 is obtained

from T by relabelling v with ðEv,e; delÞ; where Ev+f f ; gg:

Proof. By Proposition 4.2, f and g are in the same vertex class of M\e; so that the
matroid MðT 0Þ is well defined and, again by Proposition 4.2, fe; f ; gg is a clonal
triple of MðT 0Þ: It remains to prove that MðT 0Þ ¼ M: Let M1 ¼ MðT 0Þ and let
M2 ¼ M:

For fi; jg ¼ f1; 2g suppose that CDEðMÞ is circuit of Mi: If eeC then C is a
circuit of Mi\e ¼ Mj\e; and hence C is a circuit of Mj: Therefore assume eAC: If

C ¼ fe; f ; gg then C is a circuit of both M1 and M2 so we may assume Cafe; f ; gg:
If C-fe; f ; gg ¼ feg then since e and f are clones in both Mi and Mj it follows that

ðC � eÞ,f is a circuit of Mi\e ¼ Mj\e; and therefore that C is a circuit of Mj :

Similarly, if C-fe; f ; gg ¼ fe; xg where fx; yg ¼ f f ; gg; then ðC � eÞ,y is a circuit
of Mi\e ¼ Mj\e and hence C is a circuit of Mj: Therefore, we conclude that M1 ¼ M2

and that the lemma holds. &
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5. Proof of the main theorem

We first prove

Theorem 5.1. The set of totally free matroids that have no U3;6-minor is exactly the set

of quasi-lines.

Proof. Assume that M is a quasi-line. By Lemma 4.9, M is totally free. The
straightforward proof that M has no U3;6-minor is given in [5, Lemma 6.1].

Now consider the converse. Assume that M is a totally free matroid with no
U3;6-minor and assume that the theorem fails. Among all counterexamples to

the theorem, assume that M is chosen to have a minimum-sized ground set. First
note that the only totally free matroids having fewer than six elements are U2;4; U2;5

and U3;5; and that these are all quasi-lines. We next prove:

5.1.1. M has no triangles or triads.

Subproof. Suppose that fx; y; zg is a triangle of M: By Proposition 2.8, fx; y; zg is a
clonal triple of M: By Corollary 2.10, M\x is totally free. Now by the minimality of
M; M\x is a quasi-line. Thus, M\x ¼ MðTÞ for some reduced del–con tree T : But
now, by Lemma 4.10, M is a quasi-line. This contradiction shows that M has no
triangles. It follows by duality that M has no triads. &

An easy consequence of 5.1.1 is

5.1.2. rðMÞ43 and rðM�Þ43:

5.1.3. There is an element eAEðMÞ such that either M\e or M=e is totally free.

Subproof. Assume otherwise. Then, by Corollary 2.7 and 5.1.2, EðMÞ is the
union of 2-element clonal classes. Let fe; e0g be a clonal class of M: Then,
again by Corollary 2.7, M=e\e0 is totally free. By the minimality of M;
there is a reduced del–con tree T such that M=e\e0 ¼ MðTÞ: By duality
we may assume that T has a degree-1 del vertex v: Since Ev is the union
of clonal classes of M; it follows that jEvjX4: Thus, jEv,fe; e0gjX6 and
MjðEv,fe; e0gÞ has rank 3 and no triangles, contradicting the fact that M has no
U3;6-minor. &

By 5.1.3 and duality, we may assume that there is an element eAEðMÞ such that
M\e is totally free. Thus M\e is a quasi-line. Let T1 be the reduced del–con tree such
that M\e ¼ MðT1Þ: If T1 has only one vertex, then M\e has no triangles and hence
rðM�Þ ¼ 3; contradicting 5.1.2. Hence, T1 has at least two vertices.

5.1.4. M=e is totally free.
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Subproof. We first show that M=e is 3-connected. Assume otherwise and let ðX ;YÞ
be a 2-separation of M=e: As M has no triangles, jX j; jY jX3: An easy rank
argument shows that ðX ;Y Þ is a 3-separation of M\e and eAclMðX Þ-clMðYÞ: Since
T1 has more than one vertex, it follows from Lemma 4.4, that there is a vertex v of T1

such that, if T 0 is any connected component of T1 � v; then
S

wAVðT 0Þ Ew is contained

in either X or Y : Let u be a degree-1 vertex distinct from v: Without loss of
generality, EuDX : Let C be a 3-element subset of Eu: As M\e has no triangles, C is a
triad of M\e: But eAclðYÞ and YDEðMÞ � C; so C is a triad of M; contradicting
the fact that M has no triads. Hence M=e is indeed 3-connected.

Assume that M=e is not totally free. Then, by Lemma 2.6, there is a unique clone
e0 of e in M: Let u and v be two degree-1 vertices of T1: Without loss of generality
e0eEu: Let fx; y; zg be a three elements subset of Eu: The set fx; y; zg is a triad of
M\e; and therefore fx; y; z; eg is a cocircuit of M: As fe; e0g is a clonal pair,
fx; y; z; e0g is also a cocircuit. By cocircuit exchange fx; y; e; e0g must be a cocircuit of
M; and hence fx; y; e0g is a triad of M\e: Thus e0AEu by Proposition 4.3,
contradicting our hypothesis.

By 5.1.4 and the minimality of M; M=e is a quasi-line. Let T2 be the reduced del–
con tree such that M=e ¼ MðT2Þ: If T2 has only one vertex then as M=e has no
triads, M=eDU2;k and so rðMÞ ¼ 3; contradicting 5.1.2. Thus T2 has at least two

vertices.
Let P be a maximal path in T2 and let u and v be the end-vertices of P: Since M=e

has no triads, u and v are del vertices of T2: Let Fu ¼ Eu,e and Fv ¼ Ev,e: Fu and
Fv are rank-3 flats of M that meet in feg: Thus rMðFu,FvÞp5: Also, as Eu and Ev

are distinct flats of M=e it follows that rMðFu,FvÞX4: Suppose for a contradiction
that rMðFu,FvÞ ¼ 5: Now Fu and Fv must both be cyclic flats, since jFuj; jFvjX4 and
M has no triangles. Also, rðFuÞ þ rðFvÞ ¼ rðFu,FvÞ þ 1: So, by Lemma 2.2, e is fixed
in M: This is a contradiction as M\e is 3-connected and M is totally free. Therefore
rMðFu,FvÞ ¼ 4: Since rM=eðEu,EvÞ ¼ 3; we can apply Lemma 4.6 to deduce that T2

is isomorphic to a path of length two, with end-vertices u and v and a single internal
vertex w such that jEwj ¼ 1: Thus, M=e has the structure shown in Fig. 1.

We have shown that rðMÞ ¼ 4: But M� is also a minimal counterexample to the
theorem, and M�

\e is also totally free. Therefore the same arguments show that
rðM�Þ ¼ 4: It immediately follows that jEðMÞj ¼ 8 and that therefore M=e must be
the matroid R7 shown in Fig. 2.

Again, by applying the same arguments to M�; we can show that M�=e too is

isomorphic to R7: Thus M\e ¼ ðM�=eÞ� is isomorphic to R�
7; shown in Fig. 3.

Since there are two disjoint triangles in M=e and none in M; it follows that e is in
exactly two circuit-hyperplanes of M; and these flats meet exactly in feg: Also, by
examining M\e we see that there are exactly two circuit-hyperplanes of M that avoid
e: Thus there are exactly four circuit-hyperplanes in M: Let these circuit-hyperplanes
be F1;y;F4: Clearly, every element is in at least one of these flats. Suppose that
some element x is in exactly one. Then M=x has rank 3 and contains exactly one
circuit-hyperplane. By deleting one element from this line we obtain a U3;6-minor.
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Thus we must assume that every element is in at least two circuit-hyperplanes. There
are four of these flats, so there are six possible intersections of circuit-hyperplanes.
Since each of the eight elements of EðMÞ is in at least one intersection, it follows by
an application of the pigeonhole principle that there are two circuit-hyperplanes that
meet in two elements x and y: Let these flats be F1 and F2: If eeF1,F2 then there
would exist two rank-3 flats of M\e that meet in two elements. As this is not the case,
eAF1,F2: Since e is in exactly two circuit-hyperplanes that meet exactly in feg; it
follows that e is not in F1-F2; and therefore we can say without loss of generality
that eAF1 � F2: Let F3 be the circuit-hyperplane that meets F1 exactly in feg: Thus
neither x nor y is in F3: There is one remaining circuit-hyperplane F4: If F4 does not
contain fx; yg then without loss of generality say that xeF4: Then, M=x contains
exactly two non-trivial lines, and these lines meet in y: Thus, M=x\ yDU3;6:
Therefore, suppose that fx; ygCF4: Now M=x has exactly three non-trivial lines and
these lines meet in y: Again M=x\ yDU3;6 contradicting the assumption that M does

not have a U3;6-minor. &

Finally, we can prove Theorem 1.1 which for convenience we restate here.

Theorem 5.2. Let M be a 3-connected GFðqÞ-representable matroid with no

U3;6-minor. Then M has at most ðq � 2Þ! inequivalent GFðqÞ-representations.
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Proof. Let N be a totally free minor of M: By Theorem 5.1 N is a quasi-line. Say
jEðNÞj ¼ k: By Lemma 3.1, N is GFðqÞ-representable if and only if U2;k is, that is, if

and only if kpq þ 1: Furthermore, Lemma 3.1 also implies that nqðNÞ ¼ nqðU2;kÞ:
The number of inequivalent representations of U2;k over GFðqÞ is at most the

number of ordered ðk � 3Þ-tuples of elements from GFðqÞ � f0; 1g such that the
elements of the ðk � 3Þ-tuple are pairwise distinct. Thus

nqðU2;kÞp
ðq � 2Þ!

ðq � k þ 1Þ!
(In fact equality holds here for prime fields.) It follows that nqðNÞpnqðU2;qþ1Þpðq �
2Þ!: Thus, all totally-free minors of M have at most ðq � 2Þ! inequivalent
representations and it now follows from Lemma 2.5 that M has at most ðq � 2Þ!
inequivalent representations. &
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