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Abstract

We focus on combinatorial problems arising from symmetric and skew—symmetric ma-
trices. For much of the thesis we consider properties concerning the principal submatrices.
In particular, we are interested in the property that every nonsingular principal submatrix
is unimodular; matrices having this property are called principally unimodular. Principal
unimodularity is a generalization of total unimodularity, and we generalize key polyhe-
dral and matroidal results on total unimodularity. Highlights include a generalization of
Hoffman and Kruskal’s result on integral polyhedra, a generalization of Tutte’s results on
regular matroids, and partial results toward a decomposition theorem.

Quite separate from the study of principal unimodularity we consider a particular
skew—symmetric matrix of indeterminates associated with a graph. This matrix, called
the Tutte matrix, was introduced by Tutte to study matchings. By considering the rank
of an arbitrary submatrix of the Tutte matrix we discover a natural generalization of
the maximum matching problem. We generalize Edmonds’ description of the matching
polyhedra, Cunningham and Marsh’s theorem on total dual integrality, and the Tutte—
Berge min—max formula. Interestingly, our proofs do not require the use of augmenting
paths.
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Chapter 1

Introduction

Total unimodularity, matching and matroids are cornerstones of combinatorial optimiza-
tion. We consider generalizations of these subjects, that arise through the study of sym-
metric and skew—symmetric matrices. Our focus is mainly on “principal unimodularity” (a
generalization of total unimodularity). Our treatment of principal unimodularity occupies,
in some capacity, Chapters 2 through 7, though this may not be apparent amidst Chap-
ters 3, 4 and 5 which introduce “delta—matroids”. Chapter 8, explores a generalization of
matching that has little relation to either principal unimodularity or delta—matroids, so we
postpone its introduction until the end of this chapter. We begin by reviewing key results
concerning total unimodularity and regular matroids.

A matrix is totally unimodular if every square nonsingular submatrix is unimodular
(that is, has determinant +1). Hoffman and Kruskal [43] noticed the following connection
between totally unimodular matrices and integral polyhedra.

(1) An m by n integral matriz A is totally unimodular if and only if, for every b € Z™,
each vertex of the polyhedron {x € R™ : Ax < b,z > 0} is integral.

Motivated by this fundamental result of Hoffman and Kruskal in integer programming,
researchers obtained a number of results giving conditions for total unimodularity; see
Padberg [57] for a survey. We focus on the matroidal study of total unimodularity, which
culminates in Tutte’s excluded minor characterization [68] and Seymour’s decomposition
theorem [61].

Regular matroids

By matroid, we mean a pair (V, B) where V is a finite set and B is a collection of subsets,
called bases, of V satisfying:

Basis exchange axiom. For B, B’ € B and z € B’\ B, there exists y € B\ B’ such that
BA{z,y} € B.

(Here AAB denotes the symmetric difference of A and B, that is, (B\ A)U (A \ B).) In
particular, if V' is the set of columns of a matrix A over a field F, and B(A) is the collection
of maximal linearly independent subsets of V', then (V,B(A)) is a matroid; such matroids
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are called representable. A matroid is called regular if it can be represented over the reals
by a totally unimodular matrix.

The following result of Camion [16] shows that the correspondence between regular
matroids and totally unimodular matrices is essentially one-to-one.

(2) Let A, A" be totally unimodular matrices, such that A = A" modulo 2. Then A can
be obtained from A’ by multiplying certain rows and columns by —1.

Given a (0,+1)-matrix A we construct a matrix A; = (I, A), where [ is the identity
matrix. A; is totally unimodular if and only if A is. Thus if B(A;) is not regular, then A
is not totally unimodular. So we assume that there exists a totally unimodular matrix A}
such that B(A;) = B(A]). By row operations, we may assume that A} = (I, A") for some
matrix A’. It is easy to prove that A = A’ modulo 2. Then, by (2), A is totally unimodular
if and only if A can be got from A’ by multiplying certain rows and columns by —1.

The following theorem of Tutte [71] is more interesting in its own right than it is as a
characterization of total unimodularity.

(3) For a matroid M, the following are equivalent:
(1) M is regular,
(i1) M is representable over every field, and

(111) M is representable over GF(2) and GF(3).

We now consider a deeper theorem, also due to Tutte [68]. First, we need some definitions.
Let M = (V,B) be a set—system. For X C V., we denote M — X the set—system (V\X,{B C
V\ X : B € B}); we refer to this operation on M as the deletion of X from M. By twisting
by X we mean the operation that converts M to (V,{BAX : B € B}) which we denote
by MAX. The dual of M is the set—system M AV, and the contraction of X in M is the
set—system (MAX) — X. A minor of M is a non—empty set—system obtained from M by
deletions and contractions. Finally, the Fano matroid is the binary matroid represented by
the following matrix:

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0o o0 1 1 1 0 1

(4) Let M be a binary matroid. Then M is reqular if and only if M does not contain a
minor isomorphic to the Fano matroid or its dual.

Tutte also found an excluded minor characterization for GF(2)-representability [68]; thus,
with (4), we have a complete excluded minor characterization for regular matroids.

The results (2) and (4) both allow us to demonstrate that a given binary matroid is not
regular. We now state a much deeper result that allows us to demonstrate that a binary
matroid is regular; it also leads to an efficient recognition algorithm. Given a connected
graph G = (V. E), the edge sets of spanning trees of G define a matroid; such matroids
are called graphic matroids. Graphic matroids are in fact regular. The following theorem
of Seymour [61] shows that all regular matroids are essentially graphic.



(5) Every reqular matroid can be obtained by 1-, 2— and 3-sums of Ry, graphic ma-
troids, and the duals of such matroids.

Here Riy is a particular regular matroid, and 1-, 2- and 3—sums are operations for com-
posing two matroids; for precise definitions see [56].

We generalize the results (1) through (4). While we do not find a generalization of Sey-
mour’s decomposition, we use it as motivation for other results. For instance, Theorem 5.17
generalizes the binary part of Seymour’s “splitter theorem”, which is an important step in
the proof of the decomposition theorem.

Principal unimodularity

We call a square matrix principally unimodular if every nonsingular principal submatrix is
unimodular. While principal unimodularity sounds weaker than total unimodularity, it is
in fact a generalization. Indeed, a matrix A is totally unimodular if and only if ( _ET ‘g )
is principally unimodular. In Chapter 2 we generalize Hoffman and Kruskal’s polyhedral
characterization of total unimodularity. Our characterization of principal unimodularity is
in terms of integral “basic solutions” to the “linear complementarity problem”. The linear
complementarity problem is stated as follows: Given an n by n matrizc M and a vector
q € R", find z € R" satisfying z >0, g+ Mz >0 and 27 (q+ Mz) = 0. There is a large
literature concerning the linear complementarity problem (see Cottle, Pang and Stone [19]
for a survey); it is a generalization of linear programming that also contains bimatrix
games and first—order optimality conditions for quadratic programming. As is the case with
linear programming, the linear complementarity problem has a “basic” feasible solution
whenever there exists a feasible solution, if M is symmetric or skew—symmetric. (This
does not hold for arbitrary square matrices). Consequently, if M is a symmetric or skew—
symmetric integral principally unimodular matrix, then, for each ¢ for which the linear
complementarity problem has a feasible solution, it has an integral feasible solution. This
fundamental result, which appears to be new, motivates the further study of symmetric
and skew—symmetric, integral, principally unimodular matrices.

Delta—matroids

Let V be a finite set, and A be a V by V symmetric or skew—symmetric matrix. We denote
by A[X] the principal submatrix of A indexed by X C V. Now define F(A) = {X C V:
A[X] is nonsingular }. Bouchet [8], proved that F(A) satisfies the following:

Symmetric exchange axiom. For F, F' € F and # € FAF' there exists y € FAF'
such that FA{z y} € F.

A delta—matroid is a pair (V,F) where V is a finite set and F is a collection of subsets
of V, called feasible sets, satisfying the symmetric exchange axiom. The delta—matroids
got from symmetric or skew—symmetric matrices are called representable. Delta—matroids
were introduced by Bouchet [4] for the purpose of studying principal unimodularity (which
he also introduced [7, 11]).



It is easily seen that a set—system obtained from a delta-matroid by the operations
twisting and deletion (defined above) is also a delta—matroid. We redefine the term minor,
for a set—system M, to be any set—system got from M by twisting and deleting. Thus
usual “matroidal-minors” and duals are minors in this new sense. For matroidal properties
that are closed under duality, like regularity and representability, our definition is quite
convenient.

We call a set—system containing the empty set a normal set—system. Note that every
representable delta—matroid is normal. Bouchet [8] showed that every normal minor of a
representable delta—matroid is representable. We call a delta—matroid whose feasible sets
all have the same parity (that is, cardinality modulo two) an even delta—matroid. We note
that every skew—symmetric matrix of odd size is singular, so every delta—matroid that is
representable by a skew-symmetric matrix is even.

It is not difficult to prove that matroids are delta-matroids. Except for trivial matroids,
representable matroids are not normal, and hence not representable delta-matroids. How-
ever, for any base B of a representable matroid M, the set—system M AB is a representable
delta—matroid. In Chapter 3 we shall see that a number of well-known matroidal results
generalize to delta—matroids.

Regular delta—matroids

A regular delta—matroid is a delta-matroid that is representable by a skew-symmetric,
principally unimodular matrix. An equable delta—matroid is a delta-matroid that is repre-
sentable by an integral, symmetric, principally unimodular matrix. Interestingly, if M is
a normal delta—matroid, then M is equivalent under twisting to a regular matroid if and
only if M is both regular and equable. This dichotomy also extends to a near partitioning
of the interesting properties of regular matroids.

For equable delta—matroids, results (2), (3) and (4) all generalize cleanly. Our gener-
alization of Tutte’s excluded minor characterization, was obtained by a generalization of
Gerards’ graphical proof of Tutte’s theorem [38]. Our original proof was quite long. We
present a shorter proof that we obtain by using a theorem of Truemper [65]. The situation
is not so nice with regard to generalizing Seymour’s decomposition. There appears to be
no nontrivial way in which to decompose an equable delta-matroid; we do not even have
an appropriate definition for a “2-sum”.

For regular delta—matroids, only result (3) generalizes cleanly, see Theorem 4.13. How-
ever regular delta—matroids have a very rich matroidal structure and there is some hope that
Seymour’s decomposition theorem may generalize. To begin with, regular delta—matroids
are even, and even delta—matroids have more structure than general delta—matroids. We
will also see that the class of regular delta—matroids is preserved under a natural gen-
eralization of 1- and 2-sums. This 2-sum is the cause of much difficulty in generaliz-
ing (2); we are obliged to consider “3—connected” regular delta—matroids. In joint work
with Bouchet and Cunningham we obtained the result that a 3—connected regular delta—
matroid has a “unique” representation by a principally unimodular skew-symmetric ma-
trix. The “uniqueness” factors out negating the matrix and the multiplication of a row
and its corresponding column by —1. To prove the uniqueness theorem we introduce a
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tool, called a “blocking sequence”, for studying 3—connected, binary, even delta—matroids.
These blocking sequences also enable us to generalize Seymour’s “splitter theorem” to
binary, even delta-matroids.

A final interesting point concerning regular delta—matroids is that there exists a large
natural class; namely “FEulerian delta—matroids”. A circle graph is the intersection graph
of chords of a circle, and an Fulerian delta—matroidis a binary delta-matroid representable
by the adjacency matrix of a circle graph. Bouchet proved that Eulerian delta—matroids
are regular [7, 11]. Bouchet also found a nice characterization of Eulerian delta—matroids
that neatly distinguishes them from regular delta—matroids; however, for the purpose of
a decomposition, it would be preferable to have an excluded minor characterization. De
Fraysseix [26] proved that, if B is a base of a matroid M, then M is a planar matroid if and
only if MAB is an Eulerian delta—matroid. (Here by planar matroid we mean the graphic
matroid of a planar graph.) In Chapter 5 we use blocking sequences to prove interesting
results about circle graphs.

Matching

In the final chapter we consider a generalization of matching. The problem arises most
naturally by considering a certain skew—symmetric matrix of indeterminates; however we
begin by stating the problem graphically: Given a graph G = (V, E) and equicardinal
subsets S, T of V, find a set P of |S| vertex disjoint (S, T)—paths and a perfect matching
of the vertices that are not covered by any path in P. When S and T are both empty, the
problem is to find a perfect matching. The other extreme is also interesting; when S, T
partition V', then the problem is to find a perfect matching in the bipartite graph induced
by the edges in the cut (S,7T). In the general case, the problem is an interesting blend of
network flows and matchings.

The connection to skew—symmetric matrices is the following. Let G = (V, E) be a
graph, and let {z;; : ij € E} be a set of algebraically independent indeterminates. We
construct a skew—symmetric matrix A = (a;;) such that a;; = +a;; for ij € E and a;; =0
otherwise. Tutte [67] observed that A is nonsingular if and only if G has a perfect matching.
In similar fashion we show that our generalized matching problem is equivalent to deciding
whether A[V'\ S,V \ T] is nonsingular. (Here A[X,Y] denotes the submatrix of A indexed
by rows X and columns Y.)

We extend some fundamental results in matching theory to this generalized matching
problem. We give a min—max formula for the rank of A[V'\ S,V \ T that is essentially due
to Lovasz. This min—max theorem directly implies Konig’s theorem and the Tutte—Berge
formula (see [50]). Then we give a totally dual integral polyhedral description for the edge
sets of these generalized matchings. As a consequence of the polyhedral description and the
ellipsoid algorithm, we get an efficient algorithm for deciding whether such a generalized
matching exists.

Ideally we would have liked to find an efficient combinatorial algorithm for solving the
problem; despite promising partial results, this remains open. At first one may be tempted
to try to calculate the determinant of A[V '\ S,V \ T]; however the determinant may have
an exponential number of terms. The next approach is to find an algorithm based on



“alternating paths”; unfortunately we have been unable to find a satisfactory definition.

Conventions

This thesis is largely self-contained, since proofs rely on elementary linear algebra, and
graph theory. However, while motivating certain results, we assume that the reader is
familiar with Matroid Theory (see [56]) and Matching Theory (see [50]). With influences
from so many areas in combinatorics, it has not always been possible to use standard
notation; an index is provided to help minimize the confusion. All results are properly
attributed, to the best knowledge of the author; appropriate reference can be found in the
paragraph preceeding the statement of the result. Where attribution is missing, the result
is claimed to be original research.



Chapter 2

The linear complementarity problem

The main goals of this short chapter are to introduce “principal unimodularity”, and to
to motivate the further study of principally unimodular symmetric and skew-symmetric
matrices. We also introduce an important matrix operation called “pivoting”. Let M be
a V by V matrix. We call M principally unimodular (PU) if every principal submatrix
of M is unimodular (that is, has determinant 0,+1). Principal unimodularity arises as a
generalization of total unimodularity as follows: a matrix A is totally unimodular if and
only if (ing ‘g) 1s PU.

Due to the connection with integrality in linear programming, totally unimodular ma-
trices are of fundamental importance in combinatorial optimization. In this chapter, we
will see that principal unimodularity plays an analogous role with respect to the linear com-
plementarity problem. We give a terse treatment to the linear complementarity problem;
for a detailed survey of the problem see Cottle, Pang and Stone [19], or Murty [52]. Ap-
plications of the linear complementarity problem include: linear programming, quadratic
programming, and bimatrix games; the linear and quadratic programming applications
involve skew-symmetric and symmetric matrices respectively.

Let V be a finite set, let M be a V by V matrix, and let ¢ be a column vector indexed
by V. The linear complementarity problem, with respect to g, M, is to find column vectors
w, z indexed by V satisfying:

w = Mz+q, (2.1)
Wyz, = 0, (v eV) :
w,z > 0 (2.3)

We denote the above problem by (¢, M). Let w, z be column vectors indexed by V. We call
w, z complementary if they satisfy (2.2), and w, z are feasible for (q, M) if they satisfy (2.1)
and (2.3). Complementary feasible vectors for (¢, M) are called solutions of (q, M). For a
solution w, z of (¢, M), w is uniquely determined by z, so we occasionally denote the pair
z,w by the vector z.

Let X.Y be subsets of V. We denote by M[X,Y] the X by Y submatrix of M, and
we denote by M[X] the principal submatrix M[X, X|. Suppose that M[X] is nonsingular,
for some subset X of V. There is a unique pair of vectors w’, 2’ satisfying (2.1) such that
wy = 0 and 2% = 0. Here vx denotes the restriction of the vector v to the set X, and X
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denotes V' '\ X. The pair 2/, w’ is defined as follows:

2y = —(M[X])lqx, wyx = 0,
2= 0, we = qx — M[X, X](M[X]) "qx.

Note that w', 2" are not necessarily nonnegative. Such complementary vectors are called
basic vectors of (q, M) with respect to X. The main theorem of this chapter is the following.

Theorem 2.1 Let M be a V by V integral matriz. Then the following are equivalent:

1. M s principally unimodular.

2. For every integral vector q, all basic solutions of (q, M) are integral.

Unfortunately it is not the case, for an integral PU-matrix M, that (¢, M) has an integral
solution for every q for which (¢, M) has a solution. Indeed, consider (g, M) where

01 —1 -1
M=[00 2 |.q=]| -1
00 0 0
Note that M is PU. Let z* = (0, 2, %)T, and w* = (0,0,0)7; then z*,w* is a solution to

(¢, M). However, for any solution z,w to (q, M), we have z5 — z3 — 1 > w;. Then, since
w, z > 0, we must have z, > 0. So, by complementarity, w, = 0, and 223 — 1 = 0. Thus, z
is not integral.

For symmetric and skew—symmetric matrices the situation is nicer. For completeness,
we will include a proof of the following result in a later section.

Theorem 2.2 (See Cottle, Pang, and Stone [19]) Let M be a V by V symmetric or
skew—symmetric matriz, and let q be a column vector indezed by V. If (q, M) has a solution,
then there exists a basic solution to (q, M).

As an immediate consequence of Theorems 2.1 and 2.2 we have the following resuls.

Corollary 2.3 Let M be a symmetric or skew-symmetric V by V. PU-matriz, and let q
be an integral column vector indexzed by V. If (¢, M) has a solution, then there exists an
integral solution to (q, M). O

To prove Theorem 2.1, we need to introduce a matrix transformation, called “pivoting”.
However, one direction can be proved easily using the adjoint formula for the inverse of
a matrix (see Horn and Johnson [44]). Let A be a nonsingular V' by V matrix, where

V ={1,...,n}. We define a new V by V matrix (b;;), denoted adj(A), where
bij = (—1)"" det(A[V — 5,V —i]).
Then, the adjoint formula for the inverse of A is

L1
= den( ) B A

Proposition 2.4 Let M be o V by V integral PU-matriz, let X be a subset of V such
that det(M[X]) = £1, and let q be an integral column vector indezed by V. Then the basic
vectors of (q, M) corresponding to X are integral.

Proof It suffices to prove that M[X]™! is integral, which follows easily from the adjoint
formula for the inverse. O



Linear programming

In this section we show how the linear complementarity problem arises as a generalization
of linear programming.

Let X,Y be a partition of a finite set V. Let A be an X by Y matrix, ¢ be a column
vector indexed by Y, and b be a column vector indexed by X. We are interested in the
following linear programming problem:

min Lz
(P) - s.t. AZl 2 b
Z1 2 0
The dual of (P) is
max bz,
(‘D) - s.t. ATZ2 S C
Z9 2 0.

A well-known result in linear programming is that, if z; is feasible to (P), and z, is feasible
to (D), then z; is optimal to (P) and z, is optimal to (D), if and only if the following
(complementary slackness) conditions are satisfied:

2ZIb—Az) = 0
2T(e— ATz) = 0.

0 —AT c
M:(A 0 ),andq:(_b).

For a column vector z indexed by V, it is easy to verify that, zy is optimal to (P) and
zx is optimal to (D), if and only if z is a solution to the linear complementarity problem
(g, M).

Theorem 2.1 generalizes the following well-known theorem in integer programming.
A polyhedron P C RY is integral if max(cfz : = € P) has an integral optimal solution

Now, let

whenever it has an optimal solution.

Theorem 2.5 (Hoffman and Kruskal [43]) Let A be an integral X by Y matriz. Then
the following are equivalent

(1) A is totally unimodular.

(2) For every integral vector b indexed by X, the polyhedron {x € RY : Az > b,z > 0}
s integral. a

The assertion that (1) implies (2) is elementary and is easily implied by Theorem 2.1;
however, it is not immediately obvious that the converse of Theorem 2.5 is a corollary of
Theorem 2.1. If A is not totally unimodular, then Theorem 2.1 shows that there exists
b e Z* and ¢ € ZY such that either {z € RY : Az > b,z > 0}or {y ¢ R* : ATy < ¢,y >0}
is not integral. If {z € RY : Az > b,z > 0} is not integral, then we are done. So

9



we may assume that {y € R¥ : ATy < ¢,y > 0} is not integral. Then there exists
b € Z* such that the value of the linear program (D) is fractional. Hence, by duality,
{z ¢ RY : Az < ¥,z > 0} is not integral. For a detailed discussion on total unimodularity
and polyhedral theory, see Nemhauser and Wolsey [54].

Pivoting

Let M be a V by V matrix. For a subset X of V such that M[X] is nonsingular, define
matrices «, 3, v, 4, such that « = M[X] and M :(—’%). Then define M * X to be

e}
¥

at ‘ —a~lp
ya~t [ §—qya B )
The operation that converts M to M * X is called a pivot.
Let ¢ be a column vector indexed by V. From the linear complementarity problem

(g, M), we define a new problem (¢', M % X)), which we denote (q, M) * X, where

¢x = —(M[X])'qx,
ix = qx — M[X, X](M[X]) " qx.

The following lemma shows that the linear complementarity problems (g, M) and (g, M)+ X
are essentially the same; the proof follows directly from the definitions.

Lemma 2.6 (See Cottle,Pang, and Stone [19]) Let M be a V by V matriz, q be a
column vector indexed by V, X be a subset of V such that M[X] is nonsingular, and w, z
be a solution of (¢, M). Now, define w', 2" such that w = zx, 2% = wx, we = wx, and

2% = zx. Then, w',2' is a solution of (M, z) x X. O

Let w, z be a solution to (¢, M), and let w’, 2’ be the corresponding solution to (g, M) * X.
It can be easily verified that w, z is a basic solution to (¢, M) if and only if w’, 2’ is a basic
solution for (¢, M) % X. Furthermore, properties like nonnegativity, complementarity and
integrality are also preserved under such transformations.

Invariants

Pivoting in matrices preserves a number of interesting properties, like skew—symmetry,
principal unimodularity, positive (semi-) definiteness, and positive principal minors, see
Cottle, Pang, and Stone [19]. Note that, symmetry is not preserved under pivoting. How-
ever, if M[X] is a nonsingular submatrix of a symmetric matrix M, then we can obtain a
symmetric matrix from M x X by multiplying the rows indexed by X by —1. We call a
matrix that is obtained from a symmetric matrix by negating certain rows a bisymmetric
matriz. Bisymmetry is preserved under pivoting.

The following theorem is fundamental to this dissertation, so we include a proof. For
sets A, B, we define AAB to be the symmetric difference of A and B; that is, the union of
A\ B and B\ A.

10



Theorem 2.7 (Tucker [66]) Let M[X] be a nonsingular principal submatriz of a V by

V matric M. Then, for S CV,
det(M = X[S]) = +det(M[XAS])/ det(M[X]).

Proof (Bouchet, personal communication) Let Y = V'\ X, and let M be partitioned

as follows:
X Y
X fa p
WX (o)

Construct a copy V of V., and for Z C V, denote by Z the corresponding copy of Z. Now

define M’ to be o
XY XY
X(T 0 «a p
Y\ O I v 4/
For R C V, we have )
det M[R] = +det M'[V,RU (V \ R)]. (2.4)
Now define matrices
X Y
X a™! 0
¢= Y (—fya_l I)’
and ~ ~
X Y X Y
X a™! 0 I a”lpg
B=CM = .
¢ Y (—fya_l I 0 5—704_1ﬁ)
Therefore
det BlV,RU(V\ R)] = det M'[V,RU(V \ R)]detC
= det M[V,RU (V' \ R)]det a™?. (2.5)
Now swapping the columns X and X pairwise in B we get the matrix B,
XY X Y
B — X({I 0 a~l a~1p
Y\O0O I —va bt §—ya i)
Then ) o
det B[V, RU (V \ R)] = £det B'[V,(RAX) U (V \ (RAX)))]. (2.6)
For T'C V., we have
det M % X[T] = + det B'[V,T U (V \ T)]. (2.7)
O

The result is obtained by combining equations 2.4 to 2.7.
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Elementary pivots

The following theorem about pivoting is implied by the quotient formula for the Schur
complement (see Cottle et al. [19, pp. 76]).

Theorem 2.8 Let M[X] be a nonsingular principal submatriz of a square matriz M, and
let M« X[Y] be a nonsingular principal submatriz of M x X. Then (M %« X)xY =
M « (XAY). 0

Let M be a V by V matrix. Suppose that M[X] is a nonsingular principal submatrix
of M, and there exists X’ C X such that M[X’] is nonsingular. Then, by Theorem 2.8,
MxX =MxX"%(X\X'). We call a nonempty set X an elementary set of M if M[X]
is nonsingular but there exists no proper subset X’ of X such that M[X’] is nonsingular.
We call M % X an elementary pivot if X is an elementary set of M. Thus, any pivot is
equivalent to a sequence of elementary pivots.

Proposition 2.9 Let M be a V by V matriz, and let X be an elementary set of M. Then
every row and column of M[X]| contains exactly one nonzero entry.

Proof Easy. a

As an easy corollary of the previous proposition we have that, if M is symmetric or skew—
symmetric, then all elementary sets have one or two elements.

Proofs

We now prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. If M is PU, then, by Proposition 2.4, for every integral ¢, all
basic solutions of (¢, M) are integral. We now prove the converse. We begin by proving
the following claim.

Claim  Let X be a subset of V, such that det(M[X]) = £1. Then, M x X is integral.
Furthermore, if q,q" is a pair of vectors such that (¢, M * X) = (q, M) x X, then q is
integral if and only if ¢’ is integral.

Since M[X] is unimodular and integral, M[X]™! is unimodular and integral. Therefore,
M « X is also integral. Thus, if ¢ is integral, then ¢’ is integral. The converse follows since
pivoting is an involution. This proves the claim.

Suppose that M is not PU, and let Y be a minimum cardinality subset of V' such that
M][Y] is not unimodular. Suppose that Y is not an elementary set of M. Since M[Y] is
nonsingular, there exists a subset Y’ of Y, such that Y’ is an elementary set of M. By
our choice of Y, M[Y'] is unimodular. By the claim, it suffices to prove the theorem for
M «Y'. Now |[Y'AY| < |Y], and by Theorem 2.7, M «Y'[Y AY"’] is not unimodular. Thus,
inductively, we may assume that Y is an elementary set.

We will create an integral vector ¢ so that the basic solution w, z of (¢, M), with respect
to the set Y, is feasible but not integral. To be basic w, z, ¢ must satisfy the following
equations

M[Y]Zy—l-qY =0 (28)
M[?,Y]Zy—l-q? = w?.
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By Proposition 2.9, every row and column of M[Y] contains exactly one nonzero element.
Therefore, every row and column of M[Y]™! contains exactly one nonzero element. Fur-
thermore, since M[Y] is integral but not unimodular, M[X]™! contains some non-integral
entries. Thus, it is easy to find an integral gy such that the unique solution zy to (2.8) is
both nonnegative and not integral. Given this zy, we can choose an integral ¢ sufficiently
large so that the solution wy to (2.9) is nonnegative. Hence we have an integral ¢, and a

nonintegral basic feasible solution w, z to (¢, M), as required. a

Proof of Theorem 2.2. We assume that M = (m,;) is skew—symmetric; the proof is
essentially the same for bisymmetric matrices.

Let w, z be a solution to (¢, M), and denote by X the support of z (that is, the set
{v eV :z #0}). We prove the result by induction on |X|; if |X| = 0, then w, z is basic.
Let Y ={v € V : w, = 0}. Note that, by complementarity, X is a subset of Y.

Suppose that M[Y, X] = 0. In particular, we have M[X] = 0. Choose some = € X.
Now define a new vector 2’ by fixing z, = z, for all v € V — z, and decreasing z/, as far as
possible, while maintaining 2’ feasible to (¢, M). Let w' = M2z' + q. Since M[X] = 0 and
ze =0, we have

wy = qx,

we = M[X, X]|zx + qx-

However, since wx = 0, we have gx = 0. Therefore, w’, 2’ are complementary, and hence
w', 2z is a solution to (¢, M). If 2z = 0, then 2z’ has a smaller support than z, so the
result follows inductively. Therefore, we may assume that 2z, > 0. Since we cannot reduce
z,, further while maintaining feasibility to (g, M), there exists y € V such that w; = 0,
and mg, > 0. Hence, by replacing w, z by w’, 2, and redefining Y accordingly, we get
MIX. Y] #0.

Choose # € X, and y € Y such that m,, # 0. Now define S to be {z,y}. Since M is
skew—symmetric, M[S] is nonsingular. Recall that (¢, M) has a basic solution if and only
if (¢, M) = S has a basic solution. Now define 2’, w’ such that

/ _ / —

ro_ o
7y = zz, Wy = Wg.

Then, by Proposition 2.6, z/,w’ is a solution to (¢, M) * S. However, since S C Y and
SN X #0, 2 has a smaller support than z. Therefore, the result follows by induction. O
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Chapter 3

Delta—matroids

This chapter is a general introduction to delta—matroids. Proofs of a number of known
results are included for completeness, and to give the reader a feeling for the structure of
delta—matroids.

A set—system is a pair (V, F) where V is a finite set, and F is a set of subsets of V, called
feasible sets. A delta—matroid is a set—system (V, F) that satisfies the following axiom (see
Bouchet [4] and Chandrasekaran and Kabadi [17]):

Symmetric exchange axiom For X,Y € F and z € XAY, there exists y € XAY such
that XA{z,y} € F.

Here XAY denotes the symmetric difference of X and Y, that is, (X \Y)U (Y \ X). It
is not difficult to prove that a nonempty set—system (V,F) is a matroid (that is, F is the
set of bases of a matroid) if and ounly if (V,F) is a delta—matroid and all feasible sets are
equicardinal. We recall that a set—system (V| F) is a matroid if and only if F is nonempty
and it satisfies the following axiom (see Oxley [56, pp. 17]):

Exchange axiom For X,Y € F and ¢ € Y \ X, there exists y € X \ Y such that
XA{z,y} € F.

It is also the case that the independent sets of a matroid define a delta-matroid; however
most important properties of delta—matroids generalize properties concerning the bases of
matroids. For instance we will see that the most interesting delta—matroids are even, that
is, all feasible sets have the same cardinality modulo 2.

Remark: An empty set—system (that is, a set—system with no feasible sets) is not
a matroid, whereas it is a delta-matroid. This difference in convention is well-founded.
For reasons of representability it is natural to require that the empty set is independent
in a matroid. Similarly, it might be natural to require that the empty set is feasible in a
delta—matroid. This condition would exclude matroids from being delta—matroids; instead
we call a delta-matroid in which the empty set is feasible a normal delta-matroid.

Another interesting class of delta—matroids are those arising from the matchable sets
of a graph. Let G = (V, E) be a graph, and let M be the set of subsets X of V such that
G[X] (the subgraph of G induced by the vertex set X) has a perfect matching. Bouchet [9]
proved that (V, M) is a delta—matroid; we call this the matching delta—matroid of G.
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Minors

Let M = (V,F) be a set—system, and let X C V. We define FAX = {FAX : F € F}, and
refer to this operation as twisting on X. We refer to set—systems equivalent under twisting
as equivalent set—systems. It is easy to see that (V,F) is a delta—matroid if and only if
MAX = (V,FAX) is a delta—matroid. Now define F — X tobe {F CV\ X : F € F};
we refer to this as deleting X. If (V, F) is a delta—matroid then M — X = (V\ X, F — X)
is also a delta—matroid. Given X,Y C V', we call the set—system (MAX) — Y a minor of
M; if X CY then we call the minor rigid. Note that any minor of M is equivalent to a
rigid minor of M.

Let M = (V,F)and M’ = (V', F') be set—systems such that V and V" are disjoint. The
direct sum (or 1-sum) of M and M’ is the set—system (ViUVo, {F1UFy : Fy € F1, Fs € Fs}).
The direct sum of two delta—matroids is clearly a delta—matroid. We call a proper partition
Vi, Vo of V a separation (or 1-separation) if M is the direct sum of M — V; and M — V5.
If Vi, V5 is a separation of M, then it is a separation of every set—system equivalent to M.
A set—system with a separation is called separable (otherwise nonseparable).

Let (V,F) be a matroid. We have already noted that matroids have equicardinal
feasible sets, so matroids are not in general preserved under twisting, and hence not closed
under the taking of minors. In fact, if (V,F) is nonseparable then the only other matroid
equivalent to (V, F) is its dual (V, FAV). Matroids are however closed under taking rigid
minors. (The usual definition of a minor of a matroid (see Oxley [56]) is what we have
called a rigid minor.) Actually, if (V’,F’) is a nonseparable matroid that is a minor of
(V,F), then either (V', F') or its dual is a rigid minor of (V, F). Therefore our definition

of a minor is convenient when studying dual closed families of matroids.

Optimization

Let (V,F) be a delta—matroid, and let ¢ € Q". We wish to find a maximum weight feasible
set (that is, a feasible set F' maximizing ¢(F) = Y ,cr¢y). We begin by transforming the
problem to one with nonnegative weights. Define V™ to be {v € V : ¢, < 0}, and define a
new cost function ¢ such that ¢, = |¢,| for all v € V. Then for X C V,

(X) = J(X\V)=d(XnV7)

AX\NVI)+(V\NX) =V \X)=-d(XNV7)
= J(XAV™") = (V7).

Hence, F is a maximum weight feasible set of (V,F), with respect to e, if and only if
FAV™ is a maximum weight feasible set of (V, FAV ™), with respect to the nonnegative
weights ¢/. Since ¢’ is nonnegative, to find a maximum weight feasible set we need only
optimize over the maximal cardinality feasible sets. This problem reduces to optimizing in
matroids, by the following well-known result.

Theorem 3.1 Let (V,F) be a delta—matroid, and let F consist of the maximal sets in F.
Then (V,F) is a matroid.

Proof We begin by proving that the maximal feasible sets are equicardinal. Suppose not;
then there exists a maximal feasible set X and a feasible set Y such that | X| < |V, and,
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Input: A delta-matroid (V,F), and ¢ € QV.
Output: A maximum weight feasible set F'.
Begin
Order the elements of V| {vy,...,v,}, such that |c, | > |cn,| > ... > |e, |-
Fe{veV:ie <0}
fori=1ton
Si — {vig1, .. U0}
if there exists F' € F such that (FA{v;})\ S; C F' C (FA{v;})U S;
End.

Figure 3.1: Greedy Algorithm

suppose, XAY is minimum over all such Y. Since X is maximal, there exists z € X\Y. By
the symmetric exchange axiom, there exists y € XAY such that YA{z,y} € F. However,
[YA{z,y}| > |Y]| > |X]|, and | XA(YA{z,y})| < |XAY|, which contradicts our choice of
Y. Therefore the maximal sets are equicardinal.

Let X,Y be maximal feasible sets, and let z € Y \ X. By the symmetric exchange
axiom, there exists y € X AY such that XA{z,y} € F. By the maximality of X,y € X\Y.
Now, | XA{z,y}| = |X|, so XA{z,y} is maximal. Therefore, the maximal feasible sets
form a matroid. O

Therefore, by the greedy algorithm for optimizing over matroids, we can optimize over
delta-matroids. The algorithm is given by Figure 3.1. It appears in Bouchet [4] and
Chandrasekaran and Kabadi [17], but many of the ideas are contained in an earlier paper
of Dunstan and Welsh [28].

Another way that one might find a minimum weight feasible set is to simply scan the
list F. However the number of sets in F may be exponential in |V|, and, for a typical
application, the feasible sets may be defined implicitly. (For example, there can be an
exponential number of matchable sets of a graph, but they are implicitly captured by the
graph.) Therefore, we assume that a delta—matroid is “given” to us by an oracle. Given
disjoint subsets X, Y of V., the separation oracle, Sep p(X,Y), of a delta-matroid (V,F),
answers the question: “Does there exist F € F such that X C F and Y N F = (0?7, The
separation oracle is a natural oracle for the greedy algorithm.

A delta—matroid algorithm is said to be polynomial if it is a polynomial algorithm
under the assumption that the delta-matroid is represented in space bounded above by a
polynomial in |V|, and the separation oracle runs in time bounded above by a polynomial
in |V| (see Garey and Johnson [37]). The greedy algorithm is an example of a polynomial
delta—matroid algorithm.

Let M = (V,F) be a delta—matroid. Given disjoint sets X, Y of V, we define p(X,Y) €
R U {0} by

p(X,)Y)=max| X N F|4+ |Y \ F|.
FeF
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Note that p(X,Y) can be computed efficiently by the greedy algorithm. Conversely,
Sepr(X,Y) can be easily determined by p; indeed Sepr(X,Y’) returns a positive an-
swer if and only if p(X,Y) = |X| 4 |Y|. Therefore, in some sense the separation oracle is
equivalent to p. Cunningham, in Bouchet [9], described the convex hull of a delta-matroid
using p. For a subset F of V, the incidence vector of F is the vector z € RY such that
z, =1ifv € F, and z, = 0 otherwise. Let conv(F) denote the convex hull of the incidence
vectors of the feasible sets of F. For z € RY and X C V., we denote by 2(X) the sum
Yz, :v € X).

Theorem 3.2 Let M = (V,F) be a delta—matroid. Then conv(F) is described by the the
following inequalities

2(X)—2(Y) <p(X,Y)—= Y| (for all disjoint subsets X, Y of V);

furthermore, this system of inequalities is totally dual integral. a

Negative results

In this section we show that each of the following problems is intractable, that is, there
exists no polynomial algorithm that solves the problem.

P, Given a delta—matroid M, is M separable?

P, Given a delta—matroid M, is M even?

P; Given a delta—matroid M and an integer k, does there exist a feasible set of size k7
P, Given a delta—matroid (V,F), is there a partition of V into feasible sets?

P; Given a delta—matroid (V,F), is there a partition of V into two feasible sets?

We define P(V) to be the set of all subsets of V, and we denote by P°(V) the set of all
sets in P(V') having even cardinality.

Lemma 3.3 Let (V,F) be a set-system such that P°(V) C F. Then (V,F) is a delta—

matroid.

Proof Suppose X,Y € Fand z € XAY. If | X|is odd, or | XAY| =1, then XA{z} € F,
so the symmetric exchange axiom is satisfied. Then we may assume that |X| is even
and |XAY| > 2. So there exists y € (XAY) \ {z}, and XA{z,y} € F, and again the

symmetric exchange axiom is satisfied. O

Theorem 3.4 The problems Py,..., Ps are intractable.

Proof Let V be a set of odd cardinality, and let M = (V,F) be a set—system such that
P°(V) C F C P(V). By Lemma 3.3, M is a delta-matroid. For X,Y C V., if X # Y then
Sepp(X,Y) returns “yes”. Sep (X, X) indicates whether X € F.

M is even if and only if F = Po(V). To verify this we need to check that every set of odd
cardinality is not feasible; this requires using the separation oracle an exponential number
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of times. Therefore there is no polynomial algorithm for P,. A polynomial algorithm for
P; would imply the existence of a polynomial algorithm for Py; hence Ps is also intractable.

Since |V is odd, any partition of V contains a part of odd cardinality, so if M is even
there exists no partition of V into feasible sets. If M is not even, then there exists a feasible
set X of odd cardinality, and X,V \ X is a partition of V into feasible sets. Hence, there
is a partition of V into (two) feasible sets if and only if M is even. It follows that P, and
P; are both intractable.

Now suppose that |V| > 1 and |F| > |P(V)| — 1.

Claim M is separable if and only if | F| = |P(V)|.

If |F| = |P(V)]| then it is clear that M is separable. Suppose then that |F| = |P(V)|—1.
Twist so that P(V)\ F = {V}. For any proper partition V!, V? of V, V! and V? are
feasible, but V is not feasible. Therefore the twisted delta—matroid is not separable, and
hence M is not separable. This proves the claim.

Deciding whether |F| = |P(V)| is intractable. Therefore, P; is intractable. O

For even delta—matroids there are elementary algorithms for solving P; and Ps; however
the status of Py and P5 is open. For matroids, there exist polynomial algorithms for
Pi,...,Ps. In fact, Ps is a special case of the partition problem, which was solved for

matroids by Edmonds [30].

Partition problem Given set—systems M; = (V,F;) and M, = (V, F3), is there a parti-
tion Fy, Fy of V such that F; € F; and Fy € F,?

The partition problem is intractable for even delta—matroids (see Bouchet [9]). Indeed,
given a graph G = (V, E) and a matroid M, let M; = (V,F;) be the matching delta—
matroid of G, and let M, = (V,F3) be the dual of M. There is a partition Fy, Fy of V
such that Fy; € F; and Fy € F, if and only if there is a matchable set of G that is a basis
of M, Lovasz [49, 50] has shown that the latter problem is intractable. Hence the partition
problem is intractable for even delta-matroids.

Even delta—matroids

We have seen that when a delta—matroid has many feasible sets, there is not much structure
implied by the symmetric exchange axiom. For even delta—matroids the situation is more
promising; by looking at a feasible set, and the feasible sets close to it, we can say quite
a bit about the structure of the delta—matroid. Let (V,F) be an even delta—matroid, and
let F' be a feasible set. Define a graph G = (V, Ep), where Ep = {vw : FA{v,w} € F};
Gr is called the fundamental graph of F. For a graph G and a vertex v of G we denote by
Ng(v) the set of neighbours of v in G, that is, the vertices of G that are adjacent to v.

Lemma 3.5 Let (V,F) be an even delta-matroid, let F € F, and let vw € Ep. Then, for
v,y € V\{v,w},

(1) vz € Ep if and only if we € Epagyw), ond
(2) if 2,y &€ Ng,(v), then zy € Er if and only if xy € Epafuw}-
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Proof (1) is immediate. Suppose z,y ¢ Ng,(v), and 2y € Epafpuw}. Then
F,FA{v,w,z,y} € F, and w € FA(FA{v,w,z,y}). Then, by the symmetric exchange
axiom, there exists z € {v,w,z,y} such that FA{v,w,z,y}A{w, 2} € F. Since (V, F) is
even, z # w. Since vr,vy € Ep, z # y,x. Hence z = v, and 2y € Ep, as required. By
symmetry, if 2y € Ep then zy € Epagywy. So we have proved (2). O

Let (V, F) be an even delta—matroid, and let F' € F. The following observations come as
easy corollaries of Lemma 3.5.

(i) If G is bipartite with bipartition V', V2, then, for every F' € F, G is bipartite
with bipartition V!A(FAF'), V2A(FAF’), and

(i) for X C V, if Gp[X] is a component of Gg then, for every F' € F, Gr[X] is a

component of Gg.

Theorem 3.6 (Bouchet [9]) Let F' be a feasible set of an even delta-matroid. Then
(V,F) is a twisted matroid if and only if Gr is bipartite.

Proof (Cunningham [20]) Suppose that G is bipartite, and let V!, V? be the biparti-
tion. Define B = FA(V'AF). Consider any feasible set F’ € F and vw € Ep. By obser-
vation (i), G is bipartite with bipartition VIA(FAF'), VEA(FAF'), so |[F'A(FAVY)| =
|F'A{v, w}A(FAV"')|. Therefore all sets in B are equicardinal, and, hence, (V,B) is a
matroid.

The proof of the converse is elementary. a

Theorem 3.6, gives a polynomial algorithm for deciding whether an even delta—matroid is
a twisted matroid. We will see that this algorithm can be easily extended to test whether
an arbitrary delta—matroid is a twisted matroid. The following theorem shows that there
exists a polynomial algorithm that decides whether an even delta—matroid is separable.

Theorem 3.7 (Bouchet [10]) Let F be a feasible set of an even delta-matroid. For a
proper partition V1, V2 of V., V1, V? is a separation of (V,F) if and only if Gp[V?] is a
component of Gg.

Proof (Cunningham [20]) Suppose that X,V \ X is a separation of (V, F). Then, since
F is even, for every pair of feasible sets Fy, Fy, |F; N X| = |Fy N X| modulo 2. Therefore,
Gr[X] is a component of Gp.

Now consider the converse. Let X', X? be a proper partition of V such that Gr[X*]
is a component of G, but X!, X2 is not a separation of F. Then there exist feasible sets
Fy, Fy such that (Fy N V') U (Fo N V?) is not feasible. Suppose that we have chosen such
Fy, Fy with (F{AF,) NV as small as possible. Note that (FyAF,) NV, # 0, so there exists
© € (F1AF;) N Vi. Then, by the symmetric exchange axiom, there exists y € FyAF5 such
that FoA{z,y} € F. By observation (i), y € Vi. However [(F1A(FyA{z,y}))NV? <
(FLAE) NV, so (FLNVHU((FyA{z,y})NV?) = (F1NVY)U(F,NV?) is feasible, which

is a contradiction. O

19



Matching and even delta—matroids

Brualdi [15] proved that matroids satisfy the following property.
Matching property For all Fy, F, € F, Gp, [F1AF,] has a perfect matching.

The matching property implies that, for any feasible set F', FAF is a subset of the set of
matchable sets of Gr.

Theorem 3.8 (Bouchet [9]) Every even delta-matroid has the matching property.

Before proving the theorem, we need to state a key lemma. A hypomatchable graph is
a graph G = (V, E) with the property that, for each v € V, G — v has a perfect matching.

Lemma 3.9 (Gallai [36, 50]) Let G be a connected graph with the property that, for
every vertex v, there is a mazimum matching M of G that avoids v (that is, v is not
incident with an edge of M ). Then G is hypomatchable. O

Proof of Theorem 3.8. Let (V. F) be an even delta—matroid, and suppose that (V, F)
does not have the matching property. Choose feasible sets Fy, F5 such that

(1) Gg [F1AFs] has no perfect matching, and
(2) |F1AFs| is minimum with respect to (1).

Suppose that Gg, [F1AF] is not connected, and let Gg, [X] be a component of G, [F1AF)]
that has no perfect matching. Consider the minor F' = FAF, — (V \ (F1AF,)) of F.
By Theorem 3.7, X, (F1AF;) \ X is a separation of F'; furthermore 0, F{AF, € F', so
X = ((FAFR)NX)U(D\X) € F'. Then, XAF, € F. However | XAF;| < |F;AF,|, which
contradicts (2). Hence Gp, [F1AFs] is connected.

For all x € FiAF,, there exists y € F;AF, such that FoA{z.y} € F. How-
ever |F1A(FA{z,y})| < |F1AFy|, so, by (2), there exists a perfect matching M of
Gr [FiAFA{z,y}]. By (1), M is a maximum matching of Gp, [F1AF,] that avoids z.
Then, by Lemma 3.9, Gr, [F1AF5] is hypomatchable, so |F1AF,| is odd, a contradiction.O

The previous theorem has a number of interesting applications, which we consider in
the remainder of the chapter. In fact, Bouchet originally derived Theorems 3.7 and 3.6
from Theorem 3.8. We state the first corollary without proof; it is a partial converse of
Theorem 3.8, that was proved for matroids by Krogdahl [47].

Theorem 3.10 (Bouchet [9]) Let F be a feasible set of an even delta-matroid (V,F).
For X CV, if Gp[X] has a unique perfect matching then FAX € F. O

We extend the definition of a fundamental graph to all delta—matroids. Let (V,F)
be a delta—matroid. For F' € F, define Gg = (V, Er) such that Ep = {vw : v,w €
V,FA{v,w} € F}. Note that if (V,F) is not even, then G may have loops. We now
extend Theorem 3.6.
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Theorem 3.11 Let M = (V,F) be a delta—matroid. Then, for F € F, Gg is bipartite if
and only if M is a twisted matroid.

Proof Suppose that Gg is bipartite. We assume that M is not even, since otherwise
the result follows by Theorem 3.6. Let F’ be a feasible set such that |[FAF’| is odd and
as small as possible with this property. If |[FAF’| = 1 then Gr has a loop, so it is not
bipartite. Then assume that |[FAF'| > 3.

For every x € FAF', there exists y € FAF’ such that F'A{z,y} € F. However, the
minor FAF — (V\ (FAF'\ {z,y})) is even, so, by Theorem 3.8, Gg[FAF’\ {z,y}] has
a perfect matching M. M is a maximum matching of Gg[FAF']. Hence, by Lemma 3.9,
Gr is hypomatchable, which contradicts that G is bipartite.

The converse is implied by Theorem 3.6. O

Brualdi [15] proved that matroids satisfy the following axiom:

Simultaneous exchange axiom: For X,Y € F, and # € XAY there exists y € XAY
such that XA{z,y}, YA{z, y} € F.

Duchamp generalized Brualdi’s result to even delta—matroids; we obtain the result as a
corollary of Theorem 3.8. Duchamp’s proof is also short, although it requires the intro-
duction of symmetric matroids [4].

Theorem 3.12 (Duchamp [27]) FEven delta-matroids satisfy the simultaneous exchange
aziom.

Proof Let (V,F) be an even delta—matroid. Suppose that (V,F) does not satisfy the
simultaneous exchange axiom. Let Fy, Fs € F and = € F1AF, satisfy

(1) Nap, (z) N Negp, (z) N (F1AF,) is empty, and
(2) |F1AFs| is minimum with respect to (1).

Define S; = NGFi(:B) N{FAF,} fori=1,2.
Claim Fori=1,2, ifv,w € F1AF,, and vw € Ep, then {v,w} N S; is not empty.
Suppose the claim is false (that is, {v,w} N S; = 0), and assume, for convenience, that

i = 1. Then, by Lemma 3.5, Ng,, ,,,.,(#) = Ng,, (z). Therefore
NGFlA{v,w}(w) N NGF2 (:13) N (FlAF2A{v7w}) = NGFl (:13) N NGF2 (:13) N (FlAF? \ {v,w}) = 0.

However |FiA{v,w}AF,| < |F1AF;|, so we have a contradiction to (2). This proves the
claim.

By Theorem 3.8, Gp, [F1AF,] has a perfect matching M. However, by the claim, for
v € SeU{z}, Ngg (v) N (F1AFy) C Sy, so, [Sa| +1 < [S1]. By similar reasoning, [S1]+1 <
|S2|, which is an absurdity. 0
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Diameter Problem

Let (V. F) be a delta—matroid. For subsets X, Xs of V| we call |X;AX,| the distance
between X; and X,. The diameter of F, denoted diam(F), is the maximum distance
between any two feasible sets. We define F* = {F1AF, : F1, Fy € F}; Duchamp [27]
proved that (V,F~) is a delta matroid. Note that V' € F* if and only if there exists a
partition Fy, Fs of V such that Fy, Fy € F. We have seen that this problem is intractable,
and hence the problem of determining the diameter of a delta—matroid is intractable.

The diameter of a matroid can be computed by the matroid partition algorithm. Let
(V, B) be a matroid, the matroid partition problem is to find disjoint independent sets Iy, I
such that |I; U 5| is maximum, or equivalently, to find bases By, By such that |B; U B, is
maximum. Since all bases are equicardinal, maximizing | B; U Bs| is equivalent to maximiz-
ing |B;AB,|. A min-max formula, and a polynomial algorithm, for the matroid partition
problem were given by Edmonds [30].

There is some hope that the diameter problem is solvable for even delta-matroids.
Suppose that (V. F) is an even delta—matroid, and let Fy, Fy be feasible sets. For each
z € FiAF,, by the simultaneous exchange axiom, there exists y € F;AF, such that
FiA{z,y}, FoFA{z,y} € F. However F1AF, = (FiA{z,y})A(F2A{z,y}). Therefore,
for every set F' € F~ there are a number of pairs Fy, Fy of feasible sets such that F =
FiAFy; in particular the diameter is attained by a number of feasible pairs. We present
an unpublished conjecture of Bouchet concerning the diameter of an even—delta matroid,
and give a new algorithm for computing the diameter of a matroid.

Lemma 3.13 If F is a feasible set of an even delta—matroid (V,F) then diam(F) <
2v(Gr), where v(Gr) is the size of a mazimum matching in Gp.

Proof Since (FAF)* = F*, we may assume that F = (. Let Fy, F; be feasible sets such
that |F1AF,| = diam(F). By Theorem 3.8, Gp(F;AF) has a perfect matching M;, for
i =1,2. Let M be the edges of M; having both ends in F;AF,, and let M/ be the set of
edges in M; having an end in F1AF; and the other end in F; N F,. We may assume, by
possibly interchanging Fy and Fy, that |M]'| > |M)/|. M; U M, U M/ is a matching of G,
with at least |F1AF,| /2 edges. 0

ConjectureLet (V,F) be an even delta—matroid. Then diam(F) = 2ming_rv(Gr).

An algorithm for computing the diameter of a matroid

Let (V,B) be a matroid, and let B; and B, be bases such that B;A B, is not a maximum
matchable set of Gp,. We describe an algorithm that finds distinct sets S1,.5> such that

(1) Gp,[Si] has a unique perfect matching for i = 1,2, and

Suppose that we have distinct sets S, .S, satisfying (i) and (ii). Define B! = B;AS; for
i = 1,2. By Theorem 3.10, B! is feasible, and, by (ii), BjAB;, = (B1AB,) U (51AS>).
Hence |B;AB;| > |B;AB,|. We can iterate the above procedure until we have bases
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By, B, such that BiAB; is a maximum matchable set of Gp/; then, by Lemma 3.13,
diam(B) = |B{AB;|.

By Theorem 3.8, BiAB, is a matchable set of Gp,. However, by assumption, B;A B,
is not a maximum matchable set of Gp,, so there exists z,y € V \ (B1AB,) such that
Gp,[B1AB; U {z,y}] has a perfect matching M;. By Theorem 3.8, Gp,[B1AB,] has a
perfect matching M,. Let G = (V,Ep, U Ep,). M; and M, are matchings of G. By
considering the edges in My AM,, we find an (x,y)-path P = (z = ©1,y1, 22, .. ., Tk, Y. = y)
in G such that =;y; € Ep,, for ¢« = 1,...,k, and y;x;41 € Ep,, for e =1,...,k — 1. By
possibly shortcutting, we may assume that P is minimal (that is, there are no edges
z;y; € By where 1 <i < j <k oryx; € Bywherel <i<j—1<k-—1).

Let S1 = {z1,y1,22,.. ., %k, yr}, and S2 = {y1, 22, Y2, ..., Yp—1,2k}. Since (V,B) is a
matroid, Gp, is bipartite with bipartition B;, V' \ B; for i = 1,2. Therefore

(1) G[B1ABs] is bipartite with bipartition B; \ By, Bs \ By, and
(2) for v € V' \ (B1ABy), either Ng,(v) N (B2 \ B1) =0, or Ng,(v)N (By\ Bz) = 0.

By (1) and (2), G1[S1] is bipartite with bipartition {zy,..., 2z}, {y1,...,yr}; furthermore,
by the minimality of P, Ng, (zx) N {yit1,...,yx} = 0, for i = 1,..., k. Therefore, {z;y; :
i =1,...,k} is a unique perfect matching in Gp,[S1]. Similarly {y;z,41:7=1,... .k — 1}
is a unique perfect matching in Gp,. Therefore 51, Sy satisfy conditions (i),(ii), as required.
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Chapter 4

Representable delta—matroids

Let A be a V by V matrix over a field F. Recall that A[X] denotes the principal sub-
matrix of A indexed by X C V. Define M(A) = (V,Fa), where F4 = {S C V :
A[S] is nonsingular over F}. (By convention, we assume that the empty matrix has deter-
minant one.) The following proof requires the pivoting operation introduced in Chapter 2.

Theorem 4.1 (Bouchet [8]) Let A be a symmetric or skew—symmetric V by V matriz
over a field F. Then M(A) is a delta—matroid.

Proof Suppose X,Y € F4 and z € XAY such that for all y € XAY, XA{z,y} & Fa.
Denote by A’ = (a;;) the matrix A* X. By Theorem 2.7, A’[S] is nonsingular if and only if
SAX € Fu. By assumption XA{z} & Fa, 80 az, = 0. However, A/[XAY] is nonsingular,
so there exists y € XAY such that a,, # 0. Then, since a,, = 0, A'[{z,y}] is nonsingular.
Therefore, XA{z,y} € Fa, which is a contradiction. O

Delta—matroids arising from symmetric and skew—symmetric matrices are called repre-
sentable (see [8]). For a field of characteristic 2, we use the convention that a skew—
symmetric matrix is a symmetric matrix with a zero diagonal; this ensures that all delta—
matroids representable by skew—symmetric matrices are even.

We have already seen one interesting example of a representable delta—matroid. Let
(V, Mg) be the matching delta—matroid for a graph G = (V, E). Let X = {z.: e € E}
be a set of algebraically independent indeterminates. Define a skew—symmetric V' by V
matrix A = (a;;), where a;; = +w;; if iy € E, and a;; = 0 otherwise. Tutte [67] showed
that 4 = Mg. It is not hard to show that there exists X € RE, such that (V, Mg) is
representable over R.

We call a delta—matroid normal if the empty set is feasible; thus, every representable
delta—matroid is normal. Deletion and twisting are both easy to define for representable
delta-matroids, however if we twist a representable delta-matroid by a nonfeasible set,
then the result cannot be representable. For X C V. the delta—matroid obtained by
deleting V' \ X is M(A[X]), and, for X € F4, the delta—matroid obtained by twisting X
is M(A =« X). Therefore if M’ is a normal minor of M(A), then M’ is representable.

Recall that if A is skew—symmetric then so is A% X. Though symmetry is not preserved
under pivoting. However, if A is symmetric, then we get a symmetric matrix from A %« X
by multiplying the columns indexed by X by —1. We redefine the pivoting operation for
a symmetric matrix accordingly; this does not alter the validity of Theorem 2.7.
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Also, recall that a nonempty set X is called an elementary set of A if A[X]is nonsingular
but there exists no proper subset X’ of X such that A[X’] is nonsingular. If A is symmetric
or skew—symmetric then all elementary sets have size one or two. We define V} = {v €
V :ay # 0}, and V2 = {vw : v,w & V}, ay, # 0}. We denote by A *v and A % vw the
elementary pivots A x {v} and A x {v,w} respectively.

Representable matroids

With the exception of matroids of rank zero, matroids are not normal; however, the
representable delta—matroids generalize the normal twisted representable matroids. Let
M = (V,B) be a matroid representable over a field F, and let B be a representation of M,
that is, the columns of B are indexed by V and F’ € B if and ounly if F’ indexes a basis of
the column space of B. Note that the dependence between the columns of B is unaffected
by performing elementary row operations and deleting zero rows of B. Therefore, for some
F € B, we may assume that B has the form

F V\F
F(1 B ),

where [ is the identity matrix. For any F’ C V', such that |F| = |F’|, B[F, F'] is nonsingular
if and ounly if B'[F\ F', F'\ F] is nonsingular. Now define A to be

F V\F
F 0 B’
V\F\-BT 0 /|

For S C V, A[S] is nonsingular if and only if |S\ F| = |F\ S| and B[F\ 5,5\ F] is
nonsingular. Hence, A[S] is nonsingular if and only if B[F, FAS]is a basis of B. Thus
F a4 = BAF, and every representable matroid is equivalent under twisting to a representable
delta-matroid, as claimed.

Separation for delta—matroid polyhedra

Let M = (V,F) be a delta—matroid, and let conv(F) denote the convex hull of incidence
vectors of feasible sets of M. Recall, from Chapter 3, that we have a description of conv(F)
by inequalities, and that we can optimize a linear function over conv(F) using the greedy
algorithm. Then, by certain results based on the ellipsoid algorithm for linear program-
ming (see Grotschel, Lovasz and Schrijver [41]), we can solve the separation problem in
polynomial time, that is: Given z* € R, is 2* contained in conv(F)?

It would be preferable to have a combinatorial algorithm for the separation problem.
One special case in which such an algorithm exists is when M is a matroid; see Cunning-
ham [23]. (The algorithm assumes the existence of an efficient subroutine for evaluating the
rank function of the matroid.) As a consequence of his separation algorithm for matroids,
Cunningham (personal communication) obtained a combinatorial separation algorithm for
representable delta—matroids (or more precisely represented delta—matroids).
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Suppose that M is represented by a symmetric or skew—symmetric V' by V' matrix A.
We construct a copy V of V, and for any subset X of V, we denote by X the corresponding
copy of X. Then we define a matrix B by

vV Vv
v(r a)

where I denotes an identity matrix. We now define a matroid M; = (V U YN/,Bl), where
X € B if and only if the columns of B indexed by X form a basis of B. The following

proposition is the key to the separation algorithm.

Proposition 4.2 Given z € RV, let & be the corresponding vector in RY. Now define
y € RVYY such thaty = (1 — z,%). Then  is in conv(F) if and only if y is in conv(By).

From Proposition 4.2 it is clear how the separation problem for representable delta—
matroids reduces to the separation problem for matroids. The separation algorithm for
matroids requires that the rank function of M; can be efficiently evaluated. It is easily
seen that, for subsets X,Y of V. the rank of X UY in M is tk(A[V \ Y, X]) + |Y|. While
we have efficient algorithms for computing the rank of a rational matrix, complications
arise when A contains indeterminates, like for matching delta—matroids (we will see more
on this in Chapter 8).

In order to prove Proposition 4.2 we require the following fundamental theorem of

Edmonds [32].

Theorem 4.3 If (V,B1) and (V,Bs) are matroids, then conv(By N Bs) = conv(By) N
conv(Bs). a

Proof of Proposition 4.2. We first observe that, for a subset F' of V, F' € F if and

only if X U (V'\ F) € B;. Now suppose that = € conv(F), that is, there exists A € R
such that
A>0, Z Ap=1and z = Z AexF,
FeF FeF

where ¥ denotes the incidence vector of F. Then clearly

y= > Ay TUOND),
FeF

so y € conv(By).
Now, for the converse, suppose that y € conv(B;). We define a partition matroid

M, = (V UV, By), Where B, = {XUX : X C V}. By the structure of y, we have

y € conv(B,). Therefore, by Theorem 4.3, y € conv(B1NBy). So, there exists A € RBmBQ,
such that
A>0, Z Ap=1and y = Z Aext.
FeBinB, FeBinB,
However,

BinB,={XU(V\X): XeF.
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For X € F, define px to be Ag 1\ x)- Then

y= > puxx X,
xeF

and hence ¢ € conv(F). O

Even representable delta—matroids and 3—connectivity

Let A be a V by V symmetric or skew—symmetric matrix. We define the support graph of
A to be G(A) = (V, Ey), where E4 = {vw : v # w, ayy # 0}. We refer to the elements of
V3 as loop—vertices, though they are not in fact distinguished by the support graph. We
remark that, if there are no loop—vertices, and the support graph is bipartite, then M(A)
is a twisted matroid.

Let M = (V,F) be a delta—matroid represented over a field F by a matrix A = (a,;). If
A is skew—symmetric then M is even. A partial converse also holds: if M is even, then M
is representable over F by a skew—symmetric matrix. Indeed, suppose that A is symmetric
and M is even. Since M is even, A has a zero diagonal. We assume that G(A) is not
bipartite, since otherwise we could make A skew—symmetric by multiplying some columns

of Aby —1. Let @1, 2s,..., 2k, 21 be an odd circuit of G(A). Then

det(A[{z1, ..., 21}]) = T200,00 Onpus - - - Gy 2y Gy -

However, since M is even, det(A[{z1,...,21}]) = 0. Therefore F has characteristic 2, so
A is skew—symmetric.

Pfaffians

Pfaffians are a powerful tool for studying skew—symmetric matrices. For example, for even
representable delta—matroids, Theorems 3.8 and 3.10 follow easily from the definition of
the pfaffian. We now review some basic results about pfaffians; we use the definition of
Stembridge [64].

Let A = (a;;) be a V by V skew—symmetric matrix, let M, denote the set of perfect
matchings of G(A), and let < be a linear order of V. A pair of edges uiv1, usvs of G(A),
where u; < v; and us < v, is said to cross if u; < us < vy < Vg Or Uy < U < Vo < V1.
(If we place uy, us, vy, v on a circle, according to the linear order, then ujv; crosses usv,
if and only if the chords w;v; and wusvs cross.) The sign of a perfect matching M of G(A),
denoted oz, is (—1)F where k is the number of pairs of crossing edges in M. The pfaffian
of A, denoted pf(A), is defined as follows:

pf(A) = Y om [] aw. (4.1)

MeMy uvEM

u~<v

Surprisingly pf(A) is independent of the linear order; this is reflected by the fundamen-
tal identity det(A) = pf(A)%®. Like determinants, pfaffians can be calculated by “row
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expansion” [39]:

pf(A) = Z(—l)k"'lavwkpf(A[V \ {vlv vk}])v (4'2)

k=2

where V = {vy,vs,...,v,} and v; < v;4q,fori =1,2,....,n — 1.

Connectivity

0 | A,
M(A’) is the 1-sum of M (A;) and M(A,). (This also holds when A; and A, are symmetric.)
It is more interesting that we can describe the “2—sum” of M(A;) and M(A,).

Let M; = (V1,F1) and My = (Va, Fs) be set—systems. We define the composition of
M, and M, to be the set—system M = (V. F) where V = VAV, and F = (F1AF, : Fy €
F1, Fy € Fo, FiNVy = FyNVi}. Bouchet and Cunningham [13] proved that the composition
of two delta-matroids is a delta-matroid. If V; and V5 are disjoint, then the composition is
just the 1-sum. If |[V; N V5| = 1, then we call M the 2—sum of M; and Ms; see Bouchet [10].
If [Vi\ Va|,|Va \ V1| > 2 and |V; N V5| > 1, then the partition Vi \ Vo, Vo \ V] of V is called
a 2—separation of M. A set—system without 1- or 2—separations is 3—connected.

Suppose that A; is a V; by V; matrix, for ¢ = 1,2, where V; N Vo, = {v}. Define
V = V1AV, and construct a V by V matrix

. Al_v‘ X¢T
- (S

Let A; and A, be skew—symmetric matrices. Define A’ :( A | O ) It is obvious that

where A; —v denotes A;[V;\{v}], x is the submatrix A;[V]; —v,{v}], and 9 is the submatrix
As[{v}, Vo —v]. Ais the composition of A; and A,.

Let A be a V by V skew—symmetric matrix. A partition Vi, V, of V is a k—separation
of Aif |Vi|,|Va| > k, and A[V;, V5] has rank at most k — 1. Note that A has a 2-separation

if and only if it is the composition of two smaller matrices.

Lemma 4.4 Let A; = (al,) be a Vi by V; skew-symmetric matriz, for i = 1,2, where

Vi N Vo ={v}. Let A = (ai;) be the composition of Ay and A,. Then
Pf(A) = Pf(Al - U)Pf(Az - U) - Pf(Al)Pf(A‘z?)-

Proof Let X =V — v, Y =V, —v,and V = X UY. Suppose X = {z1,2s,...,2;} and
Y = {y1,y2,...,y1}. Define a linear order < such that

T < Tp—1 < ... <21 <V <Y <Yz <...<Y.

For S C Eg4, let S[X,Y] denote the edge set SN{zy: 2z € X,y € Y}. Now let MEZ) =
{M € M, : |M[X,Y]| = i}; then, by (4.1),

pf(A) =3 Y om [] tw. (4.3)

’LZO MGMX) uv €M

u~<v
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Claim  For: > 2,

Z oM Ham,:().

Mem!)) uv M

u~<v

For each matching M € Mg), we define another matching M’ as follows: choose edges
z;,y;, and x;,y,,, where ¢; < is, such that

M[{xlv L2y -y xi2}7 Y] = {xilyjl ) xizyh};
then define
M = MA{:BH Yivs TisYjos TiyYja s LisYjy }
Note that M = (M')’, and

om [ tw =—0h [ auws

uvEM uvEM’
u<v u<v

this proves the claim.
Every matching in Mf) can be expressed as the union of a matching in M 4x) with a
matching in M 4y]. Therefore

2 om [l aw = > ooy [ aw

MEME;)) uvEM My eMu[X] My eM,[Y] uvEMx UMy~

u<v u<v

| Y en M| E ow ITaw

MxeM4[X] unEMx MxEM4[X] ueMy
= pf(AIX])pf(A[Y]),
= pf(Ar —v)pf(As —v). (4.4)

Every matching M € Mill) can be expressed as M; U MsU{x;y;}, where M; € M aix —a;]
and My € Myy_y,;1. The set of edges of M that cross z;y; is

Ml[{xlv .. '75171'—1}7 {xi-l-lv cee 7$k}] U M2[{y17 cee 7yj—1}7 {yj+17 e 7yl}];

furthermore
|Mi[{z1, ..., 21} {ig1, .. 21 }]] =i—1 (mod 2) and
|Mo[{y1. - yima b Wi, o]l =51 (mod 2).
Therefore o = ((—1) o, )((—=1)"toa, ), and

2 ow JTaw = 33 3 > () o) (-1 oa,)

MGMS) uv €M =1 j=1 M, GMA[X—:::Z'] MQGMA[y_yi]

u~<v

oy | 11 aw | | 1] aw

uv €My uv €My
u<v u<v
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= |I>X=)Ma,, Y. o I w

=1 MIGMA[X—:::Z'] uv €My
u<v
l
-|—1 2
20 ay, > omy T aw
7=1 MQGMA[Y_yj] uv €My

u~<v

Now, applying equations (4.1) and (4.2),

S o T ow = (S0 pf (ALK )

) uvEM
Mem' <

uU<v

(o)

= —pf(A)pf (4.5)

The result follows by combining equations (4.3), (4.4), and (4.5), with the claim. O

Theorem 4.5 Let A be a V by V skew—symmetric matriz, and let Vi, Vy be a partition of
V. If V1, Va is a 2—separation of A, then V1, Vs is a 2—separation of M(A).

Proof Suppose that Vi, Vs is a 2—separation of A. Then A is the composition of skew—
symmetric matrices A;, As, where A; is V; U {v} by V; U {v}. For any subset X of V', let
X; denote (X NV;) U {v}, for i = 1,2. By Lemma 4.4,

pf(A[X]) = pf(A1[ X1 — v])pf(A2[Xe — v]) — pf(AL[X1])pf(As[X2]).

Every skew—symmetric matrix of odd size is singular; hence either

pf(A[X1 —v])pf(A2[Xs —v]) = 0, or pf(Ai[Xq])pf(A2[X:]) = 0.

Therefore X € F 4 if and only if either X; —v € F4, and Xo —v € Fa,, or X; € Fu, and
Xy € Fa,; and hence V1, Vs is a 2-separation of M(A). O

The converse of the previous theorem does not hold in general; however, if an even rep-
resentable delta-matroid has a 2-separation, then it can be represented by a matrix with
a 2-separation. Indeed, such a representation can be found by decomposing across the
2—separation, then composing representations of the two delta—matroids got from the de-
composition.

Corollary 4.6 For any field F, the family of even F-representable delta—matroids is closed
under 1— and 2—sums. O
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Binary delta—matroids

Let M = (V,F) be a binary delta-matroid (that is, a delta—matroid representable over
GF(2)), and let A = (a;;) be a representation of M. An interesting feature of binary
delta-matroids is that the representation is uniquely determined by the feasible sets of size
1 and 2. Forv € V, a,, = 1 if and only if {v} € F. For v,w € V. ay, = 1 if and only if
either

o {v},{w} e F, and {v,w} & F, or
e {v,w} € F, and at most one of {v} and {w} is feasible.

This unique representability enabled Bouchet and Duchamp [14] to characterize the binary
delta—matroids; their result generalizes Tutte’s characterization of binary matroids [68].

Theorem 4.7 (Bouchet and Duchamp [14]) Let M be a delta-matroid. Then M is
binary if and only if M does not have a minor isomorphic to one of the following delta—
matroids.

1. (Vs,{0,12,23,13,123}),
2. (V5,{0,1,2,3,12,23,13}),
3. (Vs,{0,2,3,12,13,123}),
4. (Va,{0,12,13,14,23,24,34}),
5. (Va, {0,12,23,34,41,1234}),
where V; denotes {1,...,1}. 0

Binary pivoting

We note that a binary matrix A is uniquely described by V; and G(A). Then, since binary
delta—matroids have a unique representation, pivoting in a binary matrix is essentially a
graphic operation. We denote by A x X the pivot A *x X performed over GF(2); we refer
to this as a binary pivot. We now describe the elementary binary pivots graphically.

Let A = (a;;) be a V by V symmetric binary matrix. For a loop—vertex v of A, we have

Ao | Xa
Axv= C ,
( Xv ‘ AlV —v] - avang )
where y, is the submatrix of A indexed by rows V — v and column v. Let v be a vertex
of a graph G. We define a graph G x v by replacing the induced subgraph G[Ng(v)] by
its complement; that is, EgAEgyx, = {uv : u,w € Ng(v)}. The operation that changes G

to G x v is called local complementation. The following proposition is immediate from the
definitions.

Proposition 4.8 Ifv is a loop—vertex of a symmetric binary matriz A, then G(A x v) =
G(A) x v, and V., = ViANga)(v). O
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Let uw € V}. Define vectors x, and x,, so that

0 | ayw X:‘I:
A= Ay 0 Xg ’
Xu | Xw | AV —u —w]

where the first and second rows are indexed by w and w respectively. Then

0 | Gy Xg
AXuw=1| aup| 0 Xo
Xw | Xu A[V —Uu— w] - auw(XwX;_Z: + Xuxg)

Graphically explaining the binary pivot in this case is more awkward. For a pair of disjoint
subsets S,.5" of V we define [S,5'] = {ss' : s € 5,8 € §'}. Let uw be an edge of a
graph G, we define sets S, = (Ng(u) — w) \ Ng(w), Sw = (Ng(w) — u) \ Ng(u), and
Sow = Ng(u) N Ng(w). Now define an intermediate graph G’ such that

EcAEg =[Sy, Su] U [Su,s Suw] U [Sus Sul-

G x uw is obtained from G’ by switching the vertex labels u and w. We call the operation
that converts G to G x uw a pivot. (Curiously G x uw = G X u x w x u.) The following
proposition follows from these definitions.

Proposition 4.9 Let A be a symmetric binary matriz. Then, for uw € Vi, G(A x uw) =
G(A) x vw, and Vi, = V4. O

Splits and prime graphs
We begin by proving the converse of Theorem 4.5, for even binary delta—matroids.

Theorem 4.10 Let A = (a;;) be a V by V skew—-symmetric binary matriz, and let X,Y
be a partition of V.. Then X,Y 1is a 2—separation of A if and only if X, Y is a 2—separation
of M(A).
Proof If either |X| < 2 or |Y| < 2, then the result is immediate; we assume that
X, Y] > 2.

Suppose that X, Y is not a 2-separation of A. Then there exist z;,z, € X and y;,y, €
Y such that az,y, = @u,y, = 1, and ag,,, = 0. Therefore, {z1,y1}, {®2,y2} € F4. Note that

{z1,920 = (X N {z1,y11) U (Y N {z2,y2}).

However, {z1,y2} & Fa, so X,Y is not a 2-separation of M(A).
The converse is given by Theorem 4.5. O

We now describe the 2—separations of a binary matrix graphically; first, we introduce
some more notation. The adjacency matriz of a graph G = (V, E) is the V by V symmetric
(0, 1)-matrix that has a 1 in entry 4, 7 if and only if ij € E. We use the following notation.
Let G = (V, E) be a graph, and let X,Y be disjoint subsets of V. We denote by [X] the

set of all distinct pairs of vertices in X, and we denote by [X,Y] the set of all pairs of
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vertices containing an element of X and an element of Y. We denote by E[X] and E[X,Y]
the edge sets E N [X] and E N [X,Y] respectively. The set E[X,Y] is referred to as a cut
of G. The graph induced by X, denoted G[X], is the graph (X, E[X]). For a graph G we
denote by Vg and Egi its vertex—set and edge—set.

A split of G is a partition (X,Y) of V such that |X|,|Y| > 2, and the cut E[X,Y]
induces a complete bipartite graph. (For a connected graph G, (X,Y’) is a split of G if and
only if X, Y is a 2-separation of the adjacency matrix of G.) A prime graph is a connected
graph without any splits.

Let X,Y be a partition of the vertices of G. We denote by G o X the graph obtained
from G by shrinking X to a single vertex, which we label X, and then removing multiple
edges. If (X,Y) is a split of G, then we can decompose G into G o X and G oY this
decomposition was introduced by Cunningham [21]. It is easy to verify that the adjacency
matrix of G is the 2-sum of the adjacency matrices of Go X and GoY (when we associate
the vertex labels X and Y').

The following lemmas are implied by the fact that 2—separations of binary matrices are
preserved under (elementary) pivoting.

Lemma 4.11 (Bouchet [3]) Let X, Y be a partition of the vertices of a graph G = (V, E).
For any vertex v, (X,Y) is a split of G if and only if (X,Y) is a split of G x v. O

Lemma 4.12 (Bouchet [3]) Let X, Y be a partition of the vertices of a graph G = (V, E).
For any edge vw, (X,Y) is a split of G if and only if (X,Y) is a split of G X vw. O

Regular delta—matroids

Recall that a matroid that is representable by a totally unimodular matrix is called reg-
ular [56]. We call a delta-matroid regular if it is representable by a skew-symmetric
principally unimodular matrix. Analogous to regular matroids, regular delta—matroids are
precisely the even delta-matroids representable over every field.

Theorem 4.13 Let M = (V,F) be an even delta—matroid. The following are equivalent
(1) M is regular,
(i1) M is representable over every field, and

(111) M is representable over both GF(2) and GF(3).

Proof That (i) implies (ii), and that (i) implies (iii) are both easy. So it suffices to
prove that (iii) implies (i). Let A and A® be skew-symmetric representations of M over
GF(2) and GF(3) respectively. Therefore A® and A® have the same support (that is,
nonzero elements), so there exists a real (0, £1)-matrix A = (a;;) that is equivalent to A®)
modulo 3, and to A® modulo 2. We claim that A is PU. Suppose not, and let § C V be
minimal such that A[S] is not unimodular.

Claim  We may assume that |S| = 4.
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Suppose the assumption is not satisfied. Then there exists S’ C S such that |S'| =
|S|—4, and A[S’] is nonsingular. Then A[S’] is unimodular, so, by Theorem 2.7, for X C V,
det(A x S'[X]) = £ det(A[XAS']). Hence, A* S’ is a (0, +1)—matrix that represents the
delta—matroid (V, FAS’) over GF(2) and GF(3), and A % S’[S \ §'] is minimally non-
unimodular. Now replace S by S\ S’, A by Ax S’ and M by (V, FAS’). This proves that
claim.

By the claim,

pf(A[S]) = ai2a34 — a13a24 + A14003.

Therefore, |pf(A[S])] < 3.

Let k& be the 0,41 value equivalent to pf(A[S]) modulo 3. Note that pf(A[S]) =
pf(AP[S]) = k modulo 2, and hence pf(A[S]) = k modulo 6. However |pf(A[S])| < 3, so
pf(A[S]) = k, contradicting our choice of S. O

Note that every principal submatrix of a PU-matrix is PU. Furthermore, by Theo-
rem 2.7, pivoting preserves principal unimodularity. Therefore, we get the following ele-
mentary result.

Lemma 4.14 If M is a reqular delta—matroid, then every normal minor of M is reqular.
O

Ideally, we would like to generalize Tutte’s famous excluded minor characterization of
regular matroids [68]. Unfortunately, this problem remains open.

The following lemma is due to Bouchet and Cunningham, personal communication;
their proof was based on pivoting.

Lemma 4.15 The class of reqular delta—matroids is closed under 1- and 2—sums.

Proof It is sufficient to show that the composition of two skew—symmetric PU-matrices
is PU. This follows from Lemma 4.4, and the fact that skew—symmetric matrices of odd
size have zero pfaffian. a

We discuss regular delta—matroids further in Chapter 6.

Eulerian delta—matroids

Figure 4.1: Circle graphs.

A circle graph is the intersection graph of a finite set of chords of a circle. (See Figure 4.1.)
The representation of the circle graph is called a diagram. The binary delta—matroids
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that are represented by the adjacency matrices of circle graphs are called Fulerian delta—
matroids. (The term FEulerian comes from an interesting relationship between the feasible
sets and Euler tours of a 4-regular graph [12].) The interest in Eulerian delta—matroids
arises through the following theorem.

Theorem 4.16 (De Fraysseix [26]) Let F be a feasible set of a matroid M. Then,
MAF is Eulerian if and only if M is a planar matroid (that is, the forest matroid of a
planar graph). O

Bouchet [7, 11] introduced the notion of principal unimodularity with regard to circle
graphs. It is well known that graphic matroids are regular (see Oxley [56]), and thus planar
matroids are regular. This generalizes to Eulerian delta—matroids.

Theorem 4.17 (Bouchet [7, 11]) Eulerian delta-matroids are reqular. 0

4 G

Figure 4.2: Orienting circle graphs.

We briefly describe how to construct a PU-matrix from a circle graph. Let G = (V| E)
be a circle graph represented by a set V' of chords of a circle. By possibly perturbing the
diagram, we may assume that no two chords intersect on the circle. Given an arbitrary
orientation to the chords, we define an orientation G of G. Namely, an edge uv of G is
oriented with v as its head if and only if the chord v crosses u from left to right (that is, the
tail of v is encountered before the head of w when the circle is traversed in the clockwise
direction from the tail of u). Figure 4.2 depicts an arbitrary orientation of the diagram
in Figure 4.1, and the corresponding orientation of the circle graph. Now construct an
adjacency matrix A = (a,;) for the directed graph é, that is, A is a skew—symmetric V by

V (0, +1)-matrix such that a;; = 1if ¢j is an arc of G. Then A is principally unimodular.
(See [7, 11].)

A characterization of circle graphs

An interesting open problem is the excluded minor characterization of Eulerian delta—
matroids. By Theorem 4.16, a special case of this problem is the excluded minor charac-
terization of planar matroids.

Theorem 4.18 (Tutte [69]) Let M be a binary matroid. M is planar if and only if M
does not have a minor isomorphic to one of M(By), M(Bs), M(Bs), where By, By, By are
depicted graphically in Figure 4.5. O
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(P

G(B,) G(B,) G(B3)

Figure 4.3: Fundamental graphs of non—planar matroids.

G1
5 4

Figure 4.4: Local complementation.

M(By) is the twisted Fano matroid, which is not a regular matroid, and hence not graphic.
M(B,) is the twisted graphic matroid of K33, and M(Bs,) is the twisted graphic matroid
of K.

Kotzig [46] noted that G is a circle graph if and only if G X v is a circle graph. Figure 4.4
demonstrates local complementation on the graph in Figure 4.1, and the new diagram. (In
general, if G is a circle graph, then a diagram of G x v can be obtained from a diagram
of G by reversing the order in which chords are encountered while traversing the circle
in a clockwise direction from one end of v to the other.) We say a graph G’ is locally
equivalent to G if G’ can be obtained from G by a sequence of local complementations.
An [-reduction of G is an induced subgraph of any graph locally equivalent to G. Bouchet
proved the following deep analogue to Theorem 4.18.

Theorem 4.19 (Bouchet [12]) Let G be a graph. Then, G is not a circle graph if and
only if G has an [-reduction that is isomorphic to one of the graphs depicted in Figure 4.5.0

Figure 4.5: Minimal non—circle graphs

The binary delta—matroids represented by the adjacency matrices of the graphs in Fig-
ure 4.5 are not regular. Thus, we get the following consequence of Theorem 4.19.

Corollary 4.20 (Bouchet, personal communication) Let M be a binary delta-
matroid represented by the adjacency matriz of a graph G. Then M is Fulerian if and
only if, for every graph G’ locally equivalent to M, the binary delta-matroid represented by
the adjacency matriz of G' is reqular. O
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2—separations

The following lemma implies that the family of Eulerian delta—matroids is closed under
taking 2-sums. It is independently due to Bouchet [6], Naji [63] and Gabor, Hsu and
Supowit [35].

Lemma 4.21 If (X,Y) is a split in a graph G, then G is a circle graph if and only if
GoX and G oY are both circle graphs.

Proof G o X and G oY are both induced subgraphs of G, so if G is a circle graph, then
G o X and G oY are both circle graphs. The converse is demonstrated in Figure 4.6. O

Figure 4.6: Circle graph diagram and splits

Consider a diagram of a circle graph G. We may assume that no two chords of the
diagram intersect on the perimeter of the circle, since otherwise we could perturb the
diagram. Now we can combinatorially encode the diagram by traversing the perimeter of
the circle once, while recording the labels of the chords as they are passed. In such an
encoding every chord is recorded exactly twice; we call the encoding a double occurrence
word. (For example, the diagram in Figure 4.1 is encoded by the double occurrence word
1243541523.) A diagram has many encodings as a double occurrence word; they depend
upon where we start on the perimeter of the circle, and the direction in which we choose
to traverse the circuit. Thus, we call two double occurrence words equivalent if they are
equivalent up to cyclic shifting and/or reversing. Two diagrams of a circle graph are
considered equivalent if they are encoded by equivalent double occurrence words. The
following lemma generalizes a theorem of Whitney [73], that a 3-connected planar graph
has a unique embedding. It is independently due to Bouchet [6], Naji [53] and Gabor, Hsu
and Supowit [35].

Lemma 4.22 Let G be a prime circle graph. Then there exists a unique diagram that
represents G. O
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Chapter 5

Decomposing 3—connected even
binary delta—matroids

In this chapter we develop decompositions for 3—connected even binary delta—matroids (or
prime graphs). The first decomposition unifies the ideas in the circle graph recognition
algorithms of Gabor, Hsu and Supowit [35], Spinrad [63], and Bouchet [6]. We then
develop a more refined decomposition, which allows us to strengthen a theorem of Allys,
and Theorem 4.19. Finally, we prove an unpublished theorem of Bouchet that extends
Seymour’s splitter theorem [61] to even binary delta-matroids.

Blocking sequences

A subsplit of G is a pair (X,Y) of disjoint subsets of V' such that (X,Y) is a split in
G[X UY], and the cut Eg[X,Y] is nonempty. A blocking sequence for the subsplit (X,Y)

is a sequence vy, ..., v, of vertices in V' \ (X UY) satisfying the following conditions:

1. (a) (X,Y U{v1}) is not a subsplit of G,
(b) for all ¢ < p, (X U{v;},Y U{v;41}) is not a subsplit of G, and
(c) (X U{vp},Y) is not a subsplit of G, and

2. no proper subsequence of vy, ..., v, satisfies 1.

We remark that the problem of finding a blocking sequence for (X,Y'), if one exists, can
be solved by finding a shortest directed path in a certain dlgraph Indeed, we construct a
digraph G with vertices V \ (X UY) U {X,Y} and arcs E, where, for v,w € V' \ (X UY),

Xv € E if and only if (X,Y U{v}) is not a subsplit, vY € E if and only if (XU{v},Y)is

not a subsplit, and vw € E if and only if (XU{v},YU{w}) is not a subsplit. The blocking
sequences for (X,Y) are in one to one correspondence with the minimal (X, Y )-dipaths in

G.

Lemma 5.1 Let (X,Y) be a subsplit of G. There exists a blocking sequence for (X,Y) in
G if and only if there exists no split (X',Y") of G with X C X' and Y CY".
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Proof If there exists a split (X',Y’) of G with X C X’ and Y C Y’ then for every
ze X'\ Xandy e Y'\Y, (XU{z},YU{y})is a subsplit; therefore no blocking sequence
exists. Conversely, if no blocking sequence exists then there exists a partition (X', Y”) of
V such that for every z € X' and y € Y', (X U{2},Y U {y}) is a subsplit; then (X', Y’) is
a split of G. O

We now consider blocking sequences more carefully; they have a surprisingly simple
structure. Let vq,...,v, be a blocking sequence for a subsplit (X,Y’) in G. Define X’ =
Ne(Y)NX,and Y= Ng(X)NY. Forv e V\ (X UY), (X,Y U{v}) is a subsplit if and
only if Ng(v) N X equals @ or X’'. Therefore, Ng(v;) N X is equal to §) or X', if and only
if i £ 1; for 1 > 1, we define z; = 0 (1) when Ng(v;) N X is equal to 0 (X’). Similarly,
Ng(v;) NY is equal to @ or Y, if and only if 7 # p; for i < p, we define y; = 0 (1) when
Ng(v;) NY is equal to 0 (Y'). Now consider v;,v;, where i < j. Define z;; to be 1 if
v;v; € E, and otherwise to be 0. (X U {v;},Y U{v;}) is a subsplit if and only if ¢ # 5 — 1.
So it is easy to verify that : = 7 — 1 if and only if

i+ zi; =1 (mod 2).

Lemma 5.2 Let vy,...,v, be a blocking sequence for a subsplit (X,Y) in G. If (X,Y) is
the unique split in GIX UY], then G[X UY U {vy,...,v,}] is prime.

Proof Suppose not; then there exists a split (X', Y’) in G XUY U{vy,...,v,}]. Therefore
Ec((XUY)n X' (XUY)NY’) induces a complete bipartite graph. (X UY) N X', (X U
Y)NY’) cannot be a split of G[X U Y], since (X,Y) is the unique split of G[X U Y] and,
by Lemma 5.1, (X,Y") cannot be extended to a split in G X UY U{vy,...,v,}]. Therefore
either (XUY)NX'| <1lor |(XUY)NY'| <1. We assume with no loss of generality
that |(X UY) N X'| <1. We complete the proof by considering two cases.

Case 1: |[(XUY)NX'| = 0. Thus X' C {vy,...,v,} and |X'| > 2. Let 7 be
minimum such that v; € X’ and let 7 be maximum such that v; € X’. Since vy,...,v,is a
blocking sequence for (X,Y), N(v;)NY’ # 0 and N(v;) Y’ # 0. Therefore, since (X', Y”)
is a subsplit, N(v;) N Y’ = N(v;) N Y’. This contradicts that v;,v;11,...,v; is a blocking
sequence for the subsplit (X U {vy,...,v;-1}, Y U{vjt1,...,05}).

Case 2: [(X UY)N X’'| = 1. Define = so that (X UY)N X' = {«}, and assume
without loss of generality that « € X. Let ¢ be maximum such that v; € X’. We have
that N(z) "Y' # 0 and N(v;) "Y' # 0. Therefore, since (X', Y”") is a subsplit, N(z) N
Y’ = N(v;) NY’. Consequently N(z) N (Y U{vizr...v,}) = N(vi)) N (Y U {vig1...05}),
contradicting that vq,...,v; is a blocking sequence for the subsplit (X,Y U {vit1,...,v,}).

Decomposing prime graphs

Let v, w be vertices of a graph G. We call v pendent if v has exactly one neighbour, and we
call v, w twins if N(v) —w = N(w) —v. A prime graph with at least four vertices contains
neither pendent vertices, nor twins.
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Lemma 5.3 Let G be a connected graph with at least five vertices, and let v be a vertex of
G such that G — v is prime. Then v is pendent, v has a twin, or G is prime. Furthermore,
if G 1s not prime, then G has a unique split.

Proof Suppose that G is not prime, and let (X,Y’) be a split such that v is in X. Then
the cut Eg[X — v,Y] induces a complete bipartite graph. However, since G — v is prime,
(X —v,Y) is not a subsplit. Therefore | X| = 2; so either v is pendent, or the two vertices
in X are twins.

We have shown that, for any split (X', Y”) in G, the side of the split that contains v has
exactly two elements. It is easy to verify that, if ({v,2z1},Y1) and ({v, 22}, Y3) are distinct
splits in G, then ({v, 21,22}, Y1 NY3) is also a split in G, which is a contradiction. Hence,
G has a unique split. a

We now describe a decomposition of a prime graph G = (V, E). The decomposition finds
a sequence Gy, ...,G; = G, where G; is an induced subgraph of G;;; and the primeness
of G; implies the primeness of the G;; ;. Thus the sequence certifies that G is prime. Gy
is chosen to be an induced path of length two (that is, a path with two edges), which is
prime; furthermore, every prime graph with at least four vertices contains such an induced
subgraph. In a general step of the decomposition, G; is constructed from G;_; by adding
a sequence of vertices vy, ..., v,, where either p = 0, or G[Vg,_, U {vo}] has a unique split,
say (X,Y), and vy,...,v, is a blocking sequence for the subsplit (X,Y’) in G. Therefore,
by Lemma 5.2, G; is prime. All that remains to prove is, given the prime induced subgraph
G,-1, we can find a vertex vy of G such that G[Vg,_, U{vo}] is either prime, or has a unique
split.

If + > 2 then G;_; has at least four vertices. Hence, by Lemma 5.3, for any vertex
v € N(Vg,_,), G[Vg,_, U {v}] is either prime, or contains a unique split. So we now
consider the particular case that ¢+ = 1. Gy is an induced path of length two; let z,, 5, 23
be the vertices of this path. Since G is prime, N(z;) # N(z3). By possibly swapping x;
and z3, we assume there exists v € N(z3) \ N(z1). Then ({#1,22},{®3,v}) is the unique
split in G[{z1, za, z3,v}]. This completes the description of the decomposition.

We remark that the decomposition can only be found for prime graphs, so we have an
algorithm that finds a split in a graph, or declares that the graph is prime. The problem of
recognizing prime graphs was originally solved by Cunningham [22]. The fastest algorithm
is due to Ma and Spinrad [51]; it runs in O(n?) time, where n is the number vertices of
the graph. In fact, the algorithms of Cunningham, and Ma and Spinrad are more general;
they decompose a graph into prime graphs.

Recognizing circle graphs

Consider the problem of deciding whether a binary matroid is a planar matroid. This
problem was solved by Tutte [70], and others, who actually solved the more general problem
of deciding which binary matroids are graphic. An alternative solution comes by means
of Theorem 4.16. It suffices to be able to check which binary delta—matroids are Eulerian;
that is, to be able to recognize circle graphs. The problem of circle graph recognition
was solved independently by Naji [53], Gabor, Hsu and Supowit [35], and Bouchet [6].
Spinrad [63] refined the algorithm of Gabor et al. to recognize circle graphs in O(n?) time.
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With the exception of Naji’s algorithm, the circle graph recognition algorithms involve
the decomposition of prime graphs. Bouchet’s decomposition uses local complementation
and pivoting, but gives a conceptually simple algorithm. Unfortunately, Gabor et al.,
and Spinrad do not cleanly separate the problem of decomposing prime graphs from the
construction of diagrams, which makes their circle graph recognition algorithms appear
complicated. We describe an algorithm that, while being less efficient than that of Spinrad,
is simple.

Remark: Seymour [62] generalized the result of Tutte, by giving an efficient algorithm
to test whether any given matroid is graphic. This leaves open an interesting question for
delta-matroids: Is there an efficient algorithm that, given an arbitrary even delta—matroid,
determines whether it is Eulerian?

We now begin the description of the recognition algorithm. We are given a graph
G = (V,E), and we are asked whether G is a circle graph. By Lemma 4.21, we may
assume that G is prime. Also, we assume that G is a circle graph, and we algorithmically
construct its diagram. If our assumption fails then so must our algorithm, and hence we
can decide if G is a circle graph. We begin by finding the nested sequence of prime graphs
Go, ..., Gy, as described above. Trivially, we can find a diagram for Gj; furthermore the
diagram is unique. We assume that we have found a diagram for GG;_;. By Lemma 4.22,
the diagram of G,_; is unique. Thus, we can extend this diagram to a diagram for G;.

Recall that G; is constructed from G;_; by adding a sequence of vertices vy, ..., v,
where G[Vg,_, U {vo}] is either prime (and p = 0), or has a unique split, say (X,Y), and
v1,...,9p 18 a blocking sequence for the subsplit (X,Y).

Consider the case that p = 0. We want to add a single chord vy to the diagram of
G;_1. Let k be the number of vertices of G;_;. Then, in the diagram of G;_;, there are 2k
intervals on the circle in which we might attach an end of the chord vy. We can test all
pairs of such intervals to find the diagram for G;.

Figure 5.1: Circle graph diagram and blocking sequences

Now, we consider the more general case when p > 0. Let H denote the graph G[Vg,_, U
{vo}], and let (X,Y) be the split in H. We define X; = X U {vy,...,v;} and Y; =
Y U{vj,...,v,}, and we define H; = G[X; UY] o Y. Initially, we have a unique diagram
for Hy (since Hy = HoY). We add the chords vq,...,v, in sequence; we assume that we
have a “unique” diagram for H;_;, and we find a “unique” diagram for H;. In general, H;
is not prime, so it does not necessarily have a unique representation, but it has a unique
representation that extends to a diagram of G;. From the definition of a blocking sequence,
we have that (X;_1, Y;11) is a subsplit, and v; is a blocking sequence for (X;_1,Y;11). Then,
a diagram of G; must have the general form depicted in Figure 5.1. Hence, when we add
the chord v; to the diagram of H;_;, one end of the chord v; must be placed adjacent, on
the circle, to an end of the chord Y. Furthermore, from Figure 5.1, it is clear that any
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diagram of H; with the property that an end of chord v; is adjacent, on the circle, to an
end of the chord Y, extends to a diagram of GG;. However, since G; is prime, it has a unique
representation. Hence, there is a unique way to extend the diagram of H;_; to a diagram
of H;, with the required property.

So we can construct a diagram for H,. Finally, from the diagram of H, and H o X, we
can construct the diagram of G;. This completes the description of the algorithm.

A refined decomposition

We now describe a second decomposition of a prime graph. Like the previous decomposi-
tion, it constructs a nested sequence Hy, ..., H; of prime induced subgraphs. However, the
present decomposition resembles the classical “ear decomposition” of a graph. It also dif-
fers from the above decomposition in its use of isomorphism. To begin the decomposition
we require an induced prime subgraph. We could use the previous decomposition to find
such a graph; however, Gabor, Hsu, and Supowit [35] have a far more elegant solution,
given in the following theorem. Their proof is long and technical; they first search for an
induced path of length three and then use this path to find a nice induced prime subgraph.
We include a simpler proof based on blocking sequences.

Theorem 5.4 (Gabor, Hsu,Supowit [35]) Let G be a prime graph with at least four
vertices. Then G has an induced (prime) subgraph that isomorphic to either Hy, Hy, Hs
(defined in Figure 5.2) or a circuit with at least five vertices.

H, H, H,

Figure 5.2: Small prime graphs

Proof Let 225 be an edge of G. Since G is prime, N(z1) — 22 # N(z2) — 2. We assume,
by possibly interchanging #; and x5, that there exists y; € (N(z1) — ®2) \ (N(2z2) —
©1). Since G is prime, N(z5) # N(y1); we assume, by possibly interchanging y; and .,
that there exists y2 € N(y1) \ N(z2). We define X = {z;, 25}, and Y = {y1,y2}. The
graph G[{#1,%2,y1,y2}], is depicted in Figure 5.3. Note that (X,Y) is the unique split in
Gl{z1,®2,y1,y2}]; let v1, ..., v, be a blocking sequence for this subsplit of G. Let H denote
the graph G[{z1, %2, y1,y2,v1,...,v,}]. We claim that H contains, as an induced subgraph,
either a circuit with at least five vertices, or a graph isomorphic to one of Hy, Hy, Hs. The
proof is inductive on the length of the blocking sequence; we consider two separate cases.

Case 1:  z;ys is an edge. For a vertex v;, (X,Y U{v;}) is a subsplit if and only if ¢ > 2.
Hence zov; € E if and only if v; = 1. Similarly, (X U {v;},Y) is a subsplit if and only if
i < p. Hence, |[N(v;) NY| = 1if and ounly if i = p; we assume, by possibly interchanging
y; and y,, that ysv, is an edge. If p = 1 then H is isomorphic to either H; or Hj; so
we assume that p > 1. It is easy to verify that vy,...,v,_4 is a blocking sequence for the
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Figure 5.3: G[{z1,z2,y1,y2}]

subsplit (X, {y2,v,}); so, by induction, H — y; contains either a circuit with at least five
vertices, or a graph isomorphic to one of H;, Hs, H3 as an induced subgraph.

Case 2: 21y, is not an edge. For a vertex v;, (X,Y U {v;}) is a subsplit if and only if
i > 2. Hence zov; € E if and only if ¢« = 1. Similarly, (X U {v;},Y) is a subsplit if and
only if i« < p — 1. Hence ysv; € E if and only if i = p. Suppose, for some i € {2,...,p},
that v;y; is an edge. Then, it is easy to verify that vy,...,v;_; is a blocking sequence
for the subsplit (X, {y1,v:}); so, by induction, G[{z1, 2, y1,v1,...,v;}] contains either a
circuit with at least five vertices, or a graph isomorphic to one of Hy, Hs, H3 as an induced
subgraph. Therefore, we may assume that, for 7+ = 2,....p, v;y; is not an edge. Similarly,
we may assume, for ¢ = 1,...,p — 1, that v;z; is not an edge. The graph H is depicted

Figure 5.4: H

in Figure 5.4. If p = 1 then H is isomorphic to Hy, Hs, or C5; so we may assume that
p > 2. Suppose that p = 2. ({1, 22,01}, {y1,y2,v2}) is not a split in H, so v1v4 is not an
edge if and only if vyy; and vsx; are both edges. In any case, H is isomorphic to Hs or
Cs. Thus, we may assume that p > 3. Consider v;,v;, such that ¢+ < j. By the definition
of a blocking sequence, (X U {v;},Y U {v;}) is a subsplit if and only if i < j — 1. Hence, if
i # 1 or j # p then v;v; is an edge if and only if ¢ = j — 1. By the definition of a blocking
sequence, (X U{v1},Y U{v,}) is a subsplit. Hence, v;v, is an edge if and only if v;y; and
vpz1 are both edges. If viv, 1s not an edge then H contains an induced circuit of length at
least 5. If v1v, 1s an edge, then x,v, 1s also an edge, and H — y; — y, 1s either isomorphic
to Hy or Hs, or H contains an induced circuit of length at least 5. 0O

The decomposition

Let H be a prime induced subgraph of a graph G. A prime graph H' containing H as an
induced subgraph is called a k—element prime extension of H, where k = |V \ Vg|. A
path vg,...,v,41, of length at least three, is called a handle of H if {vo, ..., 0,41} N Vg =
{v0,vps1}, and the vertices vy, ..., v, all have degree two in G[Vyg U {vy,...,v,}].

Proposition 5.5 Let G = (V, E) be a graph, H be an induced prime subgraph of H with
at least four vertices, and vo,...,vp11 be a handle of H. Then, G[Vg U {vy,...,v,}] is a
prime extension of H.
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Figure 5.5: A handle of H

Proof The result follows from Lemma 5.2, since vs,...,v, is a blocking sequence for the
unique split ({vo, v1}, Vir — vo) in G[Vg U {v1}]. O

The decomposition is basically described by the following theorem.

Theorem 5.6 Let G = (V, E) be a prime graph, and let H be an induced prime subgraph
of G such that 4 < |Vyg| < |V|. Then, there exists a subgraph H' of G such that H' is
isomorphic to H, and either there exists a 1— or 2—element prime extension of H', or there
exists a handle for H'.

Proof Suppose that there does not exist a 1— or 2—element prime extension of H, or of
any induced subgraph H' of G isomorphic to H. We construct a family S = (S, : v € V)
of disjoint sets. Initially, S, = {v} for each v € V. At any stage S satisfies the following
properties.

(1) Sy NV = {v}, for each v € Vg, and
(ii) for any two distinct vertices v,w of H, either E[S,,S,] =0, or E[S,, Sw] =[Sy, Sw]-

We define X to be Uyey,,S,. A subset W of X, is called a transversal of S if |S, N W| =1,
for each v € V. For any transversal W of S, G[W] is isomorphic to H.

Suppose there exists a vertex z € V'\ X that has neighbours in at least two distinct sets
of §. Let W be a transversal of S such that x has at least two neighbours in W. By possibly
relabeling, we may assume that W = V. Since H has no 1-element prime extension, then,
by Lemma 5.3, z has a twin 2’ in G[Vg U {z}]. We construct a family &’ = (S, : v € Vg)
from S by adding = to S,/. S’ satisfies (1); we claim that (ii) is also satisfied by S’. Suppose
not; then there exists y' € Vi \ {2'}, and y € S}, such that E[{z,2'},{y,y’}] is neither
complete nor empty. Then, it is easy to verify that y is a blocking sequence for the unique
split ({z,2'}, Vg — ') in G[Vg U{z}]. Hence, by Lemma 5.2, G[Vz U{z,y}] is a 2-element
prime extension of H, a contradiction. So, (ii) is satisfied by S’ as claimed.

We continue the construction of S until each vertex in V' \ X has neighbours in at
most one set of S. Since G is prime, and H is a proper induced subgraph of G, X # V.
Therefore, there exists a vertex v of X such that N(S,) \ X is non-empty. Let Y be the
set of vertices in V' \ X that are in the same component as a vertex of S, in the graph
GV \(X\S,)]. Gis prime, so (YUS,, V\(YUS,))is not a split. Hence, Y has neighbours
in X \ S,. Therefore, there exists a path of length at least two in G from S, to X \ S,

such that the internal vertices are in V' \ X; let vg,...,v,41 be a shortest such path. Now
let W be a transversal of S that contains vy and v,41. Then vg,...,vp41 1s a handle for
G[W]. 0
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Theorem 5.6 can be restated in the following useful form.

Theorem 5.7 Let G = (V, E) be a prime graph, and let H be an induced prime subgraph
of G with at least four vertices. Then, there exists a sequence of induced prime subgraphs
Hy, ..., Hy such that Hy is isomorphic to H, H, = G and, fori > 1, either H; is a 1- or
2—element prime extension of H;_y, or H; is got from H;_; by adding a handle. a

We now consider the case where there exists a 2—element prime extension of an induced
prime subgraph, but no 1-element prime extensions.

Lemma 5.8 Let vy, vy be vertices of a graph G = (V, E) such that, G and G — vy — v,
are both prime, and have at least four vertices. Then either there exists a 1-element prime
extension of an isomorphic copy of G—v1 —vy in G, or there exist a sequence Ty, Ta, ..., Tap,
of distinct vertices such that

1. forj <2k, G —x; — xjq1 1s isomorphic to G — vy — va,
2. x5 is pendent in G — xy and, for even i, N(z;) \ {21,..., 2o} = N(z2),
3. @op_1 is pendent in G — xop and, for odd i, N(z;) \ {z1,..., 2%} = N(®a—_1), and

4. fori < g, xiz; is an edge if and only if © s odd and j is even.

Figure 5.6: Demonstrating the lemma.

Proof We assume that there exists no 1-element prime extension of an isomorphism of

G —v; —vyin G.

e exten e ordered pair vy, v, to a sequence vy, vy, vs,. .. as follows. a genera
We extend the ordered , Vs b , Vs, Vg, foll At 1
stage we have a finite sequence x4, ..., x, such that, for ¢+ > 1, v;_1, v;;; are twins in G —v;.
If v,_; is pendent in G —wv,, then we stop with the sequence x4, ..., x,; so assume otherwise.

By the initial assumption, G — v, is not prime. Therefore, by Lemma 5.3, v,_; has a unique
twin, say v,.1, in G — v,. We add v,y to our sequence and continue.

We claim that the vertices vy, vy, vs,... are distinct. Suppose not, and let p < g be
such that v, = v,; furthermore, assume that ¢ — p is minimum with this property. By
Lemma 5.3, for ¢« > 1, there exists a unique split in G — v;, so G — v; has either a pendent
vertex or a (unique) pair of twins. It is not possible that G — v, contain a pendent vertex,
since otherwise the sequence would stop at v,. Now, v,_; and v,y are the unique twins
in G — vy, 80 {vp_1,Vp11} = {v4-1,V441}. Furthermore, by our choice of p and ¢, we must
have v,_1 = v,_1 and v,11 = vg41. lteratively, replacing p,q by p + 1,9 + 1, we see that
the sequence vy, vs, ... is infinite and periodic. Let vy,...,v; be the first period. For ¢ > 1,
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Vi—1, V41 are twins in G — v;, but not in G (since G is prime). Therefore v; is adjacent to
exactly one of v;_; and wv;;;. Therefore, we may assume, by possible shifting the period,
that v;_;v; is an edge if and only if ¢ is even. Hence p, the length of the period, must be
even. Note that v;1; = vy, so viv; is not an edge, while vv5 1s an edge. Therefore, there
exists some (odd) ¢, less than p, such that v;v,41 is not an edge, but viv,_; is an edge,
contradicting that v;_; and v;y; are twins in G —v;. Hence vy, vs, ... is distinct as claimed,
and the sequence must be finite.

Let 1 = v,, and 5 = v,_;. Then, as above, we can extend the pair z;, z, to a sequence

Ty, Ts,T3,...,o, of distinct vertices such that, for ¢ > 1, z;_;, 2;y, are twins in G — x;, ©,_,
is pendent in G — @, and x5 is pendent in G — x;. For 1 < i < r, since z;_; and z;,, are
twins in G — z;, G — z;_1 — x; is isomorphic to G — z; — ;1. Thus z,..., z, satisfies 1.

Also, since G is prime, z;_; and z;y; are not twins in G. Hence z; is adjacent to exactly
one of #;_; and z;y;. Now, since G is prime and z, is pendent in G — x1, z 25 is an edge
of G. Similarly x,_;, 1s an edge of G. Therefore, for 7 < r, 22,41 1s an edge of G if and
only if 7 is odd, and, since z,_;x, is an edge of G, r is even.

Let X denote {z1,...,2,}. For any p, g equivalent modulo 2, Ng(z,)\ X = Ng(z,)\ X,
since #;_; and z;1; are twins in G—a; for 1 < ¢ < r. In particular, Ng(z;)\ X = Ng(z2)\ X,
for odd 7, and Ng(z;) \ X = Ng(z,—1) \ X, for even 1.

Given 7; < j; and 75 < j5 such that 7; and 75 are equivalent, modulo 2, and j; and j, are
equivalent, modulo 2, then, we claim that z; x; is an edge if and only if z;,2;, is an edge.
This follows easily from the fact that, for 1 < 7 < r, x;_; and z;,; are twins in G — z;.
Therefore, if |j; — 1] is odd, then z;, 2, is an edge if and only if z;, x;, 1 is an edge (which
is the case exactly when i; is odd). Now we suppose that |j; — 41| is even. Suppose, by
way of contradiction, that z; z; 1s an edge. We assume that 7, is even, since otherwise we
could reverse the labeling on the sequence z4,...,z,. Then, since z;, z; is an edge, x4
is an edge. Note that z, has degree 2, and is also adjacent to x;. Therefore, it must be
the case that » = 4. However, G has at least six vertices, and Ng(X) = Ng(z,-1) \ X, so
(X,V\X)is asplit in G, contradicting that G is prime. Thus z, ..., 2, satisfies conditions
2, 3 and 4, as required. a

Local complementation

In this section, we use local complementation to further refine the decomposition of prime
graphs. Recall the definition of local complementation: For a vertex v of a graph G, G x v
is got from G by replacing G[N(v)] by its complement. Two graphs are locally equivalent if
they differ by a sequence of local complementations, and an [-reduction of GG is an induced
subgraph of a graph locally equivalent to G.

Lemma 5.9 Let G be a prime graph, and H be a proper induced prime subgraph of G
having at least four vertices. Then either there exists a vertex v of G such that G — v is
prime and G — v has an l-reduction isomorphic to H, or there exists a degree—two vertex
v of G such that G x v — v is prime and G X v — v has an [-reduction that is isomorphic

to H.
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Proof By Theorem 5.7, we can find a nested sequence of induced prime subgraphs
Hiy, ..., Hy, where H; is isomorphic to H, G = Hj, and, for ¢ > 1, either H; is a 1-
or 2—element prime extension of H;_;, or H; is got from H;_; by adding a handle. Since
H is isomorphic to an [-reduction of Hj_;, we may assume that H = Hy_;. Thus, either
G is a 1- or 2—element prime extension of H, or G is got from H by adding a handle.

Let X = Vg \ Vg. If G is a 1-element prime extension of H, then we are done. If
|X| > 3, then G is got from H by adding a handle; so for any z € X, G x z — z is got
from H by adding a shorter handle. Thus, G x z — z is prime, and we are done. Therefore,
we may assume that X has two elements, say x; and z,. Furthermore, by Lemma 5.8, we
may assume that z; is pendent in G — @4; let y; be the neighbour of #; in G — z,. Note
that H =G —x; — 2y and H = G X ©y — 21 — 23, 50 if G —x; or G X x; — x1 is prime,
then we are done; assume otherwise.

Case 1: zy 1s pendent in G — x;. Let y, be the neighbour of z, in G — z;. Now, z
is not pendent in G X ©; — x;. Therefore, by Lemma 5.3, there exists a twin v of x5 in
G x z1 — 1. Note that N(v) = {y1,y2}, and G X #; — 21 — v is isomorphic to H. Therefore,
if G — v is prime then we are done; we assume otherwise. By Lemma 5.3, there exists a
twin v’ of 21 in G — v. Since v/ must be adjacent to x,, we have that v’ = y,. Therefore,
N(ys) = {v,y1,z2}; but then N({z1,22,ys,v}) = {y1}. This is a contradiction, since G is
a prime graph with at least six vertices, and thus cannot have a cut—vertex.

Case 2: x5 1s pendent in G X #; — x;. This case is similar to Case 1.

Case 3: =z, is pendent in neither G — z;, nor G X ; — ®;. Then, by Lemma 5.3, z, has
a twin ys in G — z1, and a twin ys, in G X z; — z;. Now, G — #; — y» is isomorphic to H,
and @1 1s not pendent in G —y,. If G — y, is prime, then we are done; so assume otherwise.
Then, by Lemma 5.3, there exists a twin v of z; in G — y», so Ng(v) = {y1,y2, £2}. Then,
since v is a neighbour of y, but not a neighbour of y,, either v = y, or v = y;, both of
which yield contradictions. a

The following corollary is a strengthening of a theorem of Allys [1], who showed that, if
G is prime, then there exists a vertex v such that either G —v or G x v — v is prime. Allys’
theorem implies that there exists a graph G’ that is locally equivalent to G, and an ordering
®1,...,2, of V such that, for n > 5, G'[{#1,...,2;}] is prime. Testing whether G’ (and
hence, also G) is a circle graph is then easy. This is essentially Bouchet’s algorithm for circle
graph recognition [6], although Allys’ theorem is cleaner than the original decomposition
used by Bouchet. (Bouchet’s theorem requires a third possibility that G x vw — v is prime,
where w is any neighbour of v.)

Corollary 5.10 Let G be a prime graph with at least sixz vertices. Fither there exists a
verter v such that G — v s prime, or there exists a vertex w, of degree two, such that
G X w — w s prime.

Proof Let H be an induced prime subgraph of G of the type guaranteed by Lemma 5.4.
If H = G, then the result follows easily. Otherwise, the result follows by Lemma 5.9. O

The following theorem can be viewed as a “splitter” theorem for [-reductions. An
[-reduction of G is called elementary if it has one fewer vertex than G.
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Corollary 5.11 Let G be a prime graph, and let H be an [-reduction of G that is prime
and has at least four vertices. Then there exists an elementary l-reduction of G that s
prime, and has an l-reduction that is isomorphic to H.

Proof Immediate, by Lemma 5.9. O

Circle graphs

We now derive the following results from Corollary 5.11. The graphs Wy, Wy, F; and ()3,
are defined in Figure 5.7.

Proposition 5.12 Let G be a prime graph having Wy as an l-reduction. Then, either G
18 locally equivalent to Wy, or G has an l-reduction that is isomorphic to Wi.

Proposition 5.13 Let G be a prime graph having Fr as an l-reduction. Then, either G

s locally equivalent to Fr, G is isomorphic to a graph locally equivalent to QJs, or G has
an l-reduction that is isomorphic to Wi.

&

! ! 1 5 6

> ]y A
W5 1:7 W7 Q? 3
Figure 5.7:

As an immediate corollary of Propositions 5.12 and 5.13, and Theorem 4.19, we get the
following strengthening of Theorem 4.19. The theorem is analogous to the well-known fact
that, if G is a 3—connected graph, then G is nonplanar if and only if either G is isomorphic
to Ky, or G contains a minor isomorphic to K 3.

Theorem 5.14 Let G be a prime graph. Then G is not a circle graph if and only if either
G s locally equivalent to an isomorphism of Wy, Fr or Qs, or G has an l-reduction that
18 isomorphic to Wi. a

For n > 3 we define a simple graph W,,, the n—wheel, with vertices 1,2,...,n+1, where
1,2,...n defines an induced circuit, and n + 1, the hub of W,,, is adjacent to all other
vertices. A partial wheel, with hub v, is a graph G, such that v is a vertex of degree at least
three in G, and G — v is an induced circuit. We require the following elementary result of

Bouchet [12].
Proposition 5.15 Let G be a partial wheel with hub v. Then G is a circle graph if and

only if N(v) can be partitioned into two disjoint sets X1, Xa, each having at most two
elements, such that, for i = 1,2, if X; contains two vertices then they are adjacent. a
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Proposition 5.16 Let W be a partial wheel, with hub x, that is not a circle graph and is
not isomorphic to Fy or Wy. Then W has an [-reduction that is isomorphic to Wi.

Proof Suppose that y is a vertex of W that has degree two. Then, W x y — y i1s a partial
wheel, whose hub, z, has the same degree as the hub of W. Therefore, we may assume
that, for any degree two vertex y of W, either W x y — y is not a circle graph, or W xy —y
is isomorphic to Wy or F;. Let k be the degree of =.

1
6 5
X 6 1 7 8
* 7 4 6
5 2 6 1
5 2
4 1
3 ! 5 2
3 2 4 3 4 3 h 3
: 5 3
H; H, Hs Hg H,

Figure 5.8: Partial wheels

Consider the partial wheels Hj, ..., Hy, depicted in Figure 5.8. These represent the
different possibilities for W, when k& = 3,4,5,6, 7. Following are the promised [-reductions
that are isomorphic to Ws: Hs x 1 x5 —1—-5, Hy x5—5, Hy, Hs x x x 1 — @, and
H; x7Tx8x1—-1-17-28.

Now, suppose that k& > 8. Then, by our assumption, W is a k—wheel. Therefore, for
any y € Viy —x, W xy —y is a partial wheel, whose hub, z, has degree k — 3. Therefore, by
Proposition 5.15, W x y — y is not a circle graph. Furthermore, W x y — y is isomorphic to
neither F; nor Wy. So, inductively, W x y — y contains an [-reduction that is isomorphic
to Wi. O

Proof of Proposition 5.12. We consider, up to isomorphism, all 1-element prime
extensions of Wy. (There are an embarrassing 29 such extensions.) In each case we show,
by Proposition 5.16, that the graph obtained contains an [-reduction that is isomorphic to
W5s. Then, by Corollary 5.11, every prime graph that contains Wy as a proper [-reduction,
also contains an isomorphism of Wy as an [-reduction. The case analysis is summarized
in Table 5.1. Each entry in the table contains the neighbours of the new vertex, z, in a
1-element prime extension G of Wy, and an [-reduction of G to a partial wheel that is not
a circle graph, and is isomorphic to neither Wy nor Fr. O

Proof of Proposition 5.13. Recall the definition of a pivot in a graph. For an edge vw,
G xvw =G xv X w X v. For any edge vw of Fy, F7; X vw is isomorphic to Fy; by using
such pivotings, many prime extensions of F% are locally equivalent. We use the notation
G — (v1,...,v,) to indicate that G is isomorphic to the graph obtained by adding a vertex
to F7 and joining it to the vertices wvy,...,v,. Table 5.2 contains all 1-element prime
extensions of F7 and indicates that, with the exception of one graph that is isomorphic to
()5, all extensions contain an [-reduction that is isomorphic to Wi.

Note that, for every vertex v of (03, (3 — v is isomorphic to Fy. It is easy to show that
every l-element prime extension of ()3 contains an induced subgraph, different from ()3,
that is a 1-element prime extension of F7. Hence, any 1-element prime extension of ()3
contains an [-reduction that is isomorphic to Wi. O
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[-reduction

neighbours of x

3/G—-2
3/G—-2

5/ Gx2-3—-4
41 G—-2-3

H NN S s s o s S

[-reduction

[-reduction

neighbours of =

2,4 | G x56—
1,2,4 | G x 56 —

1,2,5 | G x 34 —

1,2,6 | G x 34 —
1,2,3,4 | G x 56 —
2,3,5,6 | G x 56 —
1,2,4,7 | G x 23 —

1,2,5,7 | G x 56 —
2,4,6,7 | G x 56 —
1,2,3,4,7 | G x 23 —

neighbours of =

1,2,3,4,6,8 | G — 8
1,2,3,4,5,6,8 | G — 8

[-reduction

= Qs

Table 5.2: 1-element prime extensions of F7.

Table 5.1: 1-element prime extensions of W.

neighbours of x

1,2 | Gxzx

1,4 | Gxz—x

2,4,6 | G
1,2,3,5 | G—7

1,2,4,6 | G- 7
1,2,3,4,5 | G -7

2,3,4,5,6 | G— 7
1,2,3,4,5,6 | G— 7

,7/Gx1-1

27| Gxz—=w
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The splitter theorem

In this section, we extend Seymour’s splitter theorem [61] to even binary delta-matroids.
Seymour’s theorem is a fundamental step in the proof of his decomposition theorem for
regular matroids.

Consider the wheel W,,. The edges incident with the hub of W,, form a spanning tree
T of W,. Then the fundamental graph of W,,, with respect to T, is a circuit of length
2n. (The fundamental graph of a graph G = (V, E) with respect to a spanning tree T is a
bipartite graph F = (E,S) with edges zy, where x € T, y € E\ T and z is in the unique
circuit of T'+y.) We generalize “wheels” to delta—matroids. An even binary delta—matroid
is called a wheel if it has an induced circuit as a fundamental graph. The main result of
this section is the following unpublished theorem of Bouchet. An elementary minor of a
delta-matroid M is a minor of M with precisely one fewer elements than M.

Theorem 5.17 (Bouchet) Let M be a 3-connected, even, binary delta—matroid, and let
N be a 3—connected minor of M having at least four elements. Then either M is a wheel,
M is equivalent (under twisting) to N, or there exists a 3—connected elementary minor M’
of M that contains a minor isomorphic to N.

As a corollary of Theorem 5.17, we get the following result of Allys [1], which is an
extension of Tutte’s wheels and whirls theorem [72]. Bouchet’s proof of Theorem 5.17 and
Allys’ proof of Corollary 5.18 are algebraic, using isotropic systems of Bouchet [5], whereas
our proof is mostly graphical. Apart from the overhead of introducing isotropic systems,
Bouchet’s proof is shorter.

Corollary 5.18 (Allys [1]) Let M be a 3—connected, even, binary delta-matroid with at
least four elements. Then either M is a wheel, or there exists a 3—connected elementary
minor of M.

Proof Immediate by Theorem 5.4, and Theorem 5.17. O

Let Z, be a graph with vertices {z1,...,2,} U{y1,...,yn} and edges {z;y; : i < j}.
Construct Z, from Z, by adding a single vertex z such that Nz (z) = {z1,...,2z,} U
{y1,...,yn}. Now construct a second graph Z! from Z, by adding two vertices z,y such
that Nzy(x) = {21,...,2,}, and Nzv(y) = {y1,...,yn}. (For example, Zy, Z; annd Z} are
depicted in Figure 5.9.)

X; Y, \\
x y ‘\ X “\\‘ Y
x: y3 X y

Figure 5.9:

Let A(G) = (ai;) denote the adjacency matrix of the graph G = (V, E), that is, A is
the V by V symmetric binary matrix, where a;; = 1, if and only if 75 € E.
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Proposition 5.19 For n > 2, the delta—matroids M(A(Z!)), and M(A(Z")) are both

wheels.

Proof Note that, for all k, Z; has a unique perfect matching; so, by Lemma 3.10, Vz,
is a feasible set of M(A(Z!)) and M(A(Z!)). Let G, G' and G” be, respectively, the
fundamental graphs of M(A(Z,)), M(A(Z))), and M(A(Z!)) with respect to the feasible
set Vg, .

Recall that vw € Eg if and only if A(G[Vz, A{v,w}])is nonsingular; that is A(G—v—w)
is nonsingular. We claim that G is the induced path z1,y1,x2,ys, ..., 2, y,. Note that,
if vertices v,w are twins in a graph H, and vw is not an edge, then rows v and w are
identical in A(H), and hence A(H) is singular. For ¢ > 1, y; and y;_; are nonadjacent
twins in G — z;. Hence, A(G — #; — y;) is singular unless j =i or j =4—1. If j =1
or j =14 — 1, then G — #; — y; is isomorphic to Z,_;, so A(G — x; — y;) is nonsingular.
Therefore, for ¢ > 2, Ng(z;) = {yi,yi—1}. Note that y; is an isolated vertex in G — zy, so
A(G — z1 — y;) is singular unless j = 1, and G — z; — y; is isomorphic to Z,_;. Therefore
Ng(#1) = {y1}. Similarly, for j <n —1, Ng(y;) = {yi, yi—1}, and Ng(y1) = {z1}. So, G is
the induced path x1,y1, 22, ys, ..., Ty, Y, as claimed.

We now prove that G” is the induced circuit x1,y, ..., Ty, Yn, ,y. Note that G" —z —
y = G, so we need only find the neighbours of z and y. Note that = and y, are twins in
Zy —vy, so, for all 1, A(Z]! —y — x;) is singular, and A(Z) —y — y;) is singular unless ¢ = n.
However, Z!! — y — y,, is isomorphic to Z,, so A(Z]! —y — y,) is nonsingular. Therefore,
Nei_y(2) = {yn}. Similarly Ngv_,(y) = {#1}. Note that Z” is prime, and G” is obtained
from Z!' by pivoting, so G” is prime. Thus, zy is an edge of G”, and G” is an induced
circuit. So M(A(Z")) is a wheel.

We now prove that G’ is the induced circuit z1,y1, ..., Zn, Yn, 2. Note that G' — 2z = G,
so we need only find the neighbours of z. For all i, zz; is an edge of G’ if and only if
A(Z] — ®;) is nonsingular. The set yi,...,y, is a stable set of size n, in Z, — x;, and
Z! — x; has 2n vertices. Therefore, every edge of a perfect matching of Z/ — z; is incident
with some y;. So, no edge zz; is contained in a perfect matching of Z/ — ;. Let H be
the graph got from Z by deleting the edges zz;, for j = 1,...,n. By the definition of
the pfaffian, A(H — #;) is nonsingular if and only if A(Z! — ;) is nonsingular. However,
z and ®; are twins in H, so A(H — z;) is singular unless ¢ = 1. H — ; is isomorphic
to Z,, so A(H — x;) is nonsingular. Therefore, Ng/(z) N {z1,...,2,} = {x1}. Similarly,
Ne(2) N {y1,...,yn} = {yn}. Therefore, G’ is an induced circuit, and M(A(Z))) is a
wheel. O

Proof of Theorem 5.17. By twisting, we may assume that N is normal. Since N is a
minor of M, there exist subsets X, Xy of V, such that N = MAX; — X,. By twisting
M we may assume that X; is empty. Let G be the fundamental graph of M with respect
to the empty set. Let H denote G[V \ X;]. Then H is the fundamental graph of N with
respect to the empty set. Furthermore, since M and N are both 3—connected, G and H
are both prime. By Theorem 5.7, there exists a nested sequence Hy, ..., H; of induced
prime subgraphs of G, such that H; is isomorphic to H, Hy, = G, and either H;,; is a 1- or
2—element prime extension of H;, or H;yq is got from H; by adding a handle. We assume
that k = 2, since otherwise we can replace N, by M — (V \ Vg, _,). Therefore, either G
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is a 1- or 2—element prime extension of H, or GG is got from H by adding a handle. We
assume that G is not a l-element prime extension of H or any graph isomorphic to H,
since otherwise we are done.

Now suppose that G is not a 2-element prime extension of H. Thus, GG is obtained by
adding a handle vy, ... ,vy41 to H, where p > 3. We claim that G x vgv; — v 18 prime, and
contains an induced subgraph that is isomorphic to H. (That is, MA{ve,v1} — {vo} is a
3—connected elementary minor of M that contains a minor isomorphic to N.) Note that
Ng(v1) = {vo,v2}. Let G' denote G x vgv;. Therefore, G’ is got from G by adding the edges
[{v2}, Ne(vo) — v1], and then exchanging the labels vg, v1. Let H' denote G'[Vyg A{vo, v1}].
Then H' is isomorphic to H. So it only remains to show that G’ — vy is prime. Note
that ({vi,va}, Vi \ {v1}) is a subsplit in G’, and vs, ..., v, is a blocking sequence for this
subsplit. Hence, by Lemma 5.2, G — vy is indeed prime.

Now consider the case that G is a 2-element prime extension of H. Let x,...,xo
be the sequence offered by Lemma 5.8, and let X = {z,...,z2,}. Let y; be the unique
neighbour of z, in V'\ X and y» be the unique neighbour of za;_; in V'\ X. If y; = y, then
V = X U{y;} (since otherwise (X,V \ X) would be a split in G); hence, G is isomorphic
to Z;, and M is a wheel. So we assume that y; # y,. Suppose that V = X U {y1,y»}.
Then, y1y» is not an edge (since otherwise y, and o are twins in G); so G is isomorphic
to Z;!, and M is a wheel. So,we assume that V # X U {y1,y»}.

Since (X U {y2},V \ (X U {y2})) is not a split in G, y» has a neighbour, say w, in
VA (X U{y2}). Let G’ denote G x wys. Now, @1,..., 2o is a sequence of distinct vertices
in G’, such that, for 1 <4 < 2k, #;_; and #;;; are twins in G’ —z;, for j < 2k, G’ —z; — 241
is isomorphic to H X wy,, and x5 is pendent in G — z;. However, xs;_1 has degree at least

two in G’ — xg;. Therefore, by the proof of Lemma 5.8, we can extend zy,..., =z to
a longer sequence zi,...,xp satisfying the conclusions of Lemma 5.8. The result then
follows inductively. a
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Chapter 6

Regular delta—matroids

An important open problem for delta—matroids is the characterization of regular delta—
matroids by excluded minors. From matroid theory we learn that a fundamental step
in proving excluded minor characterizations is proving some kind of uniqueness theo-
rem concerning representation. Indeed, this is certainly the case for regular, graphic and
GF(2)- and GF(3)-representable matroids. Kahn [45] showed that 3—connected GF(4)-
representable matroids have “unique” representations; however, 3—connectivity is not very
tangible and, consequently, an excluded minor characterization has not been found. In this
chapter, we consider representations of regular delta—matroids; the situation is remarkably
similar to that of GF(4)-representable matroids. The results in this chapter were found
in collaboration with Bouchet and Cunningham. We begin by recalling the situation for
regular matroids.

Theorem 6.1 (Camion [16]) If a (0,1)-matriz can be signed to be totally unimodular,
then the signing is unique up to multiplication of certain rows and columns by —1. a

Let A be a V by V PU-matrix. We can construct other PU-matrices from A; for

instance, —A is PU (we call this construction negation). Also, for X C V, the matrix

( —A[é[\X)](,X] I _':[ff/’ {/)}]X] ) is PU; this operation is called cut—switching. Collectively, we

refer to negation and cut—switching as switching. Note that switching preserves symmetric
and skew—symmetric matrices. We say that a regular delta—matroid M is uniquely repre-
sentable if every two skew—symmetric PU-matrices that represent M are equivalent up to
switching. The main result of this chapter is the following.

Theorem 6.2 FEvery 3—connected reqular delta—matroid is uniquely representable.
We now show that the assumption of 3—connectivity in Theorem 6.2 is necessary.

Lemma 6.3 Let Ay, Ay be skew—symmetric PU-matrices. Then the composition of Ay and
A2 1s PU.

Proof Immediate by Lemma 4.4, and the fact that skew—symmetric matrices of odd size
have zero pfaffian. a

Let A be a V by V skew—symmetric matrix that is the composition of PU-matrices A; and
A,. The composition of —A; and A, need not be equivalent up to switching to A. Therefore
a regular delta—matroid that contains a 2—separation may not be uniquely representable.
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The proof of Theorem 6.2 is constructive; it provides an efficient algorithm for the fol-
lowing problem: Given a binary representation A of a 3—connected reqular delta—matroid,
find a skew—-symmetric PU-matriz A" that represents M(A). Consequently, we can ef-
ficiently recognize PU-matrices if and only if we can efficiently recognize regular delta—
matroids. Indeed, suppose we have a binary matrix A, and we want to know if M(A)
is regular. We may assume that M(A) is 3—connected. Then, by our algorithm, we can
construct a real matrix A’ that is PU if and only if M(A) is regular. Conversely, given an
integral skew—symmetric matrix B, suppose that we want to know if B is PU. Again, we
may assume that M (B) is 3—connected. If B is PU, then the binary matrix A equivalent
to B modulo 2, is a binary representation of M(B). Now we test if M(A) is regular; if
not, then B is not PU. So, suppose that M(A) is regular. Then, by our algorithm, we
construct a real matrix A’ that is PU. By Theorem 6.2, B is PU if and only if A" and B
are equivalent up to switching, which is easy to check.

Support graphs

The arguments in the proof of Theorem 6.2 are mainly graph theoretic, so we begin by
restating the problem in terms of support graphs. The adjacency matriz of an oriented
graph G = (V, E) is the V' by V skew—symmetric (0, +1)-matrix that has a 1 in entry
1,7 if and only if 75 € E. A digraph G is called an orientation of a graph G if, for every
edge vw of G, exactly one of vw and wwv is an arc of é, and, for nonadjacent vertices v, w
of G, neither vw nor wv is an arc of G. A PU-orientation of G is an orientation of G
whose adjacency matrix is principally unimodular. For an orientation G of G, we define
the operations of negation, cut—switching and switching for G as the result of applying the
corresponding operations to the adjacency matrix of G.

Counting PU—orientations

Let G = (V, E) be a graph with a PU-orientation, and define a(G) to be the number of
PU-orientations of G distinct up to cut—switching. By Theorem 6.1, if G is bipartite then
a(G) = 1; Theorem 6.2 implies that if G is prime, but not bipartite, then a(G) = 2. In this
section we describe how a(G) can be computed by a canonical decomposition of graphs
into graphs that are either prime, bipartite, or complete.

Let G be an orientation of G, and let C' be an even circuit of G. We say that G is even
(odd) on C if, while traversing C' in an arbitrary direction, the number of edges of C' that
are oriented in the forward direction by G is even (odd). Because C' has an even number
of edges this definition is independent of the direction in which we traverse C'.

Lemma 6.4 Let C be the circuit xy,xs, ®3, 24,21 of a graph G, and let G be a PU-
orientation of G that is odd on C. Then G[{x1,zs,x3,24}] is a complete graph and G
is even on the circuit x1, T, Ty, T3, 1.

Proof This follows by an easy pfaflian calculation, which is left to the reader. a

Let (X1, Xs) and (Y1,Y2) be splits of G. We say that (X;, X5) and (Y1,Ys) cross if
X; NY; # 0 for each i, 7; we call the cut (X1, X2) good if there are no cuts of G that cross
(X,Y). We recursively define a decomposition of a graph G as follows.
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e D ={H: H a connected component of G} is a decomposition of G,

e If D is a decomposition of G and H € D has a good split (X,Y") then (D\ H)U{H o
X,H oY} is a decomposition of G.

We call the elements of a decomposition D the D—components.

Theorem 6.5 If D is a decomposition of G then a(G) = [1gep a(H).

Proof It is clear that a(G) is the product, taken over all connected components H
of G, of a(H). Thus, it is sufficient to prove that if (X,Y’) is a good split of G then
a(G) = a(G o X)a(G o Y). By the composition of PU-orientations of Go X and GoY,
we have that a(G) > a(G o X)a(G oY). Therefore, it suffices to show that every PU-
orientation G of G is a composition of PU-orientations of G o X and G o Y. Suppose, by
way of contradiction, that G is a PU-orientation of G, and that G is not the composition
of PU-orientations of Go X and GoY.

Let X' = Ng(Y) and Y’ = Ng(X). Choose z; € X’ and y; € Y’'. Then, for all
y € Y and £ € X', use cut—switching so that the edge z,y is oriented with z; as the tail,
and the edge zy; is oriented with y; as the head in G. Since G is not the composition
of PU-orientations of G o X and G oY, there exists an edge zsy, of G, where z, € X’
and y, € Y’, that is oriented with z, as its head. Partition X' into sets X, X5 such that
z € X; if and only if the edge xy, has y» as its head; similarly, partition Y’ into sets Y7, Y5
such that y € Y if and only if the edge x5y has y as its head.

For any z; € X; and y! € Y; (i = 1,2), G is odd on the circuit T, Yy, Ty, Yoy T, SO,
by Lemma 6.4, G[{z}, 25, y1,y5}] is a complete graph. Hence (X; U Y1, X, U Ys) is a split
of G[X; U X, UY; UYs). However, since (X,Y) is a good split, there cannot exist a split
(X", Y") with X;,Y; C X" and X,,Y> C Y. Then, there exists a chordless path vy, ..., v, in
V\(X'UY") such that Ng(v;)N(X1UY7) # 0 if and only if s = 1, and Ng(v;)N(X2UY2) £ 0
if and only if j = p. Since (X,Y) is a split in G, {v1,...,v,} is a subset of either X or Y;
we assume, by possibly exchanging the roles of X and Y, that {v,...,v,} is a subset of
Y. Choose y; € Y7 adjacent to vq, and choose y; € Y> adjacent to v,. Let H be the graph
induced by {z1, 22, y], Y5, v1,...,0,}; this is depicted by Figure 6.1.

Y] Vo Vp

Y] Y,

X1 X2

Figure 6.1: H

We assume that p = 1 or 2, since otherwise we shorten the path yi, vy, va, ..., v, y5 by
pivoting on v;vs, and then deleting v; and vy from G. If p = 1 then G is odd on exactly
one of the circuits vy, y1, z1,y5,v1 and vy, y7, €1, ys, v1, which, by Lemma 6.4, contradicts
that v; is adjacent to neither z; nor z,. If p = 2 then pivoting on vjv, deletes the edge
Y1y, while leaving G odd on the circuit T1,Y1, T2, Ys, L1, contradicting Lemma 6.4. O
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Lemma 6.6 For every integer n, a(K,) = (n — 1)!, where K, is the complete graph on n
vertices.

Proof Let I?n be a PU-orientation of K,,, and let v be any vertex of K,,. There exists
a unique orientation equivalent under cut—switching to K,, with the property that every
edge incident with v has v as its tail; we assume that K,, has this property.

Suppose that K, has a directed circuit, and let C be a shortest directed circuit. € must
have length 3, since otherwise there exists a chord e of C and C + e contains a directed
circuit shorter than C. Let X be the vertex set of C. K, is odd on every circuit of length
four in K,[X + v], which contradicts Lemma 6.4. Hence K, contains no directed circuits.
We call such an orientation transitive.

There are (n — 1)! transitive orientations of K,, — v; thus, a(K,) < (n — 1)!, with
equality only if every transitive orientation of K,, is PU. Every two transitive orientations
are isomorphic, so we may assume that Vx, = {1,...,n}, and for 1 <i < j < n, the edge
i,7 1s oriented with j as its head in K,,. We have that Kj is PU; and, for n > 3, K,, is
the composition of transitive orientations of two smaller complete graphs. Therefore, by
Theorem 6.3 and induction, K, is PU. O

A decomposition D is called a total decomposition if no D—component has a good split. A
star graph with n vertices is a graph containing a vertex that is adjacent to n-1 vertices of
degree 1. Total decompositions were introduced in [22], though our definition of the term
decomposition differs slightly from the original.

Theorem 6.7 (Cunningham [22]) Let G be a graph. Then

o All total decompositions of G are essentially the same; specifically, if Dy and Do are
total decompositions of G, then there exists a bijection w : Dy — Dy such that, for
each Dy—component H, H and ¢(H) are isomorphic.

o If D is the total decomposition of G then every D—component is a complete graph, a
star graph, or a prime graph.

o The total decomposition can be found in polynomial time. O

Let D be the total decomposition of a graph G. By Theorem 6.7, every D—component H
is either complete, prime or bipartite; so, assuming that G has a PU-orientation, we know
a(H). Therefore, by Theorem 6.5, we know a(G) explicitly.

PU-orientations of prime graphs

In this section, we focus on proving Theorem 6.2.

Let A be a V by V binary skew—symmetric matrix. For vw € Ey, let A’ be obtained
from A X vw, by switching the labels v and w; we refer to this variation of pivoting as
partial pivoting. Denote by G = (V, E) and G’ = (V, E’) the graphs G(A) and G(A4').

For a pair S, 5 of subsets of V. if S and S’ are disjoint we have defined [, S'] = {ss':
s € 8,8 €8}, for intersecting sets S, S’ we define

15,87 =15\ 5,8\ SJU[S\S,SNSTULS\ S, SN S
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Then, we have

E' = EA[Ng(u) — w, Ng(w) — u].

We say that G’ is obtained from G by a partial pivot on vw.

Let G be a PU-orientation of G. A consequence of Theorem 2.7 is that partial pivoting,
over the reals, on the adjacency matrix of G yields a (0, +1)-matrix A”. Let G’ be the
directed graph having A” as its adjacency matrix. Note that G' is a PU-orientation of
G'. The orientation of uw is reversed by this partial pivot. The only other common edges
of G and G’ that may be oriented differently in G and G’ are edges whose ends are both
common neighbours of « and w.

Following are some results that relate pivoting operations with blocking sequences.

Lemma 6.8 Let (X,Y) be a subsplit of G and let G' be a graph obtained by performing a
pivot (or partial pivot) on an edge of G[X]. A sequence vy,...,v, is a blocking sequence of

(X,Y) in G if and only if it is a blocking sequence of (X,Y) in G'.

Proof Let X', Y’ be disjoint subsets of V with X C X’ and Y C Y’'. By Lemma 4.12,
(X',Y") is a subsplit of G’ if and only if it is a subsplit of G. The result follows by
considering the definition of a blocking sequence. O

Lemma 6.9 Let vq,...,v, be a blocking sequence for a subsplit (X,Y) of G, let x €

X N Ng(v1) and let G' be the graph obtained by performing a partial pivot on the edge xv;
in G. Suppose that Ng(z) N X # 0 and Ng(z) N X # Neg(Y)N X. Then

1) ifp=1, (X.Y) is not a subsplit in G', and
(i) if p=1,(X,Y) P ,

(i) if p>1, va,...,v, is a blocking sequence for (X,Y) in G'.

Proof (i) Suppose p=1. Let X' = Ng(Y)NX and Y' = Ng(X)NY. Then, since (X,Y)
is a subsplit, Eg[X,Y] = [X',Y’]. Therefore

Egl[X, Y] = (EgA[Ng(’Ul) — I, Ng(:B) — ’Ul]) N [X, Y]
= [X" ) Y'A[(Ng(vi) \ {z}) N X, Ng(z) N Y]A[Ng(z) N X, Ng(v1) N Y].

We consider two cases; in each case we use the following fact:

Suppose Eq [ X, Y] = [ X1, Y1|A[ X5, Ys] where X; and X, are distinct nonempty
subsets of X, and Y; and Y5 are distinct, nonempty subsets of Y. Then (X,Y)
is not a subsplit in G'.

Case 1: z ¢ X'. Then Ng(z)NY =0, so
Fo(X,Y) = [X', Y')A[No(x) 1 X, Ne(os) 0 Y]

Furthermore, by the conditions of the lemma, X', Ng(2)NX are distinct, nonempty subsets
of X, and, by the definition of a blocking sequence, Y’, Ng(v;) NY are distinct, nonempty
subsets of Y. So (X,Y) is not a subsplit in G'.
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Case 2: 1z € X'. Then Ng(z) NY =Y’. Note that, for any sets A C Y, By, By C X,
[A, Bl]A[A, B2] = [A, BlABQ], SO

Ea[X,Y] = [X'A((N(v1) \ {z}) 0 X), Y'|A[Ng(z) N X, No(vy) N Y].

Now z € X'A((Ng(vi) \ {z}) N X), but & ¢ Ng(z) N X, so X'A((Ng(v1) \ {z}) N X),
Ng(z) N X are distinct, nonempty subsets of X. Furthermore, by the definition of a
blocking sequence, Y’ Ng(v1) N'Y are distinct nonempty subsets of Y. Hence (X,Y) is
not a subsplit in G'.

(i1) Suppose p > 1. By the minimality of a blocking sequence we have that (X, YU{v,})
is a subsplit in G. Note that v; is a blocking sequence for the subsplit (X,Y U {v,}) in
G. By part (i) of the lemma, (X,Y U {v,}) is not a subsplit in G’. Also note that
(X U{v1},Y) is a subsplit in G and that v,, ..., v, is a blocking sequence for (X U{v;},Y)
in G. By Lemma 6.8, vs,...,v, is also a blocking sequence for (X U {v;:},Y) in G’, and,
since (X,Y U {v,}) is not a subsplit in G’, vs, ..., v, is also a blocking sequence for (X,Y")
in G'. 0

Sign—fixed circuits

Let C' be a circuit in a graph G. We say that C' is sign—fized with respect to G if any two
PU-orientations of G differ on an even number of edges of C. For subgraphs H;, Hs of G,
we denote by HiAH, the subgraph of G induced by the edges Eg, AEg,.

Lemma 6.10 Let C be a circuit of a graph G. If there exist sign—fized circuits Cy,. .., Cy
of G such that C = C1AC,A ... ACY, then C s sign—fized in G.

Proof Let él, G, be any pair of PU-orientations of G. Let S be the set of edges of G in
which the orientations G; and G, differ. For each sign-fixed circuit C;, |C; N S| is even.

Now
cnNnsS = (Ci1A...AC,)NS

= (CiN8)A...A(CLN S).

Since C'N S can be represented as the symmetric difference of even sets, C'N S has even
cardinality. Hence C' is sign—fixed in G. O

The following lemma is attributed to Bondy in [42]; it can be proved using Menger’s
theorem.

Lemma 6.11 Let H be an Fulerian subgraph of a 2-vertex—connected graph G. If H
has an even number of edges, then there exist even circuits Cy,...,Cy of G such that

H = CiACA ... AC. 0

Lemma 6.12 If G is prime and every even circuit of G is sign—fized, then all PU-
orientations of G are switching—equivalent.

Proof Trivially we may assume that G has at least 4 vertices. Note that every prime
graph with at least 4 vertices is 2—vertex—connected. Let él, G be PU-orientations of G.
Claim We may assume, without loss of generality, that for every circuit C' of G the
orientations G1 and G differ on an even number of edges of C’.
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Proof of claim By the premise of the lemma, the claim is true for even circuits. Let C'

be an odd circuit of G. We may assume that the orientations él and 632 differ on an even
number of edges of C'; otherwise we reverse the orientation Gs.

Consider any odd circuit C’ of G. By Lemma 6.11, there exist even circuits Cy, ..., Cy
such that C'AC = C1A ... AC, therefore C' = CACA ... ACy. It follows similarly to
the the proof of Lemma 6.10, that the orientations G and G, differ on an even number of
edges of C'. Which proves the claim.

Let S be the set of edges upon which the orientations él and 62 differ. It follows
from the claim that if we contract each of the edges in Eg \ S, then we obtain a bipartite
graph. Therefore the edges S form a cut in G. Hence G, and G, are equivalent under
cut—switching. O

Lemma 6.12 generalizes the ideas used in Seymour’s proof of Theorem 6.1. Following
is a summary of Seymour’s proof. Suppose C' is a circuit of a bipartite graph G. If C
is chordless then it is easy to show that C is sign—fixed. Otherwise, if C' has a chord,
then C' can be expressed as the symmetric difference of two shorter circuits, so inductively
we can prove that C is sign—fixed. Then, by Lemma 6.12, all PU-orientations of G are
switching—equivalent.

Decomposition of circuits

In this section we show that some even circuits can be expressed as the symmetric difference
of shorter even circuits.

Figure 6.2: C' + ¢

Let C' be an even circuit and let e be a chord of C. C can be expressed as the
symmetric difference of two shorter circuits (see Figure 6.2) denoted Ci(e),Ca(e) (in no
particular order). Since C is even, Ci(e) and Cs(e) are either both even or both odd. We
say that e is an even (odd) chord of C if Ci(e) and Cy(e) are both even (odd).

Figure 6.3: Decomposition of C' 4 e; + e,

Let e; and e5 be odd chords of an even circuit C'. We say that e; and e, cross if e; and
es have disjoint ends and e, has exactly one end in Ci(e;). If e; and e, are crossing then

60



define C; = C1(e1)AC:(es), and C; = Cy(e1)ACs(e2); see Figure 6.3. C| and C are both

even circuits and

CIAC, = (Ci(e1)ACi(e1))A(Ci(er)ACy(e2))
i gl(e2)AC2(e2)

If either C] or C} has length 4 then the other has the same length as C'; otherwise both
C] and C; are shorter than C'. We say that e; and e, are tight crossing chords if either C]
or C) has length 4.

Note that it is not possible to have three odd chords of a circuit such that each pair is
a tight crossing pair, so if we have any three mutually crossing odd chords of a circuit C,
we can apply one of the above decompositions to express C' as the symmetric difference of
two shorter even circuits.

Figure 6.4: C 4+ e; 4 €3 + e3

In the third decomposition we have three odd chords e, e; and ez of an even circuit
C such that {e;, es} and {es, e3} are pairs of tight crossing chords, and e; and e3 do not
cross. In this situation there are consecutive vertices x1,..., x5 in C such that ey, e; and
es have ends {z1, x5}, {®2, 24} and {z3, x5} respectively, as depicted in Figure 6.4. Also
depicted in Figure 6.4 is an even circuit C’; C is the symmetric difference of C” and the two
circuits ¢y, Ts, x4, 3, 1 and xs, T4, s, T3, ©5. Furthermore, each of these circuits is even
and shorter than C.

A circuit is said to be decomposable (otherwise indecomposable) if by one of the above
decompositions we can express C' as the symmetric difference of shorter even circuits. More
rigorously, an even circuit C' is indecomposable if the chords of C are all odd, each chord
crosses at most one other chord and all crossings are tight.

PU-orientations of prime graphs

We now prove the main result of the chapter.

Proof of Theorem 6.2. By Lemma 6.12, it suffices to show that in a prime graph all
even circuits are sign-fixed. We prove this by induction on the length of an even circuit.
Let £ > 4 be an even integer. We assume that in every prime graph every even circuit of
length less than k is sign-fixed.

Let C’ be a circuit of length k in a prime graph G’. If C' can be expressed as the
symmetric difference of sign-fixed circuits in G’ then, by Lemma 6.12, C" is sign-fixed. In
particular, if C” is decomposable then C’ is sign-fixed.

Claim 1 Let C be a circuit of length k in a prime graph G. If there exists a vertex that
has degree 2 in G[Ve| then C is sign-fized.
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Proof of claim In the case that C' has length 4, the claim follows from Lemma 6.4. Now

suppose that k& > 4 and that C is indecomposable. Let v be a vertex of degree 2 in G[V¢],
let w,w be the neighbours of v in G[V¢] and let G’ be the graph obtained be performing a
partial pivot on vw in G.

Let w'u and ww’ be the edges other than wv and ww incident to v and w respectively
in C. Note that u' is not adjacent to w in G since such an edge would be an even chord of
C, and similarly « is not adjacent to w’. We have that Ng.j(v) \ {w} = {v}, so

Ba[Vo] = Ea[VolAl{u}, Nepey(w) \ {u, v}].

Therefore the partial pivot affects only edges incident with u. But the edges uwu’ and wv
are unaffected by the partial pivot, so C' is a circuit in G'. Furthermore, if the partial pivot
were performed on any orientation of GG, then exactly one edge of C', namely vw, will be
reoriented. So C'is sign-fixed in G if and only if C is sign-fixed in G'. Now uw’ is an edge
of G, so C has an even chord in G'. Hence C is sign-fixed in G’. This proves Claim 1.

X
X 2 1

<>

X3 X4

Figure 6.5: Circuits in Claim 2.

Claim 2 Let C be a circuit of length k in a prime graph G, and suppose x1,...,x4 are
consecutive vertices of C such that zixs and xoxy are chords of C. Finally let C' be the
symmetric difference of C and the circuit xy, x3, T4, x2, 21 (see Figure 6.5). Then at least
one of C and C' is sign-fized.

Proof of claim The claim is trivially true when C is decomposable, so suppose that C'

is indecomposable. Let X = {zy,23} and Y = Vi \ X, and let e; and e, be the edges
z1x3 and xyx4 respectively. Note that e; and ey are crossing chords of C, so there are no
other chords which cross either e; or es. Hence (X,Y) is a subsplit of G; let vq,...,v, be a
blocking sequence for this subsplit. We prove the claim by induction on the length of the
blocking sequence.

Case 1: p = 1. v is a blocking sequence for the subsplit (X,Y) in G. Then vy is
adjacent to exactly one of 5 and z3. Assume with no loss of generality that v; is adjacent
to z5. v; must also be adjacent to some vertex in Y. This gives rise to two subcases.

Y

R

3 Xy

X

Figure 6.6: Decomposition in Case 1.1.
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Case 1.1: v, is adjacent to a vertex y in Y \ {z1, z4}. We assume that z, and y are an
even distance apart in C' (otherwise z, and y are an even distance apart in C’ and we can
interchange the roles of C and C’). Consider the circuits C; and C» defined by Figure 6.6.
C: and C, are both even and have length at most k. z3 and z, have degree 2 in G[Vq,]
and G[Vg,] respectively, so by Claim 1 C; and Cj are both sign-fixed. Furthermore C is
the symmetric difference of €y and C, so C is also sign-fixed. Thus proving Claim 2 in
Case 1.1.

Figure 6.7: Decomposition in Case 1.2.

Case 1.2: v; is not adjacent to any vertices in Y \ {1, 2z4}. In this Case v; cannot be
adjacent to both vy and vy since otherwise (X U{v;},Y’) would be a subsplit, contradicting
Lemma 5.1. So v is adjacent to exactly one of z; and z4; we assume that v; is adjacent
to x; (the other case is equivalent under interchanging the roles of C and C’ and changing
labels). Consider the even circuits C; and C, defined by Figure 6.7. v; has degree 2 in
both G[Vg, | and G[Vg,], so by Claim 1, Cy and Cy are both sign-fixed. C” is the symmetric
difference of C; and Cy so C' is also sign-fixed. This completes the proof of Claim 2 in
Case 1.

Case 2: p > 1. As with Case 1, v; is adjacent to exactly one of x5 and z3, and we
assume with no loss of generality that z, and v; are adjacent. (X U {v;},Y) is a subsplit,
so either Ng(v1)NY =0 or Ng(v1)NY = Ng(X)NY = {z1,z4}. This gives two subcases.
Case 2.1: Ng(vi) NY = 0. Let G’ be the graph defined by performing a partial
pivot on the edge z,v;. Note that Ng(vi) N Ve = {22}, so G[Ve] = G'[V]. Then C and
C' are circuits in G’ and, by considering the effect of this partial pivot on an orientation
of G, C and ("’ are sign-fixed in G if and only if they are sign-fixed in G’. Now, by
Lemma 6.9, vs,...,v, is a blocking sequence for the subsplit (X,Y) in G’; so, by the
induction hypothesis of the claim, one of C' and C” is sign-fixed in G’.

Figure 6.8: Decomposition in Case 2.2.

Case 2.2: Ng(v1) NY = {x1,24}. We have that vs,...,v, is a blocking sequence for
the subsplit (X U {v1},Y). Furthermore, for i > 1, (X,Y U {v;}) is a subsplit; it follows
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that v; 1s adjacent with z, if and only if v; 1s adjacent with z3. Consequently v,, ..., v, is
a blocking sequence for the subsplit ({#s,v1},Y). Now, by the induction hypothesis of the
claim, one of the circuits C; or Cs, defined in Figure 6.8, is sign-fixed. Let C] and C} be
the circuits vy, ¢y, 3, 2, v1 and vy, x4, 3, s, v respectively. C] and C), are both sign-fixed
by Claim 1. If C is sign-fixed then C’, which is the symmetric difference of C; and CY, is
sign-fixed. Otherwise () is sign-fixed; then C, which is the symmetric difference of C5 and
C,, is sign-fixed. In either case we have proved Claim 2.
The proof is now completed by settling two final cases.

CRNs--—-------- B
<L ,

____________

Figure 6.9: Decomposition when k = 4.

Case 1: k = 4. Let Cy be a circuit of length 4 in a prime graph G. If G[V¢,] is not
complete then G[Vg,]| contains a vertex of degree 2; so, by Claim 1, C; is sign-fixed. So
suppose that G[Vg, | is complete. Let Cy and Cs be defined by Figure 6.9. By Claim 2, one
of C; and C; are sign-fixed. If C; is sign-fixed we are done, so suppose C is sign-fixed.
Similarly one of C; and C5 are sign-fixed, so suppose Cj is sign-fixed. However C is the
symmetric difference of Cy and Cj3, so C is sign-fixed.

Case 2: k> 4. Let C be a circuit of length £ in a prime graph G. If C' is decomposable
or if G[V¢] contains a vertex of degree 2 then C is sign-fixed. Suppose then that C is
indecomposable and that every vertex in G[V¢] has degree at least 3. Let e be a chord
of C such that the distance in C' between the ends of e is minimum among all chords of
C. Let yi,...,y, be the internal vertices of a shortest path in C' between the ends of e.
Since each vertex in Vi has degree at least 3 in G[V], each y; must subtend at least one
chord of C'; let e; be a chord having y; as an end. The distance in C' between the ends
of e; is at least the distance between the ends of e in C, so e; must cross e. Since C is
indecomposable, there is at most one chord crossing e; therefore r = 1. Furthermore e,
and e must be a tight crossing pair, so the other end of e; must also be adjacent to an end
of e in C'. Therefore there are consecutive vertices 1, xo, €3, 24 of C such that z; and 3
are the ends of e, and z, and z4 are the ends of ¢;. Let C’ be the circuit z, x4, 24, T3, 21;
C’ is sign-fixed since it has length 4. By Claim 2 at least one of C' and C'AC" is sign-fixed.
If C is sign-fixed we are done. Otherwise CAC" is sign-fixed, so C' (which is the symmetric
difference of CAC’ and C") is also sign-fixed. This completes the proof. a

Partial results

One of the more important open problems for delta—matroids is to characterize regular
delta—matroids by excluded minors; this would generalize Tutte’s characterization of reg-
ular matroids.
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Theorem 6.13 (Tutte [71]) Let M be a binary matroid, and let F; be the binary matroid
M(A), where A is depicted graphically in figure 6.10. Then M is reqular if and only if M

does not have a minor isomorphic to Fy. a

G(A)

Figure 6.10: Fano matroid

We call a binary delta—matroid M an obstruction if M is minimally non-regular with
respect to taking normal minors. Since the family of twisted matroids is closed under
taking minors, F7 is an obstruction. We have seen two other obstructions in relation to
circle graphs, namely, M(A;) and M(A,), where A; and A, are depicted graphically in
Figure 6.11. We obtain other excluded minors by the following proposition.

vt

G(A) G(Aj)

Figure 6.11: Obstructions

Proposition 6.14 Let A be a V by V skew-symmetric matriz, and X be a subset of V,
such that A[X)] is identically zero. Then define

0 A[X,V\ X]
B:(A[V\X,X]} 0 )

If A is PU then B is PU.

Proof Suppose that B is not PU; then there exists S C V such that pf(B[S]) # 0, +1.
In particular pf(B[S]) # 0, so G(B[S]) has a perfect matching; hence, | X N S| =[5\ X|.
Then, since S N X is a stable set of G(A[S]) and G(B[S]), G(A[S]) and G(B[S]) share the
same set of perfect matchings. Consequently, pf(A[S]) = pf(B[S]), so A is not PU. O

By Proposition 6.14, the delta—matroids M (As),..., M(As), where As, A4, As, Ag are
depicted in Figure 6.12, are not regular; they are, in fact, obstructions. Furthermore, they
are the only obstructions that arise from Proposition 6.14. We pray that M(A;), ..., M(As)
and F; are the only obstructions for the class of regular delta—matroids.
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SIS

G(A3) G(A4) G(As) G(As)

Figure 6.12: More obstructions

Seymour’s decomposition

Seymour [61, 56] proved that every regular matroid could be obtained from a natural class
of regular matroids by 1- 2— and 3—sums. The natural class of regular matroids consists of
graphic matroids and Rjo, and the duals of such matroids. Here R;q is the matroid whose
fundamental graph is depicted in Figure 6.13.

Figure 6.13: Rig

Perhaps Seymour’s decomposition extends to regular delta—matroids; we have many key
ingredients in obtaining such a decomposition. We have seen that regular delta—matroids
are closed under 1- and 2-sums, and under taking minors. (The situation is not yet
clear regarding “3-sums”.) We also have a “splitter theorem” for binary delta—matroids
(Theorem 5.17), which is fundamental in the proof of Seymour’s decomposition. Also, we
have seen a nice class of regular delta—matroids, namely the Eulerian delta—matroids; we
even have a recognition algorithm for the class. It is perhaps a little discouraging that the
class of Eulerian delta—matroids does not contain the normal twisted graphic (or cographic)
matroids. Also, it would be helpful to have excluded minor characterizations of regular
and Eulerian delta—matroids. However, the greatest obstacle is a class of regular delta—
matroids obtained by the following theorem; this class contains highly connected members,
and is not closed under pivoting.

Theorem 6.15 Let G be a bipartite graph, and let x1,x9 be vertices of G that are in
different colour classes of G. Now define a graph G' by shrinking ©1 and x4 to a single
vertex ®. Then, G' has a PU-orientation if and only if both G — ©1 and G — x5 have
PU-orientations.

Proof Suppose that G — #; and G — z, have PU-orientations. By Theorem 6.1, these
orientations are equivalent up to switching, on G — 21 — z2. So there exists an orientation
G of G such that both G — 1 and G— 2o are PU. Let G’ be the orientation of G’ obtained
by identifying z; and z, in G. We claim that G’ is a PU-orientation. For X C Vv, if
z ¢ X then it is clear that the adjacency matrix of C:"[X] 1s unimodular. We assume that
z € X, we also assume that X has even cardinality, since otherwise the adjacency matrix
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of G'[X] is singular. Let M’ be the set of perfect matchings of G/[X], and let M be the
corresponding matchings in G. Let X’ be the larger colour class of the bipartite graph
G'[X] — =, since | X]| is even, | X'| > | X| /2. Hence either M is the set of perfect matchings
of GIXA{z,z,}], or M is the set of perfect matchings of G[XA{z,z5}]. By considering
the pfaffian of the adjacency matrix of C:"[X] we find that G’ is a PU-orientation.

The converse follows from Proposition 6.14. O
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Chapter 7

Equable delta—matroids

We call a delta—matroid equable if it is representable by a symmetric (0,+1) PU-matrix.
Analogous to regular matroids and regular delta—matroids, equable delta—matroids are
precisely the delta-matroids representable over every field by a symmetric matrix.

Theorem 7.1 Let M = (V,F) be a delta—matroid. The following are equivalent.
(1) M is equable,
(i1) M can be represented over every field by a symmetric matriz, and

(111) M can be represented over both GF(2) and GF(3) by a symmetric matriz.

Proof That (i) implies (ii), and that (i) implies (iii) are both easy. So it suffices to prove
that (iii) implies (i). Let A® and A® be representations of M over GF(2) and GF(3)
respectively. Therefore A and A® have the same support (that is, nonzero elements),
so there exists a real (0, 41)-matrix A = (a;;) that is equivalent to A®) modulo 3, and to
A® modulo 2. We claim that A is PU. Suppose not, and let § C V be minimal such that
A[S] is not unimodular.

Claim  We may assume that |S| = 3, or |S| =4 and A[S] has a zero diagonal.

Suppose the assumption is not satisfied. Then there exists S’ C S such that 0 < |§'| <
|S|—3, and A[S’] is nonsingular. Then A[S’] is unimodular, so, by Theorem 2.7, for X C V,
det(A x S'[X]) = £ det(A[XAS']). Hence, A* S’ is a (0, +1)—matrix that represents the
delta—matroid (V, FAS’) over GF(2) and GF(3), and A % S’[S \ §'] is minimally non-
unimodular. Now replace S by S\ S’, A by Ax S’ and M by (V, FAS"). Inductively we
will satisfy the claim.

Let k be the 0,+1 value equivalent to det(A[S]) modulo 3. Note that det(A[S]) =
det(A®][S]) = k modulo 2, and hence det(A[S]) = k modulo 6. However det(A[S]) # k,
so |det(A[S])] > 5.

Suppose that |S| = 3. We may assume that det(A[S]) > 0, since otherwise we replace
A by —A. Now

2 2 2
det(A[S]) = (11022033 — (11053 — (22073 — (33075 + 2012013023.
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Hence, since det(A[S]) > 5, no element of A can be zero. Then
det(A[S]) = a11a92a33 — @11 — a2s — aszz + 212013003,
so, since det(A[S]) > 5, a; = —1, for i = 1,2,3. Then
det(A[S]) = 2a12a13a23 + 2 < 5,

which is a contradiction.

Therefore |S| = 4 and A[S] has a zero diagonal. Then

det(A[S]) = (a12a34)® + (a13a24)? + (a14a25)°

—2(a12023034014 + A12024034013 + G13023024014).

Therefore, since |det(A[S])| > 5, a;; # 0 for 1 < i < j < 4. However, this implies that
det(A[{1,2,3}]) = 2a12a23a13 = £2, contradicting the minimality of S. a

The main result of this chapter is the generalization of Tutte’s excluded minor charac-
terization of regular matroids [68].

Theorem 7.2 Let M be a binary delta-matroid. Then M is equable if and only if
M does not have a minor isomorphic to one of the following binary delta—matroids

M(By),...,M(Bs), where By, ..., Bs are defined in Figure 7.1.

1 1 1|1 0 O 1 1 1|0 1 1
1 1 1|0 1 O 1 1 1|1 0 1
1 1 1|0 0 1 1 1 1|1 1 0
0o 1 1 1 0 o1 1 1 0o 1 1|0 0 O
1 0 1 0o 1 o1 1 1 1 0 1|0 0 O
11 0 0O o0 1|1 1 1 1 1 0|0 0 O
B, By By
0O 0 0jO0O 1 1 1
0 0 0|1 0 1 1
0 0 0|1 1 0 1
0 1 1|0 0 0 O
1 0 10 O O O
1 1 00 O O O
1 1. 1/0 0 0 O
By

Figure 7.1: Excluded minors

Figure 7.2 depicts the matrices By,..., By graphically; we have depicted the loop—
vertices in bold, though they are not distinguished by the support graph. Note that,
with Theorem 4.7, we have a complete excluded minor characterization of equable delta—
matroids. Equable delta—matroids are preserved under deletion and, by Theorem 2.7,
twisting by a feasible set. Therefore, proving that M(By),..., M(Bs) are not equable
proves Theorem 7.2, in the easy direction; this is left to the reader.

Recall that twisted matroids are preserved under taking minors. Therefore, as a corol-
lary of Theorem 7.2, we obtain Tutte’s excluded minor characterization of totally unimod-
ular matrices.
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Figure 7.2: Support graphs

Corollary 7.3 (Tutte [68, 71]) Let M be a binary delta-matroid. Then, M is regular if
and only if M does not contain a minor isomorphic to M(DBs). a

To prove our result, we consider the class of binary delta-matroids that do not contain
M(B;) as a minor, and then we use a theorem of Truemper [65] on beta—balanced matrices
which gives us the general form of the matrices that do not admit PU-signings. Our
original proof of Theorem 7.2 generalized Gerards’ short proof [38] of Tutte’s theorem. By
using Truemper’s theorem we simplify the final case analysis.

We restate the problem directly in terms of matrices. Let A be a V' by V symmetric
binary matrix. A V by V symmetric (0, £1)-matrix A’ is a referred to as a signing of A
if A and A’ have the same support. A signing that is PU is referred to as a PU-signing.
Thus, M(A) is equable if and only if A admits a PU-signing. Given symmetric binary
matrices A and B, we say that A reduces to B if M(B) is a minor of M(A); that is, B is
a principal submatrix of a matrix equivalent to A under binary pivoting.

We use the following notation. For a graph G = (V| E) we denote by G — v the graph
G[V \ {v}]. Similarly, for a V by V matrix A, we denote by A — v the matrix A[V \ {v}].

Beta—balancedness

Let G be a graph. A signing of G is an assignment of +1 to the edges of G. Suppose that,
for every chordless circuit C of G, we assign a {0, 1} value B¢ to C. A B-balanced signing
of G is a signing with the property that, for every chordless circuit C', the number of edges
of C signed +1 is equivalent to f¢ modulo 2.

NN

P

Ip.|> 2 [p.|> 2 A [p|>1

Type 1 Type 2 Type 3

Figure 7.3: Three—path configurations
We now define two interesting classes of graphs. A three—path configuration is a graph

of the form described in Figure 7.3, where P; is a path of length |P;|, 7 = 1,2,3. The second
class of graphs consists of the partial wheels; a graph G is a partial wheel with hub v if v is
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a vertex of G and G — v 1s a circuit. We call a partial wheel proper if the hub has degree
at least 3. The following remarkable result is due to Truemper [65].

Theorem 7.4 Let G be a graph with a {0,1} value B¢ assigned to every induced circuit C
of G. If G has no f-balanced signing then G contains an induced subgraph that is either a
proper partial wheel or a three—path configuration, and which has no B-balanced signing.0

Loop—balanced signings

In this section we show that to find a PU-signing of a matrix, we can sign the diagonal
without knowing the signs of the nondiagonal entries. Let A be a symmetric binary matrix.
For a path P of G(A) we denote by £4(P) the number of nonloop—vertices of P. A signing
A" = (aj;) of Ais called loop—balanced if, for every pair of loop-vertices v,w and every
chordless (v,w)-path P, a!, = (=1)*Pla!  If G(A) is connected then any two loop—
balanced signings of A sign the loop—vertices equivalently under negation.

Lemma 7.5 Let A be a symmetric (0, £1)-matriz such that G(A) is a path. A is PU if
and only if A is loop—balanced.

Proof If A has a zero diagonal then by an elementary determinant calculation we find
that A is PU. Let v be a loop—vertex of A. If A x v is not a (0, +1)-matrix then A is
neither loop—balanced nor PU. If A x v is a (0, +1)-matrix then G(A * v) — v is a path;
furthermore A * v — v is loop-balanced if and only if A is loop—balanced. Hence the result
follows inductively. a

The following lemma is an immediate consequence of Lemma 7.5.

Lemma 7.6 FEvery PU-signing of a symmetric binary matriz is loop—balanced. a

Lemma 7.7 Let A be a symmetric binary matriz. If A has no loop—balanced signing then
A reduces to By.

Proof Suppose A has no loop—balanced signing. We begin by proving the result in the
special case that G(A) is a circuit.
Claim If G(A) is a circuit then A can be reduced to By.

Let G(A) be a circuit. Then A has no loop—balanced signing if and only if the following
conditions are satisfied:

(1) A has an odd number of nonloop—vertices, and
(i) there exist two loop—vertices that are not adjacent in G(A).

We prove the result by induction on the size of A. By (ii), if A has size 3 then A has a
loop—balanced signing. Suppose that A has size 4. By (i) and (ii), A has exactly three
loop—vertices; let v be a loop—vertex whose neighbours in G(A) are both loop—vertices.
Then (A x v) — v is isomorphic to Bj.

Now suppose that A has size at least 5. By (ii), there exist two loop—vertices that are
not adjacent in G(A), and, by (i), A has at least one nonloop—vertex. Then, since A has
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size at least b, there exist vertices v,v’,w such that v,w are loop—vertices that are not
adjacent in G(A), and v’ is a nonloop—vertex that is adjacent in G(A) to v but not w.
Note that G(A x v) — v is a circuit, and A X v — v has an odd number of nonloop—vertices.
Furthermore, v', w are loop—vertices of A % v that are not adjacent in G(A x v) — v; hence
(A x v) — v has no loop—balanced signing. Then, by induction, (A X v) — v reduces to By,
so A reduces to Bi, which proves the claim.

We now suppose that there exist loop—vertices v, w and a pair of chordless (v, w)-paths,
Pi=v,2q1,...,24,w, and Py =v,y1,...,yp, w, of G(A) such that k4(Py) + ka(P2) is odd.
Furthermore, we suppose that the paths P; and P, are chosen so that |V(Py) U V(Py)] is
as small as possible.

Note that in G(A x v), P; and P, are chordless (v, w)-paths, and kax,(P1) + Kaxo(P2)
is odd. Hence A x v is not loop—balanceable. Similarly, A x w is not loop—balanceable.

Suppose that z; = y;. We may assume, in this case, that z; is a loop—vertex, for
otherwise we can pivot on v. Now define P/ = z;,...,2,,w and Py = yq,...,yp, w; P|
and Py are chordless (z1,w)—paths such that k4(P]) + xa(Py) is odd, and ‘Vpll U VPQ/‘ <
|Vp, U Vp,|, which is a contradiction. Hence, we may assume that z; # y;; similarly we
may assume that z, # y,. We may also assume that z,y; is not an edge, since otherwise
pivoting on v would remove it. Similarly, we may assume that z,y; is not an edge.

If v,21,29,..., %0, W, Yp,Yp_1,...,y1 is a chordless circuit then, by the claim, we can
reduce A to B;. Hence we may assume that there exists an edge z;y; in G(A). Let ¢
be minimum such that z; is adjacent to some y;, and let 5 be maximum such that y; is
adjacent to z;. Let P be the path v, zq,...,2;,9;,...,yp, w; note that P is chordless. Now
let P’ be one of Py, Py such that k4(P’) # ka(P) modulo 2. However, |[V(P)U V(P')| <
|[V(P1) UV(Py)|. Hence we have a contradiction to the choice of Py, Ps.

Therefore, for every pair of loop—vertices v, w, and every pair of chordless (v, w)—paths
Py, Py, we have r4(P1) = k4(P2) modulo 2; denote by (v, w) the value k4(P;). We may
assume that G(A) is connected, so k(v,w) is well defined modulo 2, for every pair v,w
of loop—vertices. Let x; be a loop—vertex of A. Define a signing A’ = (a;;) of A such
that a;, , = +1 and, for every other loop-vertex v of A, a,, = (—1)%=1) " Since A has
no loop-balanced signing, A’ is not loop—balanced, so there exist loop—vertices x5, x3 such
that al,, # (—1)*@2®)q! . Therefore (s, z3) + (21, 3) + K21, 25) is odd.

Let X be a minimal subset of V' containing z1, s, z3, such that G(A[X]) is connected.
For each 4,7, let P;; be a chordless (z;, z;)—path in G(A[X]). The union of any two of the
paths Piy, Pss, Pi3 yields a connected graph containing the vertices @1, xs, 23. Therefore,
by the minimality of X, each & € X is contained in at least two of the paths Pjs, Ps3, Py3.
However, since k4(P12) + £4(P13) + £a(Pas) is odd, there must exist a nonloop—vertex
that is contained in all three paths Pis, P13, Ps3. Then, since the paths P;; are chordless,
for i = 1,2,3, there is a unique (z, z;)—path P; in G(A[X]), and every edge of G(A[X]) is
on one of these paths.

We claim that A[X] reduces to B;. We may assume that for ¢ = 1,2, 3, x; is the only
loop—vertex of A[X] on path P;, since, otherwise we replace z; by the closest loop-vertex
to z on P;, and redefine X accordingly. Furthermore, we may assume that P; has length
1, since otherwise we shorten P; by pivoting on z;, and then deleting z; from X. Then
A[X] x 1 X x — @ is isomorphic to Bj. 0
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Balanceable matrices

We begin this section by proving some basic facts about circuits.

Lemma 7.8 Let A be a loop—balanced (0, +1)—matriz such that G(A) is a circuit, and let
X CV such that | X| < |V|—3. If A[X] is nonsingular then G(A* X)[V \ X] is a circuit,
and Ax X[V \ X] is PU if and only if A is PU.

Proof By Theorem 2.7 and Lemma 7.5, Ax X[V \ X] is PU if and only if A is PU. To
see that G(A x X)[V \ X] is a circuit, it suffices to check the elementary pivots, for which
the result is obvious. O

Lemma 7.9 Let A be a binary matriz such that G(A) is a circuit. If A has no PU-signing
then A reduces to Bj.

Proof Suppose that A has no PU-signing. By Lemma 7.7, we may assume that A has
a loop—balanced signing. By Lemma 7.8, we can reduce A to either a matrix of size 3, or
a matrix of size 4 that has no loop—vertices. If G(A) is a circuit of length 3, and A # By
then there exists a loop—vertex v of A. Thus G(A X v) is a path, so by Lemma 7.5, A has a
PU-signing. If G(A) is a circuit of length 4, and A has no loop—vertices then, for an edge
vw of G(A), G(A x vw) is a path, so A has a PU-signing. O

Lemma 7.10 Let A be a binary matriz such that G(A) is a circuit. Any two PU-signings
of A are equivalent under switching.

Proof By Lemma 7.8, it suffices to check the result for circuits of length 3 or 4; this is
left to the reader. O

We call a symmetric (0, +1)—matrix A balanced if A is loop—balanced and, for every
induced circuit C of G(A), A[V(C)] is PU. A symmetric binary matrix A is called bal-
anceable (otherwise nonbalanceable) if it has a balanced signing. The following lemma is a
generalization of Theorem 6.1 for regular matroids.

Lemma 7.11 Let A be a symmetric binary matriz, such that G(A) is connected. Any two
balanced signings of A are equivalent under switching. In particular, any two PU-signings
of A are equivalent under switching.

Proof Let A; = (aj;) and A, = (af;) be balanced signings of A. The diagonals of A,
and A, are equivalent up to reversing, so we may assume that they are the same. Define
S ={ij : aj; # a};}. By Lemma 7.10, for each chordless circuit C' of G, |[E(C') N S| is even.
Hence for each circuit C of G, |E(C)N S| is even. Therefore the edge set S is a cut in

G(A), so A; and A, are equivalent under cut—switching. O

We define an obstruction to be a symmetric binary matrix, other than B;, that does
not admit a PU-signing, and that does not reduce to any smaller matrix with the same

property.

Lemma 7.12 Let A be a balanceable obstruction, and let X CV such that | X| < |V|—3
and A[X] is nonsingular. Then G(A x X)[V \ X] is a circuit.
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Proof Let A’ be a balanced signing of A. If Y C V and A'[Y] is not unimodular then,
by Lemma 7.11, A[Y] has no PU-signing. Therefore, since A is an obstruction, the only
principal submatrix of A’ that is not unimodular is A’ itself. By Theorem 2.7, the only
principal submatrix of A’ X that is not unimodular is A’ X[V \ X]. If A’x X is balanced
then A x X[V \ X]| has no PU-signing, contradicting that A is an obstruction. Therefore
A’ % X is not balanced; and, since A"« X[V \ X] is the only nonunimodular submatrix of

A% X, G(A"+ X)[V \ X] must be a circuit. 0

The following proposition removes some trivial cases; the proof is left as an exercise.
Note that if A is an obstruction, then G(A) is connected, and G(A) is neither a path nor
a circuit. There are, up to isomorphism, just four such graphs with at most four vertices.

Proposition 7.13 FEvery obstruction has size at least 5. O

Lemma 7.14 If A is an obstruction, then A is equivalent under binary pivoting to a
nonbalanceable obstruction.

Proof Suppose, by way of contradiction, that A is an obstruction and every matrix
equivalent to A under pivoting is balanceable.

Claim If X CV such that | X| < |V]| =3, and A[X] is nonsingular, then G(A)[V \ X]
and G(A x X)[V \ X] are both circuits.

Since A[X] and A x X[X] are nonsingular, and A and A x X are nonbalanceable, the
claim follows by Lemma 7.12.

Suppose that A has a loop—vertex . Let y be a neighbour of z in G(A4). We may
assume that y is a not a loop-vertex, since otherwise we could make y a nonloop-vertex by
pivoting on z. Both A[{z}] and A[{z,y}] are nonsingular. Then, by the claim, G(A)—=z and
G(A) — z — y are both circuits, which is clearly impossible. Hence A has no loop—vertices.

Since A has no loop—vertices and A does not reduce to By, G(A) is bipartite. By the
claim, for every edge vw of G(A), G(A) —v—w is a circuit. Let vy, vs, v3,v4 be consecutive
vertices in any such circuit. We may assume that v;v, is not an edge, since otherwise we
can remove the edge by pivoting on wvyvs. Since G(A) — vy — v is a circuit and viv, is
not an edge, v; has degree 3 in G(A). However, v; is adjacent to neither v; nor vs, which
contradicts that G(A) — v — vy is a circuit. a

Nonbalanceable matrices

The problem has now simplified to finding the nonbalanceable obstructions. This task is
made easy by the following lemma.

Lemma 7.15 Let A be a nonbalanceable obstruction. Then G(A) is either a three—path
configuration or a proper partial wheel.

Proof By Lemma 7.7, A has aloop-balanced signing, say A" = (aj;). Let C' be an induced
circuit of G(A), and let H = A[V(C)]. By Lemma 7.9, H has a PU-signing, say H' = (h;;).
We may assume that for every loop—vertex v of H, h! = a! (otherwise we negate H’).
We now define B¢ to be 0 (1) if the number of edges vw of C with k! = +1 is even (odd).
By Lemma 7.10, A'[V(C)] is PU if and only if it is equivalent under cut—switching to H’,
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that is, the number of edges vw of C' with a!, = +1 is equivalent to S¢ modulo 2. Hence
A is balanceable if and only if G(A) has a f—balanced signing. The result then follows by
Theorem 7.4. O

Lemma 7.16 Let A be a nonbalanceable obstruction, and let X C V such that | X| <
V| — 3, A[X] is nonsingular, and G(A)[V \ X] is not a circuit. Then A x X is not
balanceable. Furthermore, if X = {v} then Ngay(v) is not a stable set of G(A).

Proof If AxX is balanceable then, by Lemma 7.12, G(A)[V\X]| = G((AxX)x X)[V\X] is
a circuit, a contradiction. Therefore, A x X is a nonbalanceable obstruction. Now suppose
that X = {v}, and that Ng4)(v) is a stable set of G(A). Then Ng(a)(v) induces a clique
of G(A x v). However, by Lemma 7.15, G(A x v) is a three—path configuration or a proper
partial wheel, so it must be the case that G(A x v) is the complete graph on 4 vertices,
contradicting Proposition 7.13. O

Lemma 7.17 Let A be a nonbalanceable obstruction such that G(A) is a three—path con-
figuration. Then G(A) is isomorphic to G(Bs).

w

Figure 7.4: Three path configuration, Type 1 or Type 2

Proof First suppose that G(A) is a three—path configuration of Type 1 or Type 2. Let
w be a vertex of degree 3 in G(A) such that Ng(a)(w) is a stable set. By Lemma 7.16, w
is not a loop—vertex. If all three vertices adjacent to w in G(A) are loop—vertices then A
is not loop—balanceable, which, by Lemma 7.7, is a contradiction. Therefore there exists a
nonloop—vertex v adjacent to w in G(A). This is depicted in Figure 7.4. G(A) —v —w is
not a circuit; so, by Lemma 7.16, A X vw is nonbalanceable. Therefore, by Lemma 7.15,
G(A x vw) is a three—path configuration or a partial wheel. Note that, in G(4A x vw),
either v is adjacent to a vertex of degree at least 4, or w is adjacent to a vertex of degree
1. This is a contradiction, since a three—path configuration or a proper partial wheel can
have neither a vertex of degree 1 nor a vertex of degree 2 that is adjacent to a vertex of
degree at least 4.

Now, suppose that G(A) is a three—path configuration of Type 3, and that G(A) is not
isomorphic to G(Bs). Since G(A) is not isomorphic to G(Bs), one of the paths, say Ps,
has length at least 2. Let v be an end vertex of P, and let w be the vertex of Ps that is
adjacent to v, as depicted in Figure 7.5. By Lemma 7.16, w is a nonloop—vertex. G(A) —v
is not a circuit, so, by Lemma 7.12, if v is a loop—vertex then A x v is nonbalanceable.
However, G(A X v) is neither a three-path configuration nor a partial wheel, which is a
contradiction. Therefore we may assume that v is a nonloop—vertex. Now G(A) —v —w
is not a circuit; so, by Lemma 7.16, A X vw is nonbalanceable. However, G(A x vw) is
neither a three—path configuration nor a partial wheel, which is a contradiction. a
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(A) xV G(A) x VW

Figure 7.5: Three path configuration, Type 3

Lemma 7.18 Let A be a nonbalanceable obstruction such that G(A) is a proper partial
wheel, and let C be an induced circuit of G(A). Then, for every edge vw of G(A) that

ay{v,w}) NV (C )‘ > 2; in particular G(A) contains no pair of
adjacent vertices of degree 2

s not an edge of C,

'GAY

Figure 7.6: Proper partial wheel

Proof Suppose there exists an edge vw of G(A) such that ‘NG {v,w})NV(C )‘ < 1. Let
z be the hub of the partial wheel; C' must contain the vertex = and vw must be an edge of
G(A)—=z. Suppose that v and w are adjacent vertices of degree 2. By Lemma 7.16, neither v
nor w are loop—vertices. Now G(A)—v—w is not a circuit, so, by Lemma 7.16, A x vw is not
balanceable. However, G(A x vw) contains an edge v'w’ such that G(A x vw)—v'—w’ is not
connected, so G(A x vw) is neither a proper partial wheel nor a three—path configuration,
contradicting Lemma 7.15. Thus, we may assume that at least one of v and w is adjacent
to #. Then neither v nor w may be adjacent to any vertex of C' other than z; this is
depicted in Figure 7.6. In this case A must have size least 7.

Suppose that v is a loop—vertex. Then, by Lemma 7.16, G(A x v) is a three—path
configuration or a partial wheel. However, G(A x v) has a pair of vertex disjoint circuits,
so it is not a partial wheel. Therefore, G(A X v) is a three—path configuration, so, by
Lemma 7.17, G(A X v) is isomorphic to G(By), contradicting that A has size at least 7.
Hence, we may assume that v (and similarly w) is not a loop—vertex.

By Lemma 7.16, G(A x vw) is a three—path configuration or a partial wheel. However,
G(A x vw) has a pair of vertex disjoint circuits, so it is not a partial wheel. Therefore,
G(A x vw) is a three—path configuration, so, by Lemma 7.17, G(A x v) is isomorphic to
G(By), contradicting that A has size at least 7. O

The proof is now reduced to case analysis. We hide much of it in the following lemma.
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Lemma 7.19 Let A be a nonbalanceable obstruction such that G(A) is isomorphic to one
of the graphs depicted in Figure 7.7. Then A is equivalent under binary pivoting to By, B3

< D

G, G, G, G,

Figure 7.7: Awkward cases

Before beginning the case analysis for Lemma 7.19, we use it to prove the main result.
Proof of Theorem 7.2. Let A be an obstruction. We are required to prove that A is

equivalent under pivoting to one of By,..., Bs. By Lemma 7.14, we may assume that A
is nonbalanceable. Then, by Lemma 7.15, G(A) is either a three—path configuration, or a
proper partial wheel.

Suppose that G(A) is a three—path configuration. By Lemma 7.17, G(A) is isomorphic
to G(B4). Let @1, x4, 25 be vertices that induce a triangle of G(A); at least one z;, say x;
must be a loop—vertex (otherwise A reduces to By). G(A) — 24 is not a circuit, so A X x; is
nonbalanceable. However, G(A x x;) is isomorphic to G5 of Figure 7.7, so, by Lemma 7.19,
A is equivalent under binary pivoting to Bs,B3 or By.

Now suppose that G(A) is a proper partial wheel. By Lemmas 7.18 and 7.19 and
Proposition 7.13, we may assume that A has size at least 7. Let C be a shortest circuit of

G(A). By Lemma 7.19, C has length 3 or 4. If |[V(G(A))| > |V(C)| 4 4 then there exists

an edge vw of G that is not an edge of C, such that ‘Ng(A)({v,w})‘ < 1, contradicting
Lemma 7.18. Then C cannot have length 3, since otherwise A would have fewer than 7
vertices. Hence C has length 4, and A has size exactly 7. G(Bs) is the unique proper
partial wheel, up to isomorphism, with seven vertices and no circuit of length 3. Therefore
G(A) is isomorphic to G(Bs). Let « be the hub of G(A). By Lemma 7.16, every vertex of
A other than z is a nonloop-vertex. If z is also a nonloop-vertex, then A is equivalent to
Bs; otherwise if z is a loop—vertex then (A x z) — z is equivalent to By, a contradiction.D

Proof of Lemma 7.19. Suppose that G(A) is isomorphic to G». Note that A must be
loop-balanceable. There are, up to isomorphism, five choices for the loop-vertices of A—1,
and each choice uniquely determines whether or not 1 is a loop-vertex. The possibilities
are depicted in Figure 7.8. G(A; x 1 x 2 x 3) is a path for ¢ = 1, 2,3, so these matrices are
not obstructions. G(A4) — 1 — 3 is not a circuit, but G(A4) * 13 is neither a proper partial
wheel nor a three—path configuration, so, by Lemma 7.16, A4 is not an obstruction. Ag is
isomorphic to B,.

Suppose that G(A) is isomorphic to G;. By Lemma 7.16, 2 is not a loop—vertex of A.
We may assume that neither 3 nor 5 are loop—vertices of A, since G; %3 and G *5 are both
isomorphic to G5. Therefore one of 1,4 must be a loop—vertex; we assume by symmetry
that 1 is a loop—vertex. However, G(A x 1 x 5 x 2) is a path, so A is not an obstruction.
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GA ) G G(A3) G Gy

Figure 7.8: Loop—vertices for G

G(A) G(Ax2) G(Ax2x45)

Figure 7.9: Pivoting in G4

Suppose that G(A) is isomorphic to G4. By Lemma 7.16, 3, 4 and 5 are all not loop—
vertices. However G4 — 1 is an odd circuit, so either 2 or 6 must be a loop—vertex; we
assume by symmetry that 2 is a loop—vertex. G(A x 2) and G(A x 2 x 45) are depicted in
Figure 7.9. By Lemma 7.16, 1 is a nonloop—vertex in A x 2, and 6 is a nonloop—vertex of
A x 2 x 45; hence, 1 and 6 are both loop—vertices of A. Thus, the loop—vertices of A are
1, 2 and 6, so, A x 1 is isomorphic to By.

Suppose that G(A) is isomorphic to G3. By Lemma 7.16, 3, 4 and 5 are all not loop—
vertices. However G4 — 1 is an odd circuit, so either 2 or 6 must be a loop—vertex; we
assume by symmetry that 2 is a loop—vertex. However G(A x 2) is isomorphic to G4 so A
reduces to By.

Figure 7.10: Loop—vertices for Gy

Finally, suppose that G(A) is isomorphic to Gs. There are, up to isomorphism, five
choices for the loop-vertices of A — 1 so that A — 1 does not reduce to B;. Each choice
uniquely determines whether or not 1 is a loop-vertex; the possibilities are depicted in
Figure 7.10. A; x1—1 reduces to By for : = 1,2, 3,5, so these matrices are not obstructions.
Ay x 4 is isomorphic to Bs. O
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Chapter 8

Matching

In this chapter we consider a problem that generalizes the bipartite matching problem, and
the nonbipartite matching problem in different ways. We find a min—max theorem, a totally
dual integral polyhedral description, and a polynomial-time algorithm, thus generalizing
standard results for the two problems. The problem arises most naturally by graphically
interpreting the rank of a certain matrix of indeterminates.

Let G = (V, E) be a graph and let {z. : ¢ € E} be a set of algebraically independent
commuting indeterminates. Now define a V' by V skew—symmetric matrix A = (a;;) such
that a;; = +;; if ¢ € E, and a;; = 0 otherwise. We refer to A as the matching matriz
of G (although the construction is not unique). We recall that a subset X of V is called
matchable if G[X] has a perfect matching. Tutte observed that det(A[X]) is nonzero if and
only if X is a matchable set. It is a classical result in matrix theory that the rank of a
skew—symmetric matrix is the size of its largest nonsingular principal submatrix. Therefore,
from Tutte’s result, the rank of A is the size of the largest matchable set of G. Thus Tutte
developed a nice graphical interpretation for the rank of any principal submatrix of the
matching matrix; we consider, in a similar fashion, the ranks of arbitrary submatrices.

More precisely, we consider the following problem: Given subsets I,J of V', determine
the rank of A[I,J]. When I = J the problem is just to find a maximum cardinality
matchable set in G[I]. The other extreme is also interesting; suppose that I and J are
disjoint sets. Then, since every indeterminate occurs in at most one entry of A[I, J], the
rank of A[I,J] is the maximum number of nonzero entries in A[l, J] with no two in the
same row or column. Thus, the rank of A[I, J] is just the size of a maximum matching in
a certain bipartite graph associated with A[I,.J]. Before proceeding further, we clear up
two points.

Firstly, our problem is not well defined. The matrix A is a matrix over a ring of
polynomials, whereas we use notions, like “rank”, that are defined only for matrices over
fields. We sweep the problem under the carpet, noting that, for the purpose of matrix
manipulation, we can embed the ring of polynomials into an appropriate field.

The second point is algorithmic. An important problem in algorithmic combinatorics
is to find an efficient algorithm to compute the rank of a matrix of indeterminates. It is
well-known that the rank of a rational matrix can be efficiently computed using gaussian
elimination. The same algorithm can be applied to calculate the rank of a matrix of inde-
terminates. However, while the algorithm requires only a polynomial number of elementary
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row operations, the entries may become rational functions of exponential size; and hence
gaussian elimination cannot be performed in polynomial time. Despite this complication,
one may expect there to exist an efficient combinatorial algorithm, since there exists an
efficient randomized algorithm. Indeed, if M is a square nonsingular matrix of indeter-
minates, then the determinant of M is a nonzero polynomial in the indeterminates. It is
well-known that, by substituting random numbers for the indeterminates, we are unlikely
to find a zero of this polynomial. Hence, by substituting random numbers into a matrix of
indeterminates, we are unlikely to decrease the rank. This idea leads to a polynomial-time
algorithm for estimating the rank that is correct with high probability. Such randomized
algorithms have been applied to a number of matching-related problems; see Lovasz [48],

Rabin and Vazirani [59] and Cheriyan [18].

The separation problem for matchable sets

Let G = (V, E) be a graph, and let M = (V, F) be the matching delta—matroid of G, that
is, F is the set of matchable sets of G. We recall that conv(F) denotes the convex hull
of incidence vectors of feasible sets of F, and the separation problem is: Given z € RV,
determine whether x is in conuv(F). Balas and Pulleyblank [2] gave a description of conv(F)
using linear inequalities; their description is implied by Theorem 3.2. A combinatorial
algorithm for the separation problem was given, for bipartite graphs, by Ning [55], and,
for general graphs, by Cunningham and Green-Krétki [25]; however, the algorithm of
Cunningham and Green—Krétki is not strongly polynomial.

Recall that the matching delta—matroid M is representable, being represented by the
matching matrix A of G. Furthermore, we presented a combinatorial separation algorithm
for representable delta—matroids in Chapter 4 that runs in strongly polynomial-time. The
algorithm assumes the existence of a polynomial-time subroutine for determining the rank
of submatrices of A. We obtain such an algorithm. Hence we have a strongly polynomial—
time algorithm for the separation problem for the matchable sets polytope. However, the
problem of finding an algorithm for the separation problem for the matchable set polytope
that is combinatorial and runs in strongly polynomial time remains open.

A min—max formula

In this section we present a min—max formula, due essentially to Lovasz (personal commu-
nication), for the rank of a submatrix of a matching matrix. The min—max formula can
be viewed as a common generalization of well-known theorems of Konig and Tutte. We
require the following classical result from linear algebra.

Proposition 8.1 Let A = (a;;) be an I by J matriz. Suppose that, for some i € I and
j€J, rk(A) = rk(A[I—i,J]) and rk(A) = rk(A[I, J—j]). Then, rk(A) = rk(A[l—1i, J—7]).

Proof Since rk(A) = rk(A[I — i, J]), row i of A can be expressed as a linear combination
of rows of A[I — i,J]. Therefore, for any subset J' of J, rk(A[I,J]) = tk(A[l — i, J]).
Hence, we have rk(A[l, J]) = tk(A[I, J — j]) = tk(A[l — i, J — j]), as required. O
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Let A be the matching matrix of a graph G = (V, E). We denote by odd(G) the number
of connected components of G having an odd number of vertices. It is easy to see that the
size of the largest matchable set is at most |V| — odd(G).

Proposition 8.2 Let A be the matching matriz of a graph G = (V, E). Suppose, for every
vertez v of G, that k(A[V — v, V]) = rk(A). Then, rk(A) = |V| — odd(G).

Proof For v € V, we have tk(A[V — v, V]) = rk(A). Then, since A is skew—symmetric, we
also have rk(A[V,V — v]) = rk(A). Therefore, by Proposition 8.1, tk(A[V — v,V —v]) =
rk(A). Hence, for each vertex v of G, there exists a maximum cardinality matchable
set not containing v. Thus, by Gallai’s Lemma (Lemma 3.9), every component of G is
hypomatchable. (Recall a graph H is called hypomatchable if H — 2 has a perfect matching,
for every vertex  of H.) Therefore, the size of a maximum cardinality matchable set in

G is |[V| — odd(G). 0

Let I, J be subsets of V. We call I, .J a bi—stable pairif A[I\J, J] = 0and A[I, J\I]=0.
Now, let

DI, J)y=4{',J):I'CI,J CJ and I',J is a bi-stable pair }.

Theorem 8.3 (Lovasz) Let A be the matching matriz of a graph G = (V. E), and let
I,J be subsets of V.. Then

_ : / "o ’ ’ ’ '
rk(A[I, J]) = (I/7J/1r)r1€111)1(1_7j) \I'nJ'| = oddGII'N ')+ I\ I'|+|J\ J]. (8.1)

Proof The rank of a matrix decreases by at most one when we delete a row or a column;
therefore, for (I',.J') € D(I,J), we have rk(A[I,J]) < tk(A[I',J])+ |[I\I'|+ |J\ J'].
However, since I’, J' is a bi-stable pair, tk(I’, J') = tk(A[I'nJ’]) < |I' 0 J'|—odd(G[I'NJ’]).
Thus

tk(A[LJ) <[ I'0NJ'| —odd(GI'NJ )+ I\ I'|+|J\ J]. (8.2)

So now we need to prove that there exists (I’, J') € D(I,J) that satisfies (8.2) with equality.

Let I* C I and J* C J be minimal such that rk(A[I,J]) = tk(A[I*, J*]) + |I\ I"| +
|/ \ J*|. Therefore, for each i € I*, tk(A[I*, J*]) = tk(A[I* — i, J*]), and, for each j € J*,
rk(A[I*, J*]) = tk(A[I*, J* — j]).
Claim  [*,J* is a bi-stable pair.

Suppose the claim is untrue. Then there exists an indeterminate, say ;;, that occurs
in exactly one entry of A[I*, J*]. By Proposition 8.1, rtk(A[I*, J*]) = rtk(A[[* — i, J* — j]).
Define I, J' such that A[I’, J'] is a largest nonsingular square submatrix of A[I*—1i, J*— j].
Then, since rk(A[I*, J*]) = tk(A[[* — i, J* — j]), the matrix A[I’ U {7}, J U {j}] must be
singular. However, the coefficient of z;; in the determinant of A[I'U {¢}, J'U {7}] is equal,
up to a sign, to the determinant of A[I',J'], contradicting that A[I' U {:}, J U {j}] is
singular. This proves the claim.

Let X denote I*NJ*. By the claim, rk(A[I*, J*]) = tk(A[X]). However, by our choice of
I, J* for any x € X, tk(A[X]) = tk(A[X — #, X]). Then, by Proposition 8.2, rk(A[X]) =
| X | — 0odd(G[X]). Thus, the bi-stable pair I*, J* achieves equality in (8.2), as required. D
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Consider Theorem 8.3 for disjoint sets I, J. Let I*, J* be a bi—stable pair that attains the
minimum in (8.1). Since I and J are disjoint, then so are [* and J*. Thus, since I*, J* is a
bi-stable pair, A[I*, J*] = 0, and, by (8.1), we have tk(A[l, J]) = |I \ I*|+|J \ J*|. Hence,
Theorem 8.3 implies Konig’s Theorem, that is: The mazimum number of nonzero entries
no two in the same line in A[l,J], equals the minimum number of lines that include all
the nonzero entries of A[I, J]. (Here, by “line” we refer to a row or column of A[I, J].)

Now, consider Theorem 8.3 for I = J = V. Let I*, J* be a bi—stable pair that attains
the minimum in (8.1). Then by (8.1)

tk(A) = |[I*NJ*| —odd(G[I* N J]) + [V \ I*| + |V \ J*|
= V] = (odd(G[I* N J*]) — [V\ (I* U J")])
> V| = (odd(G[I* U J*]) — [V \ (I U J¥)|).

However, for any subset X of V', we have
rk(4) < [V] = (odd(G[V'\ X]) — [X]).

Therefore, Theorem 8.3 implies the Tutte-Berge theorem, that is: The size of the largest
matchable set in G = (V, E) is

min |V| — (odd(G[V \ X]) — |X]).

XCV

Graphic formulation

We begin by formulating the rank problem in digraphs, and then describe the corresponding
problem in G. The digraph G = (V, E) is got from G by replacing each edge 7,] by a pair
of oppositely directed arcs ij and ji. Let I,.J be subsets of V. We denote by Er; the set
{ij € E:icl .7 € J}. A subset F of EU, is called an (I, J)—factor ((I,J)-subfactor)
of G if i is the tail of exactly one (at most one) arc in F', for ¢« € I, and j is the head of
exactly one (at most one) arc in F, for each j € J. If F'is an (I, J)-subfactor, then each
component of (V, F') is either a directed circuit in é[[ﬂ J], or a directed path; furthermore,
if Fis an (I, J)-factor, then all of the directed paths in (V| F') start from a vertex in I\ J
and end at a vertexin J \ I. We call F' even if every directed circuit in the digraph (V, F')
has even length. Note that, if there exists an even (I, J)-subfactor in é, then there exists
n (I, J)-subfactor F in G such that every directed circuit in (V, F') has length two.

Lemma 8.4 Let A be the matching matriz of G = (V, E), and let I,J be subsets of V.
Then the rank of A[I, J] is the size of the largest even (I, J)—subfactor in G.

Proof We shall prove the equivalent result that: if |I| = |.J|, then A[I, J]is nonsingular
if and only if there exists an even (I, .J)-factor.

Let I = {i1,...,i}, and J = {j1,...,Jx}. Consider the determinant expansion for
A[l,J]. We have

det(A[I,J]) = ngn(‘f) 1:[ @i sy

o
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where the sum is taken over all permutations o of {1,...,k}, and sgn(o) denotes the
“sign” of the permutation o (see [44]). If ¢ is a permutation of {1,...,k}, then {i3j,@) :
b=1,...,k}is an (I, J)factor of G if and ounly if [I(ai,;,, :b=1,...,k) # 0. For an
(I, J)-factor F, we denote by sgn(F'), the sign of the corresponding permutation. Then

det(A[L, J]) = sgn(F) [ i, (8.3)

F ijEF

where the sum is taken over all (I, J)-factors F. Let F be an (I, J)-factor, and let C C F
be a directed circuit in (V, F'). Now define F' to be (F'\ C)U {ji : ij € C}. Now,

sgn(F) = sgn(F’), and, since A is skew—symmetric

IT @i = (1) T as.

ijeF ijeEF!

Therefore, if C' has odd length, then we can cancel two terms in the determinant expansion.
Furthermore, such cancellations, pair off the set of (I, .J)-factors that contain C' with the
set of (I, J)-factors that contain {ji:ij € C}. So, the determinant expansion (8.3) holds
when the sum is taken over all even (I,.J)-factors F'. Let F be an even (I, .J)-factor of
G. Now, the coefficient of the monomial [[(#;; : ij € F') in the determinant expansion, is
sgn(F)2", where r is the number of directed circuits of length at least four in (V. F). In
particular, A[I,J] is nonsingular if and only if there exists an even (I, J)-factor. O

Let I,.J be subsets of V, and M be a subset of the edges of G[I U J]. We call M an
(I, J)—path matching if each connected component of (I U J, M) is a path whose ends are
neither both in 7\ J, nor both in J\ I, and whose internal vertices are all in IN.J. An edge
vw of M is called a matching edge of M if vw is an edge of G[IN.J], and vw is the only edge
in the connected component of (IU.J, M) containing vw. Let M’ denote the set of matching
edges of an (I, J)-path matching M. The value of M is |[M \ M'| + 2|M’|. (Figure 8.1
depicts an (I, J)-path matching of value 18.) Then there exists an even (I, J)-subfactor
of size k, if and only if there exists an (I,.J)-path matching of value k. Therefore, by
Lemma 8.4, the rank of A[I, J]is the largest value attained by an (I, .J)-path matching.

INJ /\ s JN\I

o o &y

/\/\.

~ —

Figure 8.1: An (I, J)—path matching

Remark: In the next section, we shall see that we can efficiently find a maximum value
(I, J)-path matching, by using the ellipsoid algorithm. Here we show that some closely—
related problems are difficult. Consider the following problem: Given €, find an (I, J)—path
matching M mazimizing ve(M) = |M \ M'| 4+ (2 + ¢/n) | M|, where M’ denotes the set of
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matching edges of M, and n is the number of vertices of G. This problem is NP-hard
for all € < 1, except for ¢ = 0. Indeed, suppose that [[\J| = |J\I| = 1. If e < 0,
then for a (I, J)-path matching M, v.(M) > |I U J| — 1, if and only if M is a hamilton
path in G[I,.J] whose ends are in IAJ. Thus, the problem is NP-hard for ¢ < 0. Now
suppose that 0 < e < 1. Then it is easy to show that the problem of finding an (7, .J)-path
matching maximizing v, contains the following problem: Given vertices 1,7 in a graph G,
find the shortest (i,7)—path P such that G[V \ Vp| has a perfect matching. Martin Loebl,
personal communication, showed that the latter problem is AN/P-hard.

A perfect (I, J)—path matching is an (I, J)-path matching M such that each connected
component of (I U .J, M) is either a matching edge, or a path with one end in I\ J and the
other end in J \ I. Then, there exists a perfect (I, J)—path matching in G, if and only if
there exists an even (I, J)—factor in G. Thus, for equicardinal subsets I,.J of V', A[I, J]is
nonsingular if and only if G has a perfect (I, .J)-path matching.

Polyhedra

Ideally, we wish to find an efficient combinatorial algorithm to find a maximum value
(I, J)—path matching, for any given subsets I,.J of V. When I = J, the problem is to find
a maximum cardinality matching in G[I], which is solved by Edmonds [31]. We have been
unsuccessful in generalizing Edmonds’ algorithm: the main hurdle seems to be defining an
“augmenting path” for the path matching problem. In this section we generalize some
polyhedral theorems concerning the matching polytope. The proofs are all generalizations
of proofs of Schrijver [60] for the matching polyhedron, that do not use augmenting paths.
In particular, we give a description of a polytope associated with (I, .J)-path matchings,
that provides an efficient algorithm for computing the rank of A[l, J].

We use standard notation from polyhedral theory. For z € RY and S C V, we denote
by #(S) the sum Y (z, : v € ). For a subset X of V, we denote by v(X) (or v¢(X))
the set of edges of G whose ends are both in X, and we denote by §(X) (or dg(X)) the
set of edges of G that have exactly one end in X. For a directed graph G = (V, E), we
define 67(X) to be the set of arcs leaving X, that is, §7(X) = {vw € E:veX,wdg X}
Similarly, we define 6% (X) to be be the set of arcs of G entering X.

Let M be an (I,J)-path matching, and let M’ denote the matching edges of M. We
define the path matching vector of M, to be the vector ™ € RE, such that, for vw € E,

2, ifvwe M
PpM = 1, ifowe M\ M
0, ifvw ¢ M.

We denote by M(I,J; G) (or, simply, M) the set of (I, J)—path matchings of G, and denote
by conv(M) the convex hull of path matching vectors of M. Note that, by maximizing
z(E) over all € conv(M), we obtain the rank of A[I, J]. The main result of this section
is the following theorem, which generalizes Edmonds’ Matching Polyhedron Theorem [29].
Given a subset K of V, and an element ¢ of V, we let K; = |K N {i}|; thus, K; indicates
whether 7 € K.
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Theorem 8.5 Let G = (V. E) be a graph, and I, J be subsets of V.. Then conu(M(I,J; Q))

s described by the following inequalities:

z(d(v)) < L+ J, (v evV) (8.4)
s(X) < 1XNJ (X:I\JCXCI) (8.5)
(X)) < XA (X:J\ICXCJ) (5.6)
s((X) < IXI=1 (X CINJIX] odd (8.7)

x > 0. (8.8)

We denote by M*(1,.J; G) (or, simply, M) the set of perfect (I, J)—path matchings of

G. We prove Theorem 8.5 as a corollary of the following theorem.

Theorem 8.6 Let G = (V. E) be a graph, and let I,.J be equicardinal subsets of V. Then
conv(M*(1,J; Q)) is described by the following inequalities:

z(d(v)) = L+ J, (vevV) (8.9)
WO(X) > IV (XI\JCXCD (5.10)
z(6(X)) > 2 (X CINJ:3<|X]|,|X]| odd) (8.11)

z > 0. (8.12)

Finding path matchings efficiently

Let G = (V,E) be a graph, and I,J be subsets of V. There exists a perfect (I,.J)-
path matching if and only if conv(M™) is not empty. By Theorem 8.6, conv(M™) is
described by inequalities (8.9), (8.10), (8.11) and (8.12). Consider the separation problem
for inequalities (8.9), (8.10), (8.11) and (8.12), that is: Given z € R, either verify that
© satisfies the inequalities (8.9), (8.10), (8.11) and (8.12), or find an inequality that is
violated by x. If we can solve the separation problem efficiently, then, by the ellipsoid
algorithm, we can efficiently determine whether or not conv(M™) is empty.

Given z € R?, the separation problem for the inequalities (8.9) and (8.12) is trivial,
so we may assume that these constraints are satisfied. However, there are exponentially
many constraints of type (8.10) and (8.11), so the separation problem for these inequalities
is more difficult.

Padberg and Rao [58] gave an efficient algorithm for solving the minimum odd-cut
problem, that is: Given a graph G' = (V' E'), an even cardinality subset V| of V', and
nonnegative weights w' € R?', find a subset X' of V' such that | X" N V]| is odd minimizing
w'(dg(X')). The separation problem for inequalities (8.11) is a special case of the minimum
odd—cut problem. Indeed, let G' = G[INJ], V/ = I N J, and w' be the restriction of =
to Ee. If X' is a minimum odd-cut for G', V/,w’, then z satisfies inequalities (8.11)
if and only if w'(de/(X’)) > 2. The separation problem for inequalities (8.10) is also a
special case of the minimum odd-cut problem. (Recall that G o S denotes the graph
obtained by shrinking the vertex set S to a single vertex which we label S.) Indeed, let
G =GIUJo(I\NJ)o(J\I), V/ ={I\J,J\ I}, and w' be the restriction of z to
Ee. If X' is a minimum odd-cut for G', V/,w’, then z satisfies inequalities (8.10) if and
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only if w'(de(X')) > |I'\ J|. Therefore we can efficiently solve the separation problem for
inequalities (8.9), (8.10), (8.11) and (8.12).

By a standard conversion, we can also solve the separation problem for inequali-
ties (8.4), (8.5), (8.6), (8.7) and (8.8). Thus, by Theorem 8.5 and the ellipsoid algorithm,
we can optimize efficiently over conv(M). Consequently, we have an efficient algorithm for
computing the rank of A[I, J].

Theorem 8.7 Let G be a graph, I,J be subsets of V., and ¢ € RP. Then there exists a
polynomial-time algorithm that finds an (I,J)-path matching M mazimizing cTypM. O

Proof of polyhedral descriptions

We define a polyhedron ) C R? by
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By well-known results concerning total unimodularity (see [54]), the polyhedron @ is in-
tegral, that is, the extreme points of ) are all integral. Clearly, @) is the convex hull of
incidence vectors of (I, J)factors.
Remark: Y. Wang, personal communication, proved that the following problem is N P-
hard: Given a digraph D, find a set of vertex disjoint directed even circuits that cover all
nodes of D. We can give the arcs of D weight one, and extend D to a “symmetric” directed
graph D’ by adding zero weight arcs to D. Then a maximum weight even (V, V)-factor in
D’ is a set of vertex—disjoint directed even circuits that cover all nodes of D, if one exists.
Since this optimization problem is AN/P-hard, it is unlikely that we can characterize the
convex hull of incidence vectors of even (I, J)-factors of a graph by linear inequalities.
Let G = (V, E) be a graph, and let G = (V, E) be the corresponding digraph. We
define a function p : R” — RZ such that, for y € R?, P(Y)ow = Yow + Yuw, for vw € E.
Let Q” denote {p(y) : y € @}. Since p maps integral points to integral points, Q* is an
integral polyhedron.

Lemma 8.8 Let G = (V, E) be a graph, and I,J C V. Then the integral polyhedron Q°
is described by the inequalities (8.9), (8.10) and (8.12).

Proof Given y € @, it is easy to show that p(y) satisfies inequalities (8.9), (8.10)
and (8.12). Conversely, suppose that = € R satisfies inequalities (8.9), (8.10) and (8.12).

Let P denote the set of all paths in G[I U J] that have one end in I\ J, the other end in
J\ I, but no internal vertices in IAJ. Now, for vw € E, we denote by P,,, the set of paths
in P that use the edge vw. By the Max—flow Min—cut Theorem of Ford and Fulkerson [34],
there exists a nonnegative vector A € RP, such that A(P) = |I'\ J|, and, for vw € E,
APow) < Ty Now, we let f € RZ be the (I\ J,J\ I)flow in é, corresponding to the
path—flow A. That is, for vw € E, fow = 3° Ap where the sum is over P € P,,, such that v
immediately preceeds w when travelling along P from [\ J to J \ I. Now, define a vector
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(/NS RE, such that, for vw € E,

L v — p(Fow):

yw:fvw+2

It is easy verified that y € @, and p(y) = z. Thus, z € Q*, as required. O

Our interest in Lemma 8.8 is that it implies that the polyhedron described by the inequal-
ities (8.9), (8.10) and (8.12) is integral.

The following proof is based on a proof of Edmonds’ description of the perfect matching
polyhedron due to Schrijver [60]; see also Green—Krétki [40].

Proof of Theorem 8.6. Let P;(I,.J;G) C RZ (or simply P;) denote the polyhedron
defined by the inequalities (8.9), (8.10), (8.11) and (8.12). Clearly, conv(M*) C P;. For
the converse, it suffices to prove that P; is integral. We prove this by induction on the
number of vertices of G. We may assume that V = TU J.

In order to avoid using Edmonds’ discription of the perfect matching polyhedra, we
need to add some remarks about the case that I = J = V. In this case we may assume
without loss of generality that V has an even number of elements. Hence, for sets X of
size |V| — 1, the inequality x(4(X)) > 2 is implied by the degree constraints. Therefore,
we impose the additional restriction on the inequalities 8.11 that |X| < |V| — 2. (This
condition is vacuous in the case that I # .J.)

Suppose that Py is not integral, and let ' € R¥ be a nonintegral extreme point of P;.
If 2" does not satisfy any of the inequalities (8.11) with equality, then by Lemma 8.8, 2’ is
integral, which is a contradiction. Choose X C I N J such that 3 < |X| < |V|—2, | X] is
odd, and 2'(§(X)) = 2.

Recall that Go X denotes the graph obtained by shrinking X to a single vertex, which we
label X. Denote by Gy the graph Go X, and let I; = (I\ X)U{X}, J1 = (J\X)U{X} and
) denote the restriction of z’ to G;. It is easily verified that 2 e Py(I,J1; Gy). Then,
by induction, conv(M*(Iy,J1;Gy1)) = Pi(I1,J1;G1). Thus, there exists a nonnegative

vector AN € RM (1156 guch that AD(M*(Iy, Jy; G1)) = 1, and

2 = S Al
MeM” (I1,J1;G1)

Let Y = V' \ X. Denote by Gy the graph G oY, and let I, = J, = Vg,, and z® denote
the restriction of z’ to Ga. It is easily verified that z(?) satisfies inequalities (8.9), (8.10)
and (8.12) for Pi(Is,J2;G2). Suppose S C Vg, such that |S| is odd. If Y ¢ S, then

2)(8a,(S)) > 2; otherwise, when Y € S, 2 (84,(S)) = 2 (dg,(V\S)) > 2. Hence, 2(?) is
in Py(Iy, J3; G2). Then, by induction, there exists a nonnegative vector A2 e RM (B2,72;G2)

such that A (M* (I2,J2, G»)) =1, and

2 = 3 A,
MeM” (I2,J2;G2)

Counsider M’ € M*(I, J1;G1), such that )\g\i_,), > 0. M'is an (I, J;)-path matching in

G1, so either there exist two edges e;, e, € M’ that are incident with X, or there exists a
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matching edge e; of M’ that is incident with X. In the latter case, we take e, = ¢;. Now, for
1=1,2, w(2)(ei) = w(l)(ei) > 0, and so there exists M/ € M™(I, J5; G2) containing e; such
that )\g\i,)!, > 0. Since I, = J,, M/ is a perfect matching of G5. Let M = M'UM{ UM, . (For

"

example, see Figure 8.2.) We have M = M’ for ¢ € Eg,, and M = (1#3/[1“ + ¢év'r2 )/2, for
e € M,. Note that MU M,/ may contain circuits of even length, so M is not necessarily a
perfect (I, J)-path matching in G; however, 9™ is the average of the path matching vectors
of two perfect (I,.J)-path matchings of G. By such pairings of the perfect (I;,.J;)-path
matchings of Gy with perfect (I, Jo)-path matchings of G5, we can obtain #’ as a convex
combination of path matching vectors of perfect (I,.J)-path matchings in G. However,
since ' is an extreme point, ' must be a path matching vector, contradicting that =’ is
fractional. O

X —wM™)
/’\ . M‘Z‘
’\' M

N ?2’/\’,MJ\I

—

Figure 8.2: Combining solutions

As a corollary to Theorem 8.6, we get a second description of conv(M™).

Corollary 8.9 Let G = (V. E) be a graph, and I,J C V. Then conv(M*(I,J;G)) is
described by the following inequalities:

z(d(v)) = L+ J, (v evV) (8.13)
(X)) < 1XAJl (X:I\JCXCI) (5.14)
r(y(X)) < |X|-1 (X CINJ|X| odd) (8.15)

z > 0. (8.16)

Proof Firstly, it is clear that (8.13), (8.14), (8.15) and (8.16) are valid for conv(M™).
Conversely, suppose that € R” satisfies (8.13), (8.14), (8.15) and (8.16). Given a subset

S of V, we have
2(3(5)) = ngw(v)) — 22(v(5))

= |SNI+]|SnJ|—2z(v(9)).

Thus it is easy to check that inequalities (8.13) and (8.14) imply the inequalities (8.10).
Also, inequalities (8.13) and (8.15) imply the inequalities (8.11). Trivially, = also satis-
fies (8.12) and (8.9). Therefore, by Theorem 8.6, & € conv(M”™), as required. O

We now prove Theorem 8.5 as a consequence of Corollary 8.9.

Proof of Theorem 8.5. It is clear that inequalities (8.4), (8.5), (8.6), (8.7)
and (8.8) are valid for conv(M). Conversely, suppose that y € R" satisfies inequali-
ties (8.4), (8.5), (8.6), (8.7) and (8.8).
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Create a copy @ of each v € V, and for X C V, denote by X the corresponding copy of
X. Similarly, for a subset S of E, we denote by S, the set {0 : vw € §}. Now, construct
a graph G = (V' E') such that V' = VUV, and E' = EUE U {05 : v € V}, and let
I'=TUJand J'=JUI
Claim  If there ezists y' € conv(M™(I', J'; G')) such that y is the restriction of y' to E,
then y € conv(M(I,J;G)).

It suffices to prove the claim when 3’ is an extreme point. Thus, assume that y' = ™',
for some M' € M*(I',J';G"). Let M = M'N E, and let S be the matching edges of
M that are not matching edges of M’. Then, clearly, y = %(¢M + pM\%). Hence, y €
conv(M(I, J; G), which proves the claim.

Define y' € R¥' such that, for vw € E, Y = Yow, and Yio = Yy, and, forv € V., y/ - =
I+ J,—y(dg(v)). By Theorem 8.9, conv(M™(I', J'; G)) is defined by (8.13), (8.14), (8.15)
and (8.16). Clearly, y’ satisfies inequalities (8.13) and (8.16).

Let X' C I’ such that I’ \ J' C X'. Define X, Y C V such that X' = X U Y. Thus
INJCX CTand J\ICY CJ. Then,

y(1e(X)) = y(r(X) +y(y)+INX Y[+ [TnXnY[- > =z(d(v)) (8.17)

= y(v(X)) +y(v(Y)) = 2y(v(X NY)) —y(8(X NY))
+INXNY|[+|JnXNY| (8.18)
< yy(X\Y) +y(y(Y\ X))+ INnXNY|+]JNnXNY] (8.19)
< | X\YNI+|[(Y\X)NJ|+]InXNY|+|[JNXNY| (8.20)
= |[INX|+|/NY] (8.21)
_ rax, (8.22)

where we get (8.19) from (8.18) by nonnegativity, and we get (8.20) from (8.19) by in-
equalities (8.5) and (8.6). Thus y’ satisfies the inequalities (8.14).

Now, let X’ C I'n.J’ such that |X’|is odd. Define X, Y C V such that X’ = XUY. Thus
X, Y C InJ, and exactly one of | X|,|Y]is odd. Therefore exactly one of | X \ Y|, |V \ X]|
is odd. Suppose that S C I NJ, then, by the inequalities (8.4), y(v(5)) < |S|. Then, with
the inequalities (8.7),

y(V(X\Y)) +y(y(Y\ X)) < [X\ Y[+ [V \ X[ -1 (8.23)
Now,

Y (Yer (X))

y(Y (X)) +y(y (V) + IO X OY[+[TNXAY] = > y(d(v)) (8.24)

veEXNY

= y(r (X)) +y(v(Y)) =2y(y(X N Y)) —y(6(X NY)) +2]X NY]  (8.25)
< y((X\Y)) +y(y(Y\ X)) +2[X NY| (8.26)
< X\Y|[+|Y\X|-1+2|XNY| (8.27)
= |X|+|Y]-1 (8.28)
= X' -1, (8.29)

where we get (8.26) from (8.25) by nonnegativity, and we get (8.27) from (8.26) by
inequality (8.23). Therefore, y’ satisfies the inequalities (8.15). So we have y’ €
conv(M*(I', J'; G')); hence, by the claim, y € conv(M (I, J;G)), as required. O
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Total dual integrality
By Theorem 8.5, the polyhedron defined by inequalities (8.4), (8.5), (8.6), (8.7) and (8.8)

has integral vertices. Therefore, for any objective function w € RZ, the following linear
program has an integral optimal solution

T

(P) - { . incqualitios (8.4), (85), (8.6), (8.7) and (8.8).

Given subsets I, J of G, we define

Qf = {X:I\JCXCI},
Q7 = {X:J\ICXCJ}and
Q7 = {X CInJ:|X| isodd}.

Note that Qf, Q7 and QF are disjoint sets, and let Q = QU Q7 U Q. For a set Y € Q,
define f(Y) € {0,1} such that f(Y) = 1 exactly when Y € Q!/. For variables y € RV and
z € R%, it is easily checked that the dual (D) of (P) is given by

min > (L + J)ye + Y (IX NINJ|— f(X))zx, (8.30)
veV XeQ
Yoty + D, 2x > Ww (w0 € E) (8.31)
Xen
uveEX
y=>0,z2>0. (8.32)

We will prove that, whenever w is integral, there exists an integral optimal solution to (D),
in other words, the system of inequalities (8.4), (8.5), (8.6), (8.7) and (8.8), is totally dual
integral; see Edmonds and Giles [33]. Cunningham and Marsh [24] proved that the system
of inequalities in Edmonds’ characterization of the matching polyhedron is totally dual
integral. Our proof generalizes Schrijver’s proof [60] of Cunningham and Marsh’s theorem.

Let S be a collection of subsets of V. We call S a laminar family if, for each X, Y € S,
either X CY, Y C X or XNY = 0. Let y, z be a solution of (D). We denote by €(z) the
support of z, that is {X € Q: zx # 0}. We call the solution y, z of (D) a laminar solution
if Q(z) is a laminar family.

Theorem 8.10 For all integral w, there exists an integral optimal solution to (D) that is
laminar.

Proof It suffices to prove the theorem for nonnegative w. Suppose that the result fails,
and G, I, J,w form a counterexample with |V|+ |E|+ w(FE) as small as possible. For each
edge e of G, w, > 1, since otherwise we can delete e. Also, V = I'U J, since we can delete
the other vertices.

Claim 1 For every optimal solution y,z to (D), y = 0.

Let F denote the set of (I, J)—path matchings that attain the optimum of (P). Suppose
that there exists v € V such that ™ (d(v)) = I, + J, for each M in F. We decrease the
weight of each edge incident with v by one to get w’. Then, by our choice of w, there
exists an integral optimal solution y’, 2’ to (D), with respect to w’, that is laminar. So, by
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increasing y! by one, we obtain an integral optimal solution to (D), with respect to w, that
is laminar. So, for all v € V, there exists M € F such that ¥vM(§(v)) < I, + J,. Thus, by
complementary slackness, y, = 0, proving Claim 1.

Claim 2 There exists an optimal solution to (D) that is laminar.

For z € R®, we define 7(z) = Y(2x |X||[V\ X| : X € Q). Let y,z be an optimal
solution to (D) that minimizes 7(z). Suppose that €(z) is not laminar, and let X, Y € Q(z)
such that [ X \Y|,|Y\ X]|,|X NY| > 0. By a simple case analysis, we find that either
X\Y and Y\ X are bothin ©,or X NY and X UY are both in Q. We consider these
cases separately.

Case 1: X \Y and YV \ X are both in Q. Let € be the minimum of zx and zy. We
construct 2/ € R? from z by decreasing zx and zy by e, and increasing zx\y and zy\x by
e. Now, construct y' € RY, by increasing y, by € for all v € X NY. One easily checks that
y', 2’ is an optimal solution to (D). However, y’ # 0, which contradicts Claim 1.

Case 2: XNY and X UY are both in . Let ¢ be the minimum of zx and zy. We
construct 2/ € R® from z by decreasing zx and zy by €, and increasing zx~y and zx_y by
€. One easily checks that y, 2’ is an optimal solution to (D), and

7(2) = 7(2) = 26| X\ Y| [Y'\ X[ >0,

contradicting our choice of z. This proves Claim 2.
Let y, z be an optimal solution to (D) that is laminar. By Claim 1, y = 0. Suppose
that z is not integral, and let X be a maximum cardinality set in £(z) such that zx is not

integral. Now, let r be the fractional part of zx, and Xy,..., X} be the maximal proper
subsets of X in Q(z). Since (z) is a laminar family, Xi,..., X}, are disjoint. Now define
2" € R from z by decreasing zx by =, and, for i = 1,...,k, increasing zx, by . For an

edge uv € E, the inequality (8.31) is trivially satisfied by y, 2/, unless uv € X and, for each
i=1,...,k uv € v(X;). However, if uv € 4(X) and, for each ¢ = 1,... &k, wv &€ (X)),
then, among all sets in (z) that contain u,v, X is the only set for which z is fractional.
Therefore, reducing zx by r does not violate inequality (8.31), and hence y, 2’ are feasible
for (D).

Let a and o' be the values for the dual solutions ¥, z and y, 2’ respectively. Then,

o —a = r_(|XiﬁIﬂJ|—f(Xi))—r(|XﬂIﬂJ|—f(X))

1

2

k

= 7 ((f(X) > (X)) —(XnInJ| —Xk]Xm In J|)) . (8.33)

Note that, if X € Q7, then X;,..., X} are all in Q!7; otherwise, if X ¢ Q7 then all but

at most one of Xi,..., Xy are in Q. Hence f(X) — (f(X:) 14 =1,...,k) <1 — k.
Then, from (8.33), we easily check that o — a < 0, contradicting that y, z is optimal. O

By considering the weight function w = (1,...,1) in Theorem 8.10, one easily obtains an
alternative proof of Theorem 8.3.
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