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1. INTRODUCTION

We consider only simple finite graphs. A straight line embedding of a graph G =
(V, E) is an injective function φ : V → R2 such that for any two distinct edges
ab, cd ∈ E the straight line segments (φ(a), φ(b)) and (φ(c), φ(d)) are internally
disjoint (that is, they may only meet at their ends). It is a well-known classical
result that every planar graph admits a straight line embedding; see, for example,
Wagner [7] or Fáry [3]. Given a straight line embedding of G, the length of an
edge uv ∈ E is the Euclidean distance between φ(u) and φ(v), which we denote
by dist(φ(u), φ(v)).

In this article, we address a special case of the following conjecture of Kennitz
and Harborth [5,4]; see also the book by Brass et al. [1].

Conjecture 1.1. Every planar graph admits a straight line embedding with integer
edge lengths.

Note that, up to scaling, it suffices to find a straight line embedding with rational
edge lengths. We prove Conjecture 1.1 for the class of cubic planar graphs. (A graph
is cubic if each of its vertices has degree 3.) The result for cubic planar graphs relies
on the following result for general cubic graphs.

Theorem 1.2. Let G = (V, E) be a cubic graph, let φ : V → R2, and let ε > 0.
Then there exists a function ψ : V → Q2 such that

1. dist(ψ(u), ψ(v)) ∈ Q for each uv ∈ E, and
2. dist(ψ(v), φ(v)) ≤ ε for each v ∈ V .

2. PRELIMINARIES

We require the following two theorems that are both of interest in their own right.

Theorem 2.1 (Berry [2]). If A, B, C ∈ R2 are non-collinear points such that
dist(A, B), dist(A, C)2, and dist(B, C)2 are rational, then the set of points that are
a rational distance from each of A, B, and C forms a dense subset of R2.

Berry also notes that there are no points in the plane at rational distance from the
three vertices of a triangle with sides

√
2,

√
3, and

√
5, so the condition that one

side is rational is unavoidable.

Theorem 2.2. If A, B, C ∈ Q2 are not collinear and x ∈ R2 such that dist(x, y)2

is rational for each y ∈ {A, B, C}, then x ∈ Q2.

Proof. By possibly translating the points, we may assume that C = (0, 0).
Let α = (A1 − x1)2 + (A2 − x2)2, β = (B1 − x1)2 + (B2 − x2)2, and γ = x2

1 + x2
2.

Thus, α = dist(x, A)2, β = dist(x, B)2, and γ = dist(x, C)2 are all rational. Note
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that

A1x1 + A2x2 = 1
2

(
γ + A2

1 + A2
2 − α

)
.

B1x1 + B2x2 = 1
2

(
γ + B2

1 + B2
2 − β

)
.

Since A, B, and C are not collinear, A is not a scalar multiple of B. Considering x1

and x2 as variables, we have two rational linear equations with a unique rational
solution. Therefore, x is rational. !

3. THE MAIN RESULTS

We are interested in graphs G = (V, E) satisfying:

Property 3.1. For any function φ : V → R2 and any real number ε > 0, there
exists a function ψ : V → Q2 such that

1. dist(ψ(u), ψ(v)) ∈ Q for each uv ∈ E, and
2. dist(ψ(v), φ(v)) ≤ ε for each v ∈ V .

Lemma 3.2. Let z be a vertex of degree 3 in a simple graph G = (V, E) and let
a, b, and c be the three neighbors of z. If ab ∈ E and G − z satisfies Property 3.1,
then G satisfies Property 3.1.

Proof. Let φ : V → R2 and ε > 0. By possibly perturbing φ and adjusting
ε accordingly, we may assume that φ is injective and that the image of φ does
not contain three collinear points. Moreover, by possibly further decreasing ε,
we may assume that there do not exist three collinear points x1, x2, x3 ∈ R2 with
dist(xi, φ(ui)) ≤ ε for i ∈ {1, 2, 3}.

SinceG − z satisfies Property 3.1, there is a functionψ : V − {z} → Q2 such that

1. dist(ψ(u), ψ(v)) ∈ Q for each uv ∈ E(G − z), and
2. dist(ψ(v), φ(v)) ≤ ε for each v ∈ V − {z}.

Note that ψ(a), ψ(b), ψ(c) ∈ Q2 and, since ab ∈ E, dist(ψ(a), ψ(b)) is rational.
Hence, dist(ψ(a), ψ(b)), dist(ψ(b), ψ(c))2, and dist(ψ(a), ψ(c))2 are all rational.
Therefore, by Theorem 2.1, there is a point x ∈ R2 with dist(x, ψ(z)) ≤ ε, that is,
at a rational distance from each of φ(a), φ(b), and φ(c). By Lemma 2.2, the point
x is rational. Now extend φ to a function φ : V → Q2 by defining φ(z) = x. This
shows that G satisfies Property 3.1, as required. !

We are ready to prove Theorem 1.2. Our original proof was somewhat more
convoluted, the simpler version presented here was suggested by a referee. We
restate a mild strengthening of the result to facilitate induction.
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Theorem 3.3. Every simple graph with maximum degree ≤ 3 satisfies Property
3.1.

Proof. Suppose that the result is false and let G = (V, E) be a counterexample
with |V | minimum. Let z ∈ V . The case that z has degree ≤ 2 is straightforward,
so we may assume that z has degree 3. Let a, b, and c be the three neighbors of z.
Let G′ = (V, E′) be the simple graph obtained from G by adding the edge ab (if
ab was already an edge of G, then G′ = G). Observe that G′ − z has maximum
degree ≤ 3. Then, since G is a minimum counterexample, G′ − z satisfies Property
3.1. By Lemma 3.2, G′ satisfies Property 3.1. Since G is a subgraph of G′, G also
satisfies Property 3.1. This contradicts that fact that G is a counterexample and,
hence, the result holds. !

Corollary 3.4. Every cubic planar graph admits a straight line embedding with
integer edge lengths.

Proof. Let φ : V → R2 be a straight line embedding of a cubic planar graph
G = (V, E). Note that φ remains a straight line embedding under arbitrarily small
perturbations. That is, there exists ε > 0 such that, if ψ : V → R2 is a function
satisfying dist(φ(v), ψ(v)) for each v ∈ V , then ψ is a straight line embedding of
G. By Theorem 1.2, there is a straight line embedding ψ of G with rational edge
lengths. A suitable scaling of ψ gives integer edge lengths. !

4. CONCLUDING REMARKS

We do not know of a graph that does not satisfy Property 3.1, but it seems likely that
such graphs exist. It seems reasonable to conjecture that all planar graphs satisfy
the property. Using Lemma 3.2, it is easy to show that graphs of tree-width 3 satisfy
the property. Thus, planar graphs of tree-width 3 satisfy Conjecture 1.1; this result
is already implicit in Kemnitz and Harborth [5].

Property 3.1 is also of interest for small complete graphs, particularly K8. A
famous problem of Erdős asks: How many points we can find in the plane with
pairwise rational distances such that no three are on a line and no four are on a
circle? A collection of 7 such points has recently been discovered by Kreisel and
Kurz [6], but the problem remains open for 8.

Theorem 2.1 plays a crucial role in our proof of Theorem 1.2. This suggests the
following question.

Problem 4.1. Let A, B1, . . . , Bk ∈ Q2 such that no three of these points are
collinear and dist(A, Bi) is rational for each i ∈ {1, . . . , k}. Does the set of points
that are a rational distance from each of A, B1, . . . , Bk form a dense subset of R2?

An affirmative answer to Problem 4.1 for k = 4 would prove that planar graphs
satisfy Property 3.1 and, hence, would verify Conjecture 1.1.
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