
Regular Matroid
Decomposition Via
Signed Graphs

Jim Geelen1 and Bert Gerards2

1DEPARTMENT OF COMBINATIORICS AND

OPTIMIZATION

UNIVERSITY OF WATERLOO

WATERLOO, ONTARIO

CANADA, N2L 3G1

E-mail: jfgeelen@math.uwaterloo.cn

2CWI, POSTBUS 94079, 1090 GB AMSTERDAM

THE NETHERLANDS AND

DEPARTMENT OF MATHEMATICS AND

COMPUTER SCIENCE, EINDHOVEN UNIVERSITY OF TECHNOLOGY

POSTBUS 513, 5600 MB EINDHOVEN

THE NETHERLANDS

E-mail: bgerards@cwi.nl

Received April 29, 2002

Published online in Wiley InterScience(www.interscience.wiley.com).

DOI 10.1002/jgt.20037

Abstract: The key to Seymour’s Regular Matroid Decomposition
Theorem is his result that each 3-connected regular matroid with no R10-
or R12-minor is graphic or cographic. We present a proof of this in terms of
signed graphs. � 2004 Wiley Periodicals, Inc. J Graph Theory 48: 74–84, 2005

——————————————————

This research was carried out while the second author visited the University of
Waterloo.
Contract grant sponsor: Natural Sciences and Engineering Council of Canada.

� 2004 Wiley Periodicals, Inc.

74



Keywords: regular; graphic and cographic matroids; decomposition; signed graphs

1. INTRODUCTION

Seymour’s Regular Matroid Decomposition Theorem [3] says that each regular

matroid can be obtained from graphic matroids, their duals, and copies of R10 by

taking 1-, 2-, and 3-sums. The key part of his proof is the following result.

(1) Theorem Each 3-connected regular matroid that is neither graphic nor

cographic contains an R10- or R12-minor.

The proof of the Regular Matroid Decomposition Theorem is complemented

by a result saying that the up to isomorphism, only 3-connected regular matroid

with an R10-minor is R10 and by a result saying that each regular matroid with an

R12-minor is a 3-sum of two proper minors of the matroid. In this paper, we

present an alternative proof of Theorem (1). Seymour’s proof uses ‘‘grafts’’:

graphs and t-joins. They naturally arise in an inductive argument where one

considers binary matroids with an element whose deletion is graphic. In a similar

inductive approach, we instead consider binary matroids with an element whose

contraction is graphic. Such matroids can be encoded by ‘‘signed graphs,’’ which

leads to the proof in this paper. Similar inductive proofs are known for Tutte’s

characterization of graphic matroids [6]; Seymour [4] uses grafts and Gerards [1]

signed graphs.

Theorem (1) also implies a forbidden minor characterization of the matroids

that are graphic or cographic. The only nonregular forbidden minors for that class

of matroids are clearly U2
4 ;F7, and F�

7; Theorem (1) says that the only 3-connected

regular forbidden minors are R10 and R12; and the non-3-connected forbidden

minors—there are 13 of those—are quite easy to find. The only two proofs of

Theorem (1) known to us, Seymour’s original proof in [3] (see Truemper [5] for a

shorter version) and the proof in this paper, are both more complicated than

existing proofs of Tutte’s characterization of graphic matroids [6], even though

both proofs use that characterization. This may appear unexpected. However, the

union of two matroid classes may have infinitely many forbidden minors even if

the separate classes both have only finitely many forbidden minors (Vertigan [7]).

So there is no reason to expect that Theorem (1) can be derived easily from the

characterization of graphic matroids.

A signed graph is a pair ðG;�Þ where G ¼ ðVðGÞ;EðGÞÞ is an undirected

graph, possibly with loops and parallel edges, and � is a subset of EðGÞ. Edges in

� are called odd. The other edges are called even. A subgraph of G, like a path or

a circuit, is called odd (even) in ðG;�Þ, if it contains an odd (even) number of odd

edges. Resigning ðG;�Þ on U � VðGÞ is replacing � by the symmetric difference

�4�ðUÞ of � and �ðUÞ :¼ fuv 2 EðGÞ j u 2 U; v 62 Ug. A minor of ðG;�Þ is a

signed graph that comes from ðG;�Þ by a series of the following operations: re-

signing, deletion of an edge or isolated vertex, and contraction of an even edge.

In Section 2, we prove the following result on signed graphs.
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(2) Theorem Let ðG;�Þ be a signed graph with no blockvertex and no K4-

minor, and such that G consists of a 3-connected graph with a subdivision of K3;3

and, possibly, some extra parallel edges. Then ðG;�Þ has an R12-minor.

Here, a blockvertex is a vertex that is in each odd circuit and K4 and R12 are

the signed graphs in Figure 1 (in all figures bold lines indicate odd paths and thin

lines even paths). In Section 4, we derive Theorem (1) from Theorem (2). The

link between signed graphs and binary matroids is explained in Section 3.

2. PROVING THEOREM (2)

We first give some general definitions. An st-leg of a graph G is an st-path where

s and t are the only vertices of the path that have degree greater than 2 in G. An st-

link in G of a subgraph H is an st-path in G that intersects H only in s and t. A

loop of H in G is a circuit in G that intersects H in exactly one vertex. If s and t

are vertices of a path P, then Pst is the st-subpath of P. If H is a subgraph of G (or

just a subset of its edges or if its vertices) then GnH is graph obtained from G by

deleting the edges of H and G�H is the graph obtained by deleting the vertices

of H.

A signed graph ðG;�Þ is bipartite if � ¼ �ðUÞ for some U � VðGÞ, in other

words, if one can resign ðG;�Þ to ðG; ;Þ. As resigning clearly does not affect the

parity—odd or even—of any circuit in G, a signed graph is bipartite if and only if

it contains no odd circuits. The following easy fact is used frequently in this

proof.

(3) Let ðG;�Þ be a nonbipartite signed graph such that G is 2-connected and let

H be a connected subgraph of G with at least two vertices. If H has no odd edges,

then H has an odd link in G. Equivalently, if H is bipartite, then H has a link L

such that H [ L is nonbipartite.

Now we prove Theorem (2).

Proof of (2). Assume that it is false and that ðG;�Þ is a counterexample. We

always implicitly consider a subgraph H of G as the signed graph ðH;� \ EðHÞÞ.
A signed subdivision of K3;3 that can be resigned such that it has exactly one odd

leg is called a basket (see Fig. 1 (right)).

(4) G contains a basket.

FIGURE 1. K 4 (left), R12 (middle), and a basket (right).
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Assume this is false. It is straightforward to check that each nonbipartite

signed subdivision of K3;3 is a basket or has a K4-minor. So, all K3;3-subdivisions

in G are bipartite. Let H be such a bipartite subdivision of K3;3. Let U and W

denote the two sets of degree-3 vertices of H that correspond to the two color

classes in K3;3 and let F be the set of edges in G with both ends in U or both ends

in W . If GnF is bipartite, we may re-sign such that all odd edges lie in F. From

that it is easy to see that H [ F contains a K4-minor or that G has a blockvertex in

U [W . So we may assume that GnF is not bipartite.

Resign such that all edges in H are even. As GnF is 2-connected and non-

bipartite, H has an odd st-link L in GnF. We may assume that s and t are both in

U (or both in W), as otherwise H [ L contains a subdivision of K3;3 that uses L

and thus is nonbipartite. As GnF contains a 3-connected spanning subgraph,

ðH [ LÞ � fs; tg has a link R connecting L and vertex u in H. As L [ R contains

an odd link of H with u as endvertex, u lies in U as well; so fs; t; ug ¼ U. Now

H [ L [ R contains a K3;3-subdivision using L and R; contrary to our assumption,

this K3;3-subdivision is nonbipartite. So (4) follows.

Each basket H has a unique leg, TH , with the property that we can resign H

such that TH is odd and all other legs are even. We denote the set of vertices of H

not on TH by BH. If TH intersects all odd circuits in G, we call basket H blocking.

A linked basket is a triple ðH; L1;L2Þ with the following properties: H is a

basket; L1 and L2 are links or loops of H such that ðL1 [ L2Þ � TH is bipartite; and

TH contains an edge h such that ðH [ L1Þnh and ðH [ L2Þnh are nonbipartite,

and such that no component of THnh intersects both L1 and L2. (Note that, as

ðL1 [ L2Þ � TH is bipartite, this implies that one component of THnh contains at

least one endvertex of L1 and none of L2 and the other component contains at

least one endvertex of L2 and none of L1.)

As the only blockvertices of a basket H are the vertices on TH , both non-

blocking and linked baskets certify the nonexistence of blockvertices in G.

(5) G contains a nonblocking basket or a linked basket.

Assume this is false. Consider any basket H. Let s and t be the endvertices of

leg TH . As G� s is nonbipartite and 2-connected, H � s has a link or loop L such

that ðH [ LÞ � s is nonbipartite. As H is blocking, L has an endvertex on TH . Let u

be the endvertex of L on TH that lies along TH closest to s (see Fig. 2 (left); here,

and in later figures, dotted lines are even paths, possibly of length zero). If L is a

link, let v be the other endvertex of L; otherwise v :¼ u. Assume now that H and

FIGURE 2.
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L are chosen such that ðTHÞut is as short as possible and such that subject to that,

if possible, v 6¼ u.

Basket H is blocking, so we may resign such that all edges not meeting TH are

even and such that the only odd edges of H [ L are the edge on ðTHÞsu incident

with u and one edge on L incident with u. As u is not a blockvertex of G, H � u

has an odd link P. As H is blocking, this link has an endvertex on TH . Let p be the

one closest to s along TH . Then p 2 ðTHÞsu � u (by the minimality of ðTHÞut). Let

q be the other endvertex of P. As ðH;P; LÞ is not a linked basket, q 2 ðTHÞut � u.

See Figure 2 (middle).

Let H0 be the basket in H [ P with TH0 ¼ ðTHÞsp [ P [ ðTHÞqt. Paths L and P

intersect internally, as otherwise v 62 ðTHÞuq � q (as H0 is blocking) and, hence,

L [ ðTHÞuq is an odd loop or link of H0 contradicting the minimality of ðTHÞut.
Note that P has only one odd edge and that it meets p or q. As H and L are

selected with ðTHÞut minimal and with v 6¼ u (if possible), this odd edge cannot

meet q, so it meets p. Hence H [ L [ P contains the signed graph in Figure 2

(right) as a minor. That signed graph has a K4-minor, so (5) follows.

(6) For each basket H: an odd circuit disjoint from TH shares at most one vertex

with BH.

Assume this is false; let H be a counterexample. Resign such that all edges of

H not meeting TH are even. Then H has an odd link L with both endvertices on

BH . Now H has a leg Q that shares an endvertex with TH such that L has both its

endvertices, b and c say, in Q (as otherwise, we have one of the two signed graphs

in Fig. 3 (left and middle) as a minor; both have a K4-minor). Assume the

endvertices of Q are a and t, of TH are s and t, and of the third leg of H meeting t

are d and t. See Figure 3 (right).

Choose H and L such that the length of Qab is minimal. By 3-connectivity,

there exists a link P of H [ L connecting u 2 ðL [ QbtÞ � fb; tg with

v 2 H � Qbt. Let P0 be the union of P with a uc-path in ðL [ QbtÞ � b. By

resigning on the set of vertices of Qct and interchanging L and Qbc, and s and d,

we may assume that P0 is odd. Hence, by the minimality of Qab, vertex

v 62 Qab � b, so v 62 Q. As argued before, this means that v 62 BH . So, v lies on

TH � t. Contracting ðTHÞsv, the leg from t to d, Qab, and P0
uc, we get an R12-minor.

So (6) follows.

(7) If ðH;L1; L2Þ is a linked basket and L1 has a vertex in BH, then L2 has no

endvertices in BH and L1 and L2 are disjoint.

FIGURE 3.
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Assume this is false; let ðH;L1; L2Þ be a counterexample. If L1 and L2 intersect,

L1 [ L2 contains a link L02 of H such that ðH;L1; L
0
2Þ is a linked basked and both

L1 and L02 have an endvertex in BH . So we may assume that L2 has an endvertex in

BH . Then, as ðL1 [ L2Þ � TH is bipartite, G contains one of the signed graphs in

Figure 4 as a minor; the first three have a K4-minor, the fourth one is R12. This

contradiction proves (7).

(8) If H is a basket, C is an odd circuit disjoint from TH, and P a minimal path

connecting a vertex p 2 C with a vertex q 2 H, then q 2 TH. (In particular, C is

disjoint from H.)

Assume this is false; let H, C, and P form a counterexample with the length of

P minimal. Then, by (6), C and H share no vertex, except maybe q. As G� p is 2-

connected, there exist two paths R1 and R2 connecting C � p to ðH [ PÞ � p, that

only meet in C, if at all. By the minimality of P and by (6), both R1 and R2 have

an endvertex on TH . So after resigning, if necessary, we have a configuration as in

Figure 5 (left), where the parity of the dashed paths (R1 and R2) can be either odd

or even. However, in fact, R1 is odd and R2 is even, as in any other case

H [ C [ P [ R1 [ R2 contains a linked basket contradicting (7). So G has the

signed graph in Figure 5 (right) as a minor. That signed graph has an R12-minor

(delete e and contract f ). So (8) follows.

(9) If ðH;L1;L2Þ is a linked basket, both L1 and L2 have their endvertices in TH.

Assume this is false and that L1 has an endvertex, v say, in BH . Then, by (7), L2

is disjoint from L1 [ BH . Let u be the endvertex of L1 on TH and w be the

endvertex of L2 on TH closest to u. Let s and t be the endvertices of TH such that

s; u;w, and t lie in that order along TH; see Figure 6 (left). Then u ¼ s and v is the

endvertex in BH of one of the legs of H incident with t, as otherwise H [ L1

contains a basket containing L1 and that basket contradicts (8).

Assume as of now that H was chosen with TH as short as possible. Resign

such that the only odd edges on H [ L1 are the edges on TH [ L1 incident with s

FIGURE 4.

FIGURE 5.
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(see Fig. 6 (middle)). Let P be a link of H [ L1 connecting a vertex p on

TH � fs; tg with a vertex r in ðBH [ L1Þ � fs; tg. If r 2 L1, define

P0 :¼ P [ ðL1Þrv; otherwise P0 :¼ P. Then P0, hence also P, is even, as otherwise

ðH; L1;PÞ contradicts (7). Moreover, P is internally vertex disjoint with L2 (as

otherwise we could have chosen P odd). Hence, p 2 ðTHÞwt, as otherwise

ðH;P0;L2Þ contradicts (9) in spite of the fact that s is not an endvertex of P0 (and

we argued above that this is not possible for a contradiction against (9)).

The endvertex r of P lies in one of the legs of H incident with s, as otherwise

H [ P0 contains a basket H0 with TH0 ¼ ðTHÞsp that contradicts (9) while TH0 is

shorter than TH . See Figure 6 (right). Let H00 be the basket in H [ P containing P.

Then ðH00; L1;L2Þ contradicts (9) in spite of the fact that s is not an endvertex of

TH00 . So (9) follows.

(10) G contains a nonblocking basket.

Assume this is false. Then by (5) and (9), there exists a linked basket

ðH; L1;L2Þ where the endvertices u and u0 of L1 and the endvertices v and v0 of L2

lie on TH . Let s and t be the endvertices of TH , such that s; u; u0; v0; v, and t lie in

that order along TH and resign such that the only odd edge on H is the one on

ðTHÞsv0 incident with v0; see Figure 7 (left). Note that L1 and L2 need not be

internally disjoint and that u may be equal to u0 and v may be equal to v0. Assume

ðH; L1;L2Þ is chosen such that the sum of lengths of ðTHÞsu and ðTHÞvt is minimal.

Let P be a link of H [ L1 [ L2 connecting a vertex p in ðL1 [ ðTHÞuv [ L2Þ�
fu; vg to a vertex r in H � ðTHÞuv.

First consider the case that r 2 BðHÞ. By symmetry, p 2 ðL1 [ ðTHÞuv0 Þ �
fu; v0g. If p 2 L1 or P is odd, then L1 [ P contains a odd link P0 of H such that the

FIGURE 6.

FIGURE 7.

80 JOURNAL OF GRAPH THEORY



linked basket ðH;P0;L2Þ violates (9). If p 2 ðTHÞu0v0 � fu0; v0g and P is even then

the linked basket ðH; L1;PÞ violates (9). So, p 2 ðTHÞuu0 and P is even. Let H0 be

the basket in H [ P containing P. Then ðH0; L1;L2Þ contradicts (9).

So it remains to consider the case that r 62 BH . By symmetry, we may assume

that r 2 ðTHÞsu. By the minimality of the sum of lengths of ðTHÞsu and ðTHÞvt,
it follows that p 2 ððTHÞv0v [ L2Þ � v and that if p 2 L2 � fv0; vg, then L1 and L2

are disjoint. As all baskets in H [ P [ L2 are blocking, this means that

p 2 ðTHÞv0v � v and that L1 and L2 intersect. So v 6¼ v0, and thus H [ L1 [ L2

contains the configuration in Figure 7 (right) as a minor. As that has a K4-minor,

(10) follows.

An extended basket is a signed graph that can be resigned to the configuration

in Figure 8 (left). If K is an extended basket, then DK is the graph consisting of

the six legs of K marked by a � in Figure 8 (left), and UK consists of the vertices

of K not in DK ; the joins of K are the paths that are dotted in Figure 8 (left)—as

indicated they may have length zero—and the endvertices of the joins that lie in

DK are the tips of K.

Assume as of now that G is a smallest counterexample to (2).

(11) For each extended basket K, each leg of K that lies in DK is a single edge.

Assume this is false and L a leg of K in DK with more than one edge. Let e be

an edge of L that is not incident with a tip of K. Contract e to a vertex v. Any

2-vertex cutset introduced by this contraction must contain v. Thus, the extended

basket K=e is contained almost entirely—except maybe for part of a leg—in one

side of any such 2-vertex cutset. Hence, by replacing for each such 2-vertex cutset

the side not containing UK by a single edge of appropriate parity, we obtain a

proper minor G0 of G that still has an extended basket. As G0 has no 2-vertex

cutsets with vertices on either side, it is still a counterexample to (2). But G is a

smallest counterexample, so (11) follows.

(12) Let K be an extended basket with tips s and t and let L be a minimal path in

Gnfs; tg connecting x 2 DKnfs; tg to s0 2 UK. Then L is an even edge. Moreover,

if u 2 fs; tg is the tip not adjacent in K to x, then the join of K ending in u has

positive length and s0 is the neighbor of u in that join.

Link L is even and s0 lies in one of the joins of K as otherwise one easily finds a

basket in K [ L that violates (8) or (9). By symmetry, we may assume that u ¼ t.

FIGURE 8.
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So we are in one of the situations depicted in Figure 8 (middle and right). In both

cases, ðKnxsÞ [ L is an extended basket. Applying (11) to this extended basket, it

immediately follows that Figure 8 (right) applies; that L is an edge and t and s0 are

adjacent. Thus (12) follows.

Consider a nonblocking basket, which exists by (10). As G is 2-connected and

by (8), this nonblocking basket is contained in an extended basket. By 3-

connectivity, symmetry, and (12), this extended basket is contained in a

configuration W as in Figure 9, where all edges with at least one black endvertex

are edges. (Note that Fig. 9 is just a redrawn version of Fig. 8 (right).) Let s; s0 and

x be as indicated in Figure 9. By 3-connectivity, W has a pq-link L in Gnfs; s0g
with p black and q not. Obviously L has to violate (12) with respect to one of the

two extended baskets Wnsx and Wns0x. This contradiction completes the proof

of (2). &

3. FROM SIGNED GRAPHS TO BINARY MATROIDS

We translate Theorem (2) to matroids. We assume the reader to be familiar with

standard matroid theory (see Oxley [2] or Truemper [5]). Consider a signed graph

ðG;�Þ. Let �� be the characteristic vector of � as a subset of EðGÞ and let MG be

the vertex–edge incidence matrix of G. By SðG;�Þ, we denote the binary matroid

represented over GFð2Þ by the columns of matrix

1 ��

0 MG

� �
ð13Þ

Obviously a binary matroid M is isomorphic to a matroid of the form SðG;�Þ if

and only if M=x is graphic for some element x of M. Resigning ðG;�Þ on U

amounts to adding the rows of MG indexed by the vertices in U to ��, so to row

operations in (13). Hence, resigning does not affect SðG;�Þ. Blockvertices have

the following matroidal interpretation.

(14) If ðG;�Þ has a blockvertex, SðG;�Þ is graphic.

FIGURE 9.
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Indeed, let u be a blockvertex. Resign such that � � �ðuÞ. Construct a graph H

as follows: split vertex u into two new vertices u1 and u2; split �ðuÞ into �ðu1Þ and

�ðu2Þ such that �ðu1Þ ¼ � and �ðu2Þ ¼ �ðuÞn�; and add an edge ex from u1 to u2.

It is not hard to see that MðHÞ � SðG;�Þ. So (14) follows.

It is straightforward to check that if the signed graph ðH;�Þ is a minor of

ðG;�Þ, then the matroid SðH;�Þ is a minor of SðG;�Þ. Hence, as SðK4Þ � F�
7

and SðR12Þ � R12, Theorem (2) implies the following.

(15) Let M be a nongraphic binary matroid with no F�
7-minor and x be an

element of M such that M=x is a 3-connected graphic matroid with an MðK3;3Þ-
minor or a parallel extension of such a matroid. Then M has an R12-minor.

4. PROVING THEOREM (1)

One of Seymour’s main tools in proving the Regular Matroid Decomposition

Theorem is as follows.

(16) Splitter Theorem. Let M be a 3-connected matroid that is not a wheel or a

whirl. If M has a proper 3-connected minor N, then M has an element x such that

either Mnx or M=x is 3-connected and has a minor isomorphic to N.

One of the implications of this theorem concerns ‘‘splitters.’’ A 3-connected

matroid N is a splitter for a class of matroids M if no 3-connected member of M
has a proper N-minor. Seymour’s Splitter Theorem implies that proving a matroid

N is a splitter for class M is just an elementary finite case check. Seymour [3]

used this to prove that R10 is a splitter for the class of regular matroids and that

MðK5Þ is a splitter for the class of regular matroids with no MðK3;3Þ-minor.

We now prove Theorem (1) from (15) following the same lines as Seymour did

in [3] (but he started from (14.1) in [3] instead of (15)).

Proof of (1). Assume it is false and M a minimal counterexample. Tutte’s

characterization of cographic matroids [6] says that M has an MðK3;3Þ- or MðK5Þ-
minor. As M is not graphic, and as MðK5Þ is a splitter for the class of regular

matroids with no MðK3;3Þ-minor, it follows that M has a proper minor isomorphic

to MðK3;3Þ. By the minimality of M we know the following.

(17) Each proper 3-connected minor of M that has an MðK3;3Þ minor is graphic.
Combining this with (15) we know the following.

(18) M has no element x such that M=x is 3-connected with an MðK3;3Þ-minor
or a parallel extension of such a matroid.

As M has a proper MðK3;3Þ-minor, it follows from the Splitter Theorem and

(18) that M has an element y such that Mny is 3-connected and has an MðK3;3Þ-
minor. It is straightforward to check that if Mny were isomorphic to MðK3;3Þ, then

M would be graphic, isomorphic to R10, or nonregular. So Mny has a proper

MðK3;3Þ-minor, and hence, again by the Splitter Theorem and by (18) and (17),
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Mny has an element z such that Mny;Mnz and Mny; z are cycle matroids of,

uniquely determined, 3-connected graphs. From this fact, it is easy to construct a

graph G with edges ey and ez, such that these graphs are Gney, Gnez, and Gnex; ey,
respectively. As M and MðGÞ are binary, it is straightforward to prove now that

M � MðGÞ, a contradiction. So Theorem (1) follows. &
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