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A square matrix is principally unimodular (PU) if every principal submatrix has determinant
0 or ±1. Let A be a symmetric (0,1)-matrix, with a zero diagonal. A PU-orientation of A is
a skew-symmetric signing of A that is PU. If A′ is a PU-orientation of A, then, by a certain
decomposition of A, we can construct every PU-orientation of A from A′. This construction is
based on the fact that the PU-orientations of indecomposable matrices are unique up to negation
and multiplication of certain rows and corresponding columns by −1. This generalizes the well-
known result of Camion, that if a (0,1)-matrix can be signed to be totally unimodular then the
signing is unique up to multiplying certain rows and columns by −1. Camion’s result is an easy
but crucial step in proving Tutte’s famous excluded minor characterization of totally unimodular
matrices.

1. Introduction

A square matrix A is called principally unimodular (PU) if every nonsingular
principal submatrix is unimodular (that is, has determinant ±1). Let A be a
symmetric (0,1)-matrix, with a zero diagonal, a skew-symmetric signing of A is
called an orientation of A. We are concerned with the orientations of A that are
PU; such orientations are called PU-orientations, and were initially introduced in
relation to circle graphs [3, 6].

Let A be a symmetric (0,1)-matrix whose rows and columns are indexed by the
set V , and let A′ be a PU-orientation of A. We can construct other PU-orientations
of A from A′, for instance, −A′ is PU; we call this construction negation. Also,

for X ⊆ V , the matrix

(
A′[X ] −A′[X,V \X ]

−A′[V \X,X ] A′[V \X ]

)
is PU (where A[X,Y ]

denotes the submatrix of A indexed by the rows X and columns Y , and A[X ]
denotes the principal submatrix A[X,X ]); this operation is called cut-switching.
Collectively, we refer to negation and cut-switching as switching.

It is not, in general, the case that every two PU-orientations of A are equivalent
under switching; for instance, we show that the matrix Jn−In has (n−1)!/2 distinct
PU-orientations, where Jn denotes the n×n all ones matrix, and In denotes the
n×n identity. Let X,Y be a partition of V with |X |, |Y |≥2, we call (X,Y ) a split
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of A if the rank of A[X,Y ] is at most 1; a matrix without a split is called prime.
Our main result is:

Theorem 1.1. Let A be a symmetric (0,1)-matrix with a zero diagonal. If A is
prime then every two PU-orientations of A are equivalent under switching.

As a corollary of Theorem 1.1 we derive a formula for the number of PU-
orientations of A distinct up to switching, assuming that A has a PU-orientation;
this formula is based on a decomposition of A using certain splits.

Theorem 1.1 is a generalization of a theorem about totally unimodular matri-

ces: a matrix B is totally unimodular if and only if the matrix

(
0 B

−BT 0

)
is

PU.

Theorem 1.2. (Camion [8]) If A is a matrix that can be signed to be totally
unimodular then such a signing is unique up to multiplication of certain rows and
columns by −1.

Theorem 1.2 is easy to prove, though it is an important step in proofs of Tutte’s
famous excluded minor characterization of totally unimodular matrices [20, 21, 14].

Our proof of Theorem 1.1 gives rise to a polynomial-time algorithm for the
following problem: Given a symmetric (0,1)-matrix A with a zero diagonal that
admits a PU-orientation, find a PU-orientation of A. Such an algorithm implies
that the following problems are algorithmically equivalent, in the sense that (Q1)
is polynomial-time solvable if and only if (Q2) is polynomial-time solvable. (This
equivalence is used in algorithms that recognize total unimodularity.)
(Q1) Given a symmetric (0,1)-matrix A with a zero diagonal, does A admit a

PU-orientation?
(Q2) Given a skew-symmetric matrix A, is A PU?

Delta-matroids

While delta-matroids do not play a role in the proof of Theorem 1.1, the theorem
is naturally described in this setting, so we begin by introducing delta-matroids.

Let A be a square matrix with entries defined over a field F , and whose rows
and columns are both indexed by V . Define FA={S⊆V :A[S] is nonsingular}; by
convention we assume ∅∈FA. If A is either symmetric or skew-symmetric then FA
satisfies the Symmetric Exchange Axiom [4]:
(SEA) For X,Y ∈F and x∈X∆Y there exists y∈X∆Y such that X∆{x,y}∈F ,
where X∆Y =(X\Y )∪(Y \X). If F is a nonempty collection of subsets of V and F
satisfies the (SEA) then M=(V,F) is a delta-matroid (see [1]); delta-matroids aris-
ing from symmetric and skew-symmetric matrices are called representable (see [4]).
A delta-matroid that can be represented by a skew-symmetric PU-matrix is called
regular.
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If A is a skew-symmetric matrix, then all sets in FA have even cardinality. A
delta-matroid (V,F) is called even if |F1∆F2| is even for all F1,F2∈F .

Let M = (V,B) be a matroid representable over a field F . Here B is the set
of bases of M . For a basis B of M define a matrix A, whose columns are indexed
by the set V \B, such that [I|A] is a linear representation of M over F . If [I|A]
is a representation of M over the reals and A is totally unimodular then M is

regular. Define A′=

(
0 A

±AT 0

)
. It can be easily verified that A′ is PU if and

only if A is totally unimodular, and FA′ =B∆B, where B∆B= {B′∆B :B′ ∈B}.
It is also easy to show that, for a collection of subsets F of V and a set S ⊆ V ,
F satisfies (SEA) if and only if F∆S satisfies (SEA) (see [7]); this operation is
called twisting. Two delta-matroids equivalent under twisting are considered to be
equivalent, so representability and regularity in delta-matroids naturally generalize
their counterparts in matroids.

As is the case with matroids, regularity seems fundamental in the study of
representability.

Theorem 1.3. (Geelen [12]) For an even delta-matroid M , the following are equiv-
alent:

(i) M is regular,

(ii) M is representable over every field,

(iii) M is representable over both GF (2) and GF (3).

Our proof of Theorem 1.1 can be generalized to prove the following: Given
a 3-connected delta-matroid M , any two skew-symmetric GF (3)-representations
of M are switching-equivalent. For the definition of “3-connectivity”, we refer
the reader to Bouchet [5]. The requirements for unique GF (3)-representability in
even delta-matroids are remarkably similar to the requirements for unique GF (4)-
representability in matroids, see Kahn [17]. In this paper we introduce a tool, called
a blocking sequence, for studying splits and prime graphs. Blocking sequences have
recently been seen to apply to matroid connectivity, and play a vital role in proving
the excluded minor characterization of GF (4)-representable matroids of Geelen,
Gerards and Kapoor [13].

Tutte’s famous characterization of regular matroids (see [20, 21]) has been
generalized to delta-matroids arising from symmetric matrices [11]. The present
work is motivated by the study of delta-matroids represented by skew-symmetric
matrices, and the fact that proofs of Tutte’s characterization of regular matroids
rely heavily on Theorem 1.2. (See, for example, [14]).
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2. Motivation and applications

The arguments in this paper are mainly graph theoretic, so we begin by
restating the problem in terms of graphs. Throughout this paper all graphs will be
assumed to be simple. The adjacency matrix of an undirected graph G= (V,E) is
the V by V symmetric (0,1)-matrix that has a 1 in entry i,j if and only if ij∈E.
The adjacency matrix of a directed graph ~G=(V, ~E) is the V by V skew-symmetric
(0,±1)-matrix that has a 1 in entry i, j if and only if ij∈ ~E. A digraph ~G is called
an orientation (PU-orientation) of a graph G if the adjacency matrix of ~G is an
orientation (PU-orientation) of the adjacency matrix of G. For an orientation ~G of
G, we define the operations of negation, cut-switching and switching for ~G as the
result of applying the corresponding operations to the adjacency matrix of ~G.

Let G=(V,E) be a graph, and let X,Y be disjoint subsets of V . We denote by
[X ] the set of all distinct pairs of vertices in X , and we denote by [X,Y ] the set of
all pairs of vertices containing an element of X and an element of Y . For S⊆E we
denote by S[X ] and S[X,Y ] the edge sets S∩ [X ] and S∩ [X,Y ] respectively. The
set E[X,Y ] is referred to as a cut of G. The graph induced by X , denoted G[X ], is
the graph (X,E[X ]). For a vertex v∈V , we denote by NG(v) the neighbour set of
v. For a graph G′ we denote by VG′ and EG′ its vertex-set and edge-set.

A split of G is a partition (X,Y ) of V such that |X |, |Y |≥2, and the cut E[X,Y ]
induces a complete bipartite graph. (Note that not all pairs x∈X,y ∈ Y need be
joined by an edge for (X,Y ) to be a split; in fact, if the cut E[X,Y ] contains no
edges (X,Y ) is a split.) A prime graph is a graph without any splits; thus, a graph
is prime if and only if its adjacency matrix is prime.

Circle Graphs
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Fig. 1. Circle graphs
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In this section we discuss an important class of graphs that admit PU-
orientations, namely the circle graphs. A circle graph is the intersection graph
of a finite set of chords of a circle. (See Figure 1.) De Fraysseix [10], showed that
the bipartite circle graphs are the fundamental graphs of planar graphs. (If T is a
spanning tree of a connected graph G then a fundamental graph of G is a bipar-
tite graph with bipartition ET ,EG \ET and edges ef where e∈ET , f ∈EG \ET
and T + f− e is a tree.) It is well known that the fundamental matrices (that is,
the adjacency matrices of fundamental graphs) of any graph can be signed to be
totally unimodular. Hence bipartite circle graphs admit PU-orientations. In fact,
this result extends to all circle graphs.
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Fig. 2. Orienting circle graphs

Let G=(V,E) be a circle graph represented by a set V of chords of a circle. By
possibly perturbing the representation, we may assume that no two chords intersect
on the circle. Given an arbitrary orientation of the chords, we define an orientation
~G of G. Namely, an edge uv of G is oriented with v as its head if and only if the
chord v crosses u from left to right (that is, the tail of v is encountered before the
head of u when the circle is traversed in the clockwise direction from the tail of u).
Figure 2 depicts an arbitrary orientation of the representation in Figure 1 and the
corresponding orientation of the circle graph. ~G is a PU-orientation of G. (See [3,
6].)
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Fig. 3. Local complementation
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Given a vertex v of a graph G, we define a new graph G∗v by complementing
the induced graph on the neighbour set of v in G; this operation is called local
complementation. Kotzig [18] noted that G is a circle graph if and only if G∗v is a
circle graph. Figure 3 demonstrates local complementation on the graph in Figure 1
and the new representation. (In general, if G is a circle graph, then a representation
of G∗v can be obtained from a representation of G by reversing the order in which
chords are encountered while traversing the circle in a clockwise direction from
one end of v to the other.) Graphs that admit PU-orientations are not in general
preserved under local complementation (in fact, G is a circle graph if and only if
every graph equivalent to G under any sequence of local complementations admits
a PU-orientation [7]). However, such graphs are preserved under a more restrictive
operation called “pivoting”, which we discuss below.

Pivoting

Let A = (aij) be a skew-symmetric (0,±1)-matrix whose rows and columns are

indexed by V . Suppose u,w ∈ V and auw = 1. Define x, y ∈ {0,1,−1}V \{u,w} so
that

A =


u w

u 0 1 xT

w −1 0 yT

−x −y A[V − u− w]

.
Then define a matrix A′ whose rows and columns are also indexed by the set V as
follows:

A′ =


u w

u 0 1 yT

w −1 0 xT

−y −x A[V − u− w] − yxT + xyT

.
The operation that constructs A′ from A is called a pivot on uw in A. If in

addition we switch the labels u and w, then we call the operation a partial pivot.
The following result implies that the family of PU-matrices is closed under pivoting
(and hence also under partial pivoting).

Proposition 2.1. For S⊆V , detA[S]=detA′[S∆{x,y}].

Proof. Since pivoting on uw in A has the same effect on principal submatrices of
A[S∪{u,w}] as pivoting on uw in A[S∪{u,w}], we may assume that S∪{u,w}=V .
Furthermore, since pivoting is an involution, we may assume that u∈S. Hence it
suffices to prove the following two identities:

detA[V − w] = detA′[V − u], and(1)

detA = detA′[V − u− w].(2)
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Note that A[V −w] and A′[V −u] are equivalent under row and column operations.
Thus, since the determinant is invariant under row and column operations, we have
proved (1). Define

B =

 0 1 xT

−1 0 yT

0 0 A[V − u− w]− yxT + xyT

 .

B is obtained from A by row elimination, so detA=detB; furthermore

detB = detB[V − u− w] = detA′[V − u− w].

Thus we have proved (2).

For a pair S,S′ of subsets of V , if S and S′ are disjoint, we have defined
[S,S′]={ss′ :s∈S,s′∈S′}; for intersecting sets S, S′ we define

[S, S′] = [S \ S′, S′ \ S] ∪ [S \ S′, S ∩ S′] ∪ [S′ \ S, S ∩ S′].
We can interpret partial pivoting over the binary field as a transformation of an
undirected graph. Let G=(V,E) be the graph whose adjacency matrix is equivalent
to A over GF (2). Define a graph G′=(V,E′) where

E′ = E∆[NG(u)− w,NG(w) − u].

It is easily verified that the adjacency matrix of G′ is obtained by performing a
partial pivot on uw in A over GF (2). We call the operation that takes G to G′

pivoting on uw. It is easy to verify that pivoting on uw is equivalent to performing
local complementations at u,w,u in that order.

A consequence of Proposition 2.1 is that pivoting (or partial pivoting) on a PU-
matrix yields a (0,±1)-matrix. Thus we can think of pivoting and partial pivoting
as operations on oriented graphs. Suppose A is PU and let ~G = (V, ~E) be the
directed graph having adjacency matrix A. Let ~G′= (V, ~E′) be the directed graph
whose adjacency matrix is obtained by performing a partial pivot on uw (over the
reals) in A. Then we say that ~G′ is obtained from ~G by performing a partial pivot
on uw. Note that the orientation of uw is reversed by the partial pivot. The only
other common edges of G and G′ that may be oriented differently in ~G and ~G′ are
edges whose ends are both common neighbours of u and w.

The following result links pivoting and splits; in particular, it implies that
pivoting preserves prime graphs. It is implied by the (easy) fact that local comple-
mentation preserves splits (see [2]) and the fact (mentioned above) that pivoting is
equivalent to a sequence of local complementations.

Proposition 2.2. (Bouchet [5]) Let (X,Y ) be a partition of V , let vw ∈E and let

G′=(V,E′) be the graph obtained by pivoting on vw in G. Then (X,Y ) is a split

in G if and only if (X,Y ) is a split in G′.
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Decomposition on splits

Let G=(V,E) be a simple graph, and (X,Y ) be a partition of V ; denote by G◦X
the graph obtained from G by shrinking X to a single vertex, which we label X ,
and removing multiple edges. Similarly if ~G is an orientation of G we define ~G◦X
by shrinking X in ~G and removing multiple arcs. Note that ~G◦X need not be an
orientation of G◦X ; however, if the edges in E[X,Y ] were all oriented in ~G with
their heads in Y then ~G◦X is an orientation of G◦X . The decomposition G◦X ,
G◦Y of G where (X,Y ) is a split was studied in [9]; it has applications in delta-
matroid connectivity [5] and circle graph recognition [2]. Note that in that case
G◦X and G◦Y are both isomorphic to induced subgraphs of G; hence, if G has
a PU-orientation then G◦X and G◦Y both have PU-orientations. In this section
we show that the converse also holds, that is, if G◦X and G◦Y both admit PU-
orientations then G admits a PU-orientation. Let ~G1 and ~G2 be PU-orientations
of G◦X and G◦Y respectively. By cut-switching in ~G1, we may assume that no arc
in ~G1 has X as its head. Similarly, we may assume that no arc in ~G2 has Y as its
tail. Now construct an orientation ~G of G such that ~G◦X= ~G1 and ~G◦Y = ~G2; ~G is
called the composition of ~G1 and ~G2. Before proving that ~G is a PU-orientation, we
review some basic results about pfaffians; we use the definition of Stembridge [19].

Let ~G be an orientation of a simple graph G = (V,E), let A = (aij) be the

adjacency matrix of ~G, letMG denote the set of perfect matchings of G, and let ≺
be a linear order of V . A pair of edges u1v1, u2v2 of G, where u1≺v1 and u2≺v2,
are said to cross if u1≺u2≺ v1≺ v2 or u2≺u1≺ v2≺ v1. (If we place u1,u2,v1,v2
on the perimeter of a circle, according to the linear order, then u1u2 crosses v1v2
if and only if the chords u1u2 and v1v2 cross.) The sign of a perfect matching M
of G, denoted σM , is (−1)k where k is the number of pairs of crossing edges in M .
The pfaffian of A, denoted pf(A), is defined as follows:

(3) pf(A) =
∑

M∈MG

σM
∏
uv∈M
u≺v

auv.

Surprisingly pf(A) is, up to sign, independent of the order relation; this is
reflected by the fundamental identity det(A)=pf(A)2. Like determinants, pfaffians
can be calculated by “row expansion” [15]:

(4) pf(A) =
n∑
k=2

(−1)kav1vkpf(A[V \ {v1, vk}]),

where V ={v1,v2, . . .,vn} and vi≺vi+1, for i=1,2, . . .,n−1.

Proposition 2.3. Let G be a graph containing a split (X,Y ). Then the composition
of PU-orientations of G◦X and G◦Y is a PU-orientation of G.
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Proof. Let ~G1 and ~G2 be PU-orientations of G ◦X and G ◦ Y respectively, and
let ~G be the composition of ~G1 and ~G2. Let A, A1 and A2 be the adjacency
matrices of ~G, ~G1 and ~G2 respectively, and let S ⊆ V . We are required to prove
that det(A[S]) ∈ {0,1}, or equivalently that pf(A[S]) ∈ {0,±1}. If |S∩X |< 2 or
|S∩Y | < 2 then ~G[S] is isomorphic to an induced subgraph of ~G1 or ~G2; hence
det(A[S])∈{0,1}. Now, suppose |S∩X |≥2 and |S∩Y |≥2; then (X ∩S,Y ∩S) is
a split in G[S]. We assume, without loss of generality, that V =S.

Suppose X = {x1,x2, . . .,xk} and Y = {y1,y2, . . .,yl}. Define a linear order ≺
such that

xk ≺ xk−1 ≺ . . . ≺ x1 ≺ y1 ≺ y2 ≺ . . . ≺ yl.

Recall that, for S ⊆ EG, S[X,Y ] denotes S ∩ [X,Y ]. Let M(i)
G = {M ∈ MG :

|M [X,Y ]|= i}; then, by (3),

pf(A) =
∑
i≥0

∑
M∈M(i)

G

σM
∏
uv∈M
u≺v

auv.

Claim 1. For i≥2, ∑
M∈M(i)

G

σM
∏
uv∈M
u≺v

auv = 0.

Proof of claim. For each matching M ∈M(i)
G , we define another matching M ′ as

follows: choose edges xi1yj1 and xi2yj2 , where i1<i2, such that

M [{x1, x2, . . ., xi2}, Y ] = {xi1yj1 , xi2yj2};

then define

M ′ = M∆{xi1yj1 , xi2yj2 , xi1yj2 , xi2yj1}.

Note that M=(M ′)′, and

σM
∏
uv∈M
u≺v

auv = −σM ′
∏

uv∈M′
u≺v

auv,

which proves the claim.
For any perfect matching M of G we have |M [X,Y ]|≡|X | (mod 2); this gives

rise to two cases.
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Case 1. |X | is even. Thus

pf(A) =
∑

M∈M(0)
G

σM
∏
uv∈M
u≺v

auv

=
∑

MX∈MG[X]

∑
MY ∈MG[Y ]

σMX∪MY

∏
uv∈MX∪MY

u≺v

auv

=

 ∑
MX∈MG[X]

σMX

∏
uv∈MX
u≺v

auv


 ∑
MX∈MG[X]

σMX

∏
uv∈MX
u≺v

auv


= pf(A[X ])pf(A[Y ]).

However A[X ]=A2[X ] and A[Y ]=A1[Y ], and A1 and A2 are PU, so pf(A)=0,±1.

Case 2. |X | is odd. Thus

pf(A) =
∑

M∈M(1)
G

σM
∏
uv∈M
u≺v

auv.

Every matching M ∈ M(1)
G can be expressed as M1 ∪M2 ∪ {xiyj}, where M1 ∈

MG[X−xi] and M2∈MG[Y−yj ]. The set of edges of M that cross xiyj is

M1[{x1, . . ., xi−1}, {xi+1, . . ., xk}] ∪M2[{y1, . . ., yj−1}, {yj+1, . . ., yl}];
furthermore

|M1[{x1, . . ., xi−1}, {xi+1, . . ., xk}]| ≡ i− 1 (mod 2) and∣∣M2[{y1, . . ., yj−1}, {yj+1, . . ., yl}]
∣∣ ≡ j − 1 (mod 2).

Therefore σM =((−1)i−1σM1
)((−1)j−1σM2

), and

pf(A) =
k∑
i=1

l∑
j=1

∑
M1∈MG[X−xi]

∑
M2∈MG[Y−yj ]

((−1)i−1σM1
)((−1)j−1σM2

)

axiyj

 ∏
uv∈M1
u≺v

auv


 ∏

uv∈M2
u≺v

auv



=

 k∑
i=1

(−1)i+1
∑

M1∈MG[X−xi]

σM1

∏
uv∈M1
u≺v

auv


 l∑
j=1

(−1)j+1
∑

M2∈MG[Y−yj ]

σM2

∏
uv∈M2
u≺v

auv

 .
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Now, applying equations (3) and (4),

pf(A) =

(
k∑
i=1

(−1)i+1pf(A[X − xi])
) l∑

j=1

(−1)j+1pf(A[Y − yj ])

 .

pf(A) = −pf(A1)pf(A2),

and hence, pf(A)∈{0,±1}, as required.

We remark that there is an alternative proof of Proposition 2.3 that uses
pivoting.

Counting PU-orientations

Let G=(V,E) be a graph with a PU-orientation, and define α(G) to be the number
of PU-orientations of G distinct up to cut-switching. Camion’s theorem tells us that
if G is bipartite then α(G) = 1; the main result of this paper implies that if G is
prime, but not bipartite, then α(G)=2. In this section we describe how α(G) can
be computed by a canonical decomposition of graphs into graphs that are either
prime, bipartite, or complete.

Let ~G be an orientation of G, and let C be an even circuit of G. We say that
~G is even (odd) on C if, while traversing C in an arbitrary direction, the number of
edges of C that are oriented in the forward direction by ~G is even (odd). Because
C has an even number of edges this definition is independent of the direction in
which we traverse C.

Lemma 2.4. Let C be the circuit x1,x2,x3,x4,x1 of a graph G, and let ~G be a PU-
orientation of G that is odd on C. Then G[{x1,x2,x3,x4}] is a complete graph and

~G is even on the circuit x1,x2,x4,x3,x1.

Proof. This follows by an easy pfaffian calculation, which is left to the reader.

Let (X1,X2) and (Y1,Y2) be splits of G. We say that (X1,X2) and (Y1,Y2)
cross if Xi∩Yj 6=∅ for each i,j; we call the split (X1,X2) good if there are no splits of
G that cross (X,Y ). We recursively define a decomposition of a graph G as follows.
• D={H :H a connected component of G} is a decomposition of G,
• If D is a decomposition of G and H∈D has a good split (X,Y ) then (D\H)∪
{H ◦X,H ◦Y } is a decomposition of G.

We call the elements of a decomposition D the D-components.

Theorem 2.5. If D is a decomposition of G then α(G)=
∏
H∈Dα(H).

Proof. It is clear that α(G) is the product, taken over all connected components
H of G, of α(H). Thus, it is sufficient to prove that if (X,Y ) is a good split of G
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then α(G)=α(G◦X)α(G◦Y ). By the composition of PU-orientations of G◦X and
G◦Y , we have that α(G)≥α(G◦X)α(G◦Y ). Therefore, it suffices to show that
every PU-orientation ~G of G is equivalent under cut-switching to a composition of
PU-orientations of G◦X and G◦Y (that is, ~G can be reoriented by cut-switching
so that every edge in E(X,Y ) is oriented with its head in Y ). Suppose, by way of
contradiction, that ~G is a PU-orientation of G, and that ~G is not the composition
of PU-orientations of G◦X and G◦Y .

Let X ′=NG(Y ) and Y ′ =NG(X). Choose x1 ∈X ′ and y1 ∈ Y ′; then, for all
y ∈ Y ′ and x ∈X ′, use cut-switching so that the edge x1y is oriented with x1 as
the tail, and the edge xy1 is oriented with y1 as the head in ~G. Since ~G is not the
composition of PU-orientations of G◦X and G◦Y , there exists an edge x2y2 of G,
where x2 ∈X ′ and y2 ∈Y ′, that is oriented with x2 as its head. Partition X ′ into
sets X1,X2 such that x∈X1 if and only if the edge xy2 has y2 as its head; similarly,
partition Y ′ into sets Y1,Y2 such that y∈Y1 if and only if the edge x2y has y as its
head.

For any y′1 ∈ Y1 and any y′2 ∈ Y2, ~G is odd on the circuit x1,y
′
1,x2,y

′
2,x1, so,

by Lemma 2.4, G[{x1,x2,y
′
1,y
′
2}] is a complete graph. Therefore y′1y

′
2 is an edge

of G. We similarly prove that x′1x
′
2 is an edge of G for any x′1 ∈ X1 and any

x′2∈X2. Hence (X1∪Y1,X2∪Y2) is a split of G[X1∪X2∪Y1∪Y2]. However, since
(X,Y ) is a good split, there cannot exist a split (X ′′,Y ′′) with X1,Y1 ⊆X ′′ and
X2,Y2⊆Y ′′. Therefore, there exists a chordless path v1, . . .,vp in V \(X ′∪Y ′) such
that NG(vi)∩(X1∪Y1) 6=∅ if and only if i=1, and NG(vj)∩(X2∪Y2) 6=∅ if and only
if j = p. Since (X,Y ) is a split in G, {v1, . . .,vp} is a subset of either X or Y ; we
assume, by possibly exchanging the roles of X and Y , that {v1, . . .,vp} is a subset
of Y . Choose y′1∈Y1 adjacent to v1, and choose y′2∈Y2 adjacent to vp. Let H be
the graph induced by {x1,x2,y

′
1,y
′
2,v1, . . .,vp}; this is depicted by Figure 4.

2

xx

v v v

y’y’

2

1 2

p1

1

Fig. 4. H

We assume that p = 1 or 2, since otherwise we shorten the path y′1, v1, v2,
. . ., vp, y′2 by pivoting on v1v2, and then deleting v1 and v2 from G. If p = 1

then ~G is odd on exactly one of the circuits v1,y
′
1,x1,y

′
2,v1 and v1,y

′
1,x2,y

′
2,v1,
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which, by Lemma 2.4, contradicts that v1 is adjacent to neither x1 nor x2. If p=2
then pivoting on v1v2 deletes the edge y′1y

′
2 while leaving ~G odd on the circuit

x1,y
′
1,x2,y

′
2,x1, contradicting Lemma 2.4.

Lemma 2.6. For every integer n, α(Kn)=(n−1)!, where Kn is the complete graph
on n vertices.

Proof. Let ~Kn be a PU-orientation of Kn, and let v be any vertex of Kn. There
exists a unique orientation equivalent under cut-switching to ~Kn with the property
that every edge incident with v has v as its tail; we assume that ~Kn has this
property.

Suppose that ~Kn has a directed circuit, and let ~C be a shortest directed circuit.
~C must have length 3, since otherwise there exists a chord e of ~C and ~C+e contains
a directed circuit shorter than ~C. Let X be the vertex set of ~C. ~Kn is odd on every
circuit of length 4 in Kn[X+v], which contradicts Lemma 2.4. Hence ~Kn contains
no directed circuits. We call such an orientation transitive.

There are (n− 1)! transitive orientations of Kn− v; thus, α(Kn) ≤ (n− 1)!,
with equality only if every transitive orientation of Kn is PU. Every two transitive
orientations are isomorphic, so we may assume that VKn = {1, . . .,n}, and for

1 ≤ i < j ≤ n, the edge i,j is oriented with j as its head in ~Kn. We have that
~K3 is PU; and, for n > 3, Kn is the composition of transitive orientations of two
smaller complete graphs. Therefore, by Proposition 2.3 and induction, ~Kn is PU.

A decomposition D is called a total decomposition if no D-component has a
good split. A star graph with n vertices is a graph containing a vertex that is
adjacent to n−1 vertices of degree 1. Total decompositions were introduced in [9],
though our definition of decomposition is slightly different.

Theorem 2.7. [Cunningham [9]] Let G be a graph. Then

• All total decompositions of G are essentially the same; specifically, if D1 and
D2 are total decompositions of G, then there exists a bijection π : D1→D2
such that, for each D1-component H , H and φ(H) are isomorphic.

• If D is the total decomposition of G then every D-component is a complete
graph, a star graph, or a prime graph.

• The total decomposition can be found in polynomial time.

Let D be the total decomposition of a graph G. By Theorem 2.7, every D-
component H is either complete, prime or bipartite; so, assuming that G has a PU-
orientation, we know α(H). Therefore, by Theorem 2.5, we know α(G) explicitly.
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3. Prime graphs

This section contains the proof of Theorem 1.1.

Blocking sequences

A subsplit of G is a pair (X,Y ) of disjoint subsets of V such that (X,Y ) is a split in
G[X ∪Y ] and the cut EG[X,Y ] is nonempty. A blocking sequence for the subsplit
(X,Y ) is a sequence v1, . . .,vp of vertices in V \ (X ∪ Y ) satisfying the following
conditions:
2. (a)(X,Y ∪{v1}) is not a subsplit of G,

(b)for all i<p, (X∪{vi},Y ∪{vi+1}) is not a subsplit of G, and
(c)(X∪{vp},Y ) is not a subsplit of G, and

2.no proper subsequence of v1, . . .,vp satisfies 1.

We note that the problem of finding a blocking sequence for (X,Y ) can be
solved by finding a directed path in the digraph D=D(X,Y ), with the vertex-set

V (D) = {vX , vY } ∪ (V \X \ Y )

and the set of directed edges

E(D) = {(vX , y) : (X,Y ∪ {y}) is not a subsplit}∪
{(x, y) : (X ∪ {x}, Y ∪ {y}) is not a subsplit}∪
{(x, vY ) : (X ∪ {x}, Y ) is not a subsplit}.

Then v1,v2, · · · ,vp is a blocking sequence if and only if vX ,v1,v2, · · · ,vp,vY is a
directed path with no shortcut in D. If no directed path exists in D, from vX to
vY , then the set

X ′′ = {s ∈ V (D)− vX : a directed path joins vX to s}

does not contain vY , and (X ′,Y ′) :=(X ∪X ′′,V \X \X ′′) is a subsplit of G.

Proposition 3.1. Let (X,Y ) be a subsplit of G. There exists a blocking sequence

for (X,Y ) in G if and only if there exists no split (X ′,Y ′) of G with X ⊆X ′ and

Y ⊆Y ′.

Proof. If there exists a split (X ′,Y ′) of G with X ⊆ X ′ and Y ⊆ Y ′, then
(X ∪ {x},Y ∪ {y}) is a subsplit for every x ∈ X ′ \X and y ∈ Y ′ \ Y ; therefore
no blocking sequence exists. Conversely, if no blocking sequence exists, then we
can find the required subsplit (X ′,Y ′) by using the digraph D(X,Y ).

Following are some results that relate pivoting operations with blocking se-
quences.
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Proposition 3.2. Let (X,Y ) be a subsplit of G and let G′ be a graph obtained by
performing a pivot (or partial pivot) on an edge of G[X ]. A sequence v1, . . .,vp is a

blocking sequence of (X,Y ) in G if and only if it is a blocking sequence of (X,Y )
in G′.

Proof. Let X ′,Y ′ be disjoint subsets of V with X ⊆X ′ and Y ⊆ Y ′. By Proposi-
tion 2.2, (X ′,Y ′) is a subsplit of G′ if and only if it is a subsplit of G. The result
follows by considering the definition of a blocking sequence.

Proposition 3.3. Let v1, . . .,vp be a blocking sequence for a subsplit (X,Y ) of G, let

x∈X ∩NG(v1) and let G′ be the graph obtained by performing a partial pivot on
the edge xv1 in G. Suppose that NG(x)∩X 6=∅ and NG(x)∩X 6=NG(Y )∩X . Then

(i) if p=1, (X,Y ) is not a subsplit in G′, and

(ii) if p>1, v2, . . .,vp is a blocking sequence for (X,Y ) in G′.

Proof. (i) Suppose p= 1. Let X ′=NG(Y )∩X and Y ′=NG(X)∩Y . Then, since
(X,Y ) is a subsplit, EG[X,Y ]=[X ′,Y ′]. Note that

[P,Q] ∩ [R,S] = [P ∩R,Q ∩ S]∆[P ∩ S,Q ∩R]

holds for any subsets P , Q, R and S of V . Therefore

EG′ [X,Y ] = (EG∆[NG(v1)− x,NG(x)− v1]) ∩ [X,Y ]

= [X ′, Y ′]∆[(NG(v1)− x) ∩X,NG(x) ∩ Y ]∆[NG(x) ∩X,NG(v1) ∩ Y ].

We consider two cases; in each case we use the following fact:
Suppose EG′ [X,Y ]=[X1,Y1]∆[X2,Y2] where X1 and X2 are distinct

nonempty subsets of X , and Y1 and Y2 are distinct, nonempty subsets of
Y . Then (X,Y ) is not a subsplit in G′.

Case 1. x 6∈X ′. Then NG(x)∩Y =∅, so

EG′(X,Y ) = [X ′, Y ′]∆[NG(x) ∩X,NG(v1) ∩ Y ].

Furthermore, by the conditions of the proposition, X ′, NG(x) ∩X are distinct,
nonempty subsets ofX , and, by the definition of a blocking sequence, Y ′, NG(v1)∩Y
are distinct, nonempty subsets of Y , so (X,Y ) is not a subsplit in G′.

Case 2. x∈X ′. Then NG(x)∩Y =Y ′. Note that, for any sets A⊆Y , B1,B2⊆X ,
[A,B1]∆[A,B2]=[A,B1∆B2], so

EG′ [X,Y ] = [X ′∆((NG(v1)− x) ∩X), Y ′]∆[NG(x) ∩X,NG(v1) ∩ Y ].

Now x∈X ′∆((NG(v1)−x)∩X). However x 6∈NG(x)∩X , so X ′∆((NG(v1)−x)∩X),
NG(x)∩X are distinct, nonempty subsets of X . Furthermore, by the definition
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of a blocking sequence, Y ′, NG(v1)∩Y are distinct nonempty subsets of Y ; hence
(X,Y ) is not a subsplit in G′.

(ii) Suppose p > 1. By the minimality of a blocking sequence we have that
(X,Y ∪{v2}) is a subsplit in G. Note that v1 is a blocking sequence for the subsplit
(X,Y ∪{v2}) in G. By part (i) of the proposition, (X,Y ∪{v2}) is not a subsplit in
G′. Also note that (X∪{v1},Y ) is a subsplit in G and that v2, . . .,vp is a blocking
sequence for (X ∪{v1},Y ) in G. By Proposition 3.2, v2, . . .,vp is also a blocking
sequence for (X ∪{v1},Y ) in G′, and, since (X,Y ∪{v2}) is not a subsplit in G′,
v2, . . .,vp is also a blocking sequence for (X,Y ) in G′.

Sign-fixed circuits

Let C be a circuit in a graph G. We say that C is sign-fixed with respect to G if any
two PU-orientations of G differ on an even number of edges of C. For subgraphsH1,
H2 of G, we denote by H1∆H2 the subgraph of G induced by the edges EH1

∆EH2
.

Proposition 3.4. Let C be a circuit of a graph G. If there exist sign-fixed circuits
C1, . . .,Ck of G such that C=C1∆C2∆. . .∆Ck then C is sign-fixed in G.

Proof. Let ~G1, ~G2 be any pair of PU-orientations of G. Let S be the set of edges
of G in which the orientations ~G1 and ~G2 differ. For each sign-fixed circuit Ci,
|Ci∩S| is even. Now

C ∩ S = (C1∆. . .∆Ck) ∩ S
= (C1 ∩ S)∆. . .∆(Ck ∩ S).

Since C∩S can be represented as the symmetric difference of even sets, C∩S has
even cardinality. Hence C is sign-fixed in G.

The following proposition is attributed to Bondy in [16]; it can be easily proved
using Menger’s theorem.

Proposition 3.5. Let H be an eulerian subgraph of a 2-vertex-connected graph G.
If H has an even number of edges, then there exist even circuits C1, . . .,Ck of G
such that

H = C1∆C2∆. . .∆Ck .

Lemma 3.6. Let G be a graph such that every even circuit is sign-fixed. All PU-
orientations of G are switching-equivalent if G is bipartite or 2-connected.

Proof. Let ~G1, ~G2 be PU-orientations of G. If C′ is an even circuit of G, then ~G1

and ~G2 differ on an even number of edges of C′, by the premises of the lemma. We
claim that the same property may be assumed for every circuit C′ of G. This is
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obvious if G is bipartite. Otherwise fix an odd circuit C. We may assume that the
orientations ~G1 and ~G2 differ on an even number of edges of C; otherwise we reverse
the orientation ~G2. Consider any other odd circuit C′ of G. By Proposition 3.5
there exist even circuits C1, . . .,Ck such that C′∆C =C1∆. . .∆Ck , therefore C′ =
C∆C1∆. . .∆Ck. It follows similarly to the the proof of Proposition 3.4, that the
orientations ~G1 and ~G2 differ on an even number of edges of C′. Which proves the
claim.

Let S be the set of edges upon which the orientations ~G1 and ~G2 differ. It
follows from the claim that if we contract each of the edges in EG \S, then we
obtain a bipartite graph. Therefore the edges S form a cut in G, so ~G1 and ~G2 are
equivalent under cut-switching.

Corollary 3.7. If G is prime and every even circuit of G is sign-fixed, then all PU-
orientations of G are switching equivalent.

Proof. Trivially we may assume G has at least 4 vertices. Then G is 2-connected.

Lemma 3.6 generalizes the ideas used in Seymour’s proof of Theorem 1.2.
Following is a summary of Seymour’s proof. Suppose C is a circuit of a bipartite
graph G. If C is chordless then it is easy to show that C is sign-fixed. Otherwise, if
C has a chord, then C can be expressed as the symmetric difference of two shorter
circuits, so inductively we can prove that C is sign-fixed. Then, by Lemma 3.6, all
PU-orientations of G are switching-equivalent.

Decomposition of circuits

In this section we describe three decompositions of an even circuit C into a sym-
metric difference of shorter even circuits.

C

C1
(e)

e

C (e)
2

Fig. 5. C+e

Let C be an even circuit and let e be a chord of C. C can be expressed as the
symmetric difference of two shorter circuits (see Figure 5) denoted C1(e),C2(e) (in
no particular order). Since C is even, C1(e) and C2(e) are either both even or both
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C

,

,

e e1 2

C 2

C 1

Fig. 6. Decomposition of C+e1 +e2

odd. We say that e is an even (odd) chord of C if C1(e) and C2(e) are both even
(odd). The first decomposition of C is C=C1(e)∆C2(e), when e is an even chord.

Let e1 and e2 be odd chords of an even circuit C. We say that e1 and e2
cross if e1 and e2 have disjoint ends and e2 has exactly one end in C1(e1). If e1

and e2 are crossing then define C′1 =C1(e1)∆C1(e2) and C′2 =C1(e1)∆C2(e2); see
Figure 6. C′1 and C′2 are both even circuits and

C′1∆C′2 = (C1(e1)∆C1(e2))∆(C1(e1)∆C2(e2))

= C1(e2)∆C2(e2)

= C.

If either C′1 or C′2 has length 4 then the other has the same length as C; otherwise
both C′1 and C′2 are shorter than C. We say that e1 and e2 are tight crossing chords
if either C′1 or C′2 has length 4. The second decomposition of C is C = C′1∆C′2,
when e1 and e2 are not tight crossing chords.

Note that it is not possible to have three odd chords of a circuit such that each
pair is a tight crossing pair, so if we have any three mutually crossing odd chords
of a circuit C, we can apply one of the above decompositions to express C as the
symmetric difference of two shorter even circuits.

,

C
3

ex

5

3

x2
x1

e1
2

e

xx4

C

Fig. 7. C+e1 +e2 +e3

In the third decomposition we have three odd chords e1, e2 and e3 of an even
circuit C such that {e1,e2} and {e2,e3} are pairs of tight crossing chords and e1
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and e3 do not cross. In this situation there are consecutive vertices x1, . . .,x5 in
C such that e1, e2 and e3 have ends {x1,x3}, {x2,x4} and {x3,x5} respectively,
as depicted in Figure 7. Also depicted in Figure 7 is an even circuit C′; C is the
symmetric difference of C′ and the two circuits x1,x2,x4,x3,x1 and x5,x4,x2,x3,x5.
Furthermore each of these circuits is even and shorter than C.

A circuit is said to be decomposable (otherwise indecomposable) if by one of the
above decompositions we can express C as the symmetric difference of shorter even
circuits. More rigorously, an even circuit C is indecomposable if the chords of C
are all odd, each chord crosses at most one other chord and all crossings are tight.

PU-orientations of prime graphs

We now prove the main result of the paper.

Proof of Theorem 1.1. By Corollary 3.4, it suffices to show that in a prime graph
all even circuits are sign-fixed. We prove this by induction on the length of an even
circuit. Let k≥4 be an even integer. We assume that in every prime graph every
even circuit of length less than k is sign-fixed.

Let C′ be a circuit of length k in a prime graph G′. If C′ can be expressed as
the symmetric difference of sign-fixed circuits in G′ then, by Proposition 3.4, C′ is
sign-fixed. In particular, if C′ is decomposable then C′ is sign-fixed.

Claim 1. Let C be a circuit of length k in a prime graph G. If there exists a vertex
that has degree 2 in G[VC ] then C is sign-fixed.

Proof of claim. In the case that C has length 4, the claim follows from Lemma 2.4.
Now suppose that k>4 and that C is indecomposable. Let v be a vertex of degree 2
in G[VC ], let u,w be the neighbours of v in G[VC ] and let G′ be the graph obtained
by performing a partial pivot on vw in G.

Let u′u and ww′ be the edges other than uv and uw incident to u and w
respectively in C. Note that u′ is not adjacent to w in G since such an edge
would be an even chord of C, and similarly u is not adjacent to w′. We have that
NG[VC ](v)−w={u}, so

EG′ [VC ] = EG[VC ]∆[{u}, NG[VC ](w)− v].

Therefore the partial pivot affects only edges incident with u, but the edges uu′
and uv are unaffected by the partial pivot, so C is a circuit in G′. Furthermore if
the partial pivot were performed on any orientation of G, then exactly one edge of
C, namely vw, will be reoriented, so C is sign-fixed in G if and only if C is sign-
fixed in G′. Now uw′ is an edge of G′, so C has an even chord in G′. Hence C is
sign-fixed in G′. This proves Claim 1.

Claim 2. Let C be a circuit of length k in a prime graph G, and suppose x1, . . .,x4
are consecutive vertices of C such that x1x3 and x2x4 are chords of C. Finally let
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C

3

C
,

x2
x1

x4x

Fig. 8. Circuits in Claim 2

C′ be the symmetric difference of C and the circuit x1,x3,x4,x2,x1. (See Figure 8.)

Then at least one of C and C′ is sign-fixed.

Proof of claim. The claim is trivially true when C is decomposable, so suppose that
C is indecomposable. Let X = {x2,x3} and Y =VC \X , and let e1 and e2 be the
edges x1x3 and x2x4, respectively. Note that e1 and e2 are crossing chords of C,
so there are no other chords which cross either e1 or e2. Hence (X,Y ) is a subsplit
of G; let v1, . . .,vp be a blocking sequence for this subsplit. We prove the claim by
induction on the length of the blocking sequence.

Case 1. p= 1. v1 is a blocking sequence for the subsplit (X,Y ) in G. Then v1 is
adjacent to exactly one of x2 and x3. Assume with no loss of generality that v1 is
adjacent to x2. v1 must also be adjacent to some vertex in Y . This gives rise to
two subcases.

C2

4

C

C1

y

v1

2x
x1

x3 x

Fig. 9. Decomposition in Case 1.1

Case 1.1. v1 is adjacent to a vertex y in Y \{x1,x4}. We assume that x2 and y are
an even distance apart in C. (Otherwise x2 and y are an even distance apart in C′

and we can interchange the roles of C and C′.) Consider the circuits C1 and C2
defined by Figure 9. C1 and C2 are both even and have length at most k. x3 and
x2 have degree 2 in G[VC1

] and G[VC2
] respectively, so by Claim 1, C1 and C2 are

both sign-fixed. Furthermore C is the symmetric difference of C1 and C2 so C is
also sign-fixed. This completes the proof of Claim 2 in Case 1.1.
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C

1

2

C

C1

x

3x
x4

1

2x

v

Fig. 10. Decomposition in Case 1.2

Case 1.2. v1 is not adjacent to any vertices in Y \{x1,x4}. In this case v1 cannot
be adjacent to both x1 and x4 since otherwise (X ∪{v1},Y ) would be a subsplit,
contradicting the definition of a blocking sequence. So v1 is adjacent to exactly one
of x1 and x4. We assume that v1 is adjacent to x1. (The other case is equivalent
under interchanging the roles of C and C′ and changing labels.) Consider the even
circuits C1 and C2 defined by Figure 10. v1 has degree 2 in both G[VC1

] and G[VC2
],

so by Claim 1, C1 and C2 are both sign-fixed. C′ is the symmetric difference of C1
and C2 so C′ is also sign-fixed. This completes the proof of Claim 2 in Case 1.

Case 2. p>1. As with Case 1, v1 is adjacent to exactly one of x2 and x3, and we
assume with no loss of generality that x2 and v1 are adjacent. (X ∪{v1},Y ) is a
subsplit, so either NG(v1)∩Y =∅ or NG(v1)∩Y =NG(X)∩Y ={x1,x4}. This gives
two subcases.

Case 2.1. NG(v1)∩ Y = ∅. Let G′ be the graph defined by performing a partial
pivot on the edge x2v1. Note that NG(v1)∩VC ={x2}, so G[VC ]=G′[VC ]. Then C
and C′ are circuits in G′ and, by considering the effect of this partial pivot on an
orientation of G, C and C′ are sign-fixed in G if and only if they are sign-fixed in
G′. Now, by Proposition 3.3, v2, . . .,vp is a blocking sequence for the subsplit (X,Y )
in G′, so, by the induction hypothesis of the claim, one of C and C′ is sign-fixed in
G′.

Case 2.2. NG(v1)∩ Y = {x1,x4}. We have that v2, . . .,vp is a blocking sequence
for the subsplit (X∪{v1},Y ). Furthermore, for i>1, (X,Y ∪{vi}) is a subsplit; it
follows that vi is adjacent with x2 if and only if vi is adjacent with x3. Consequently
v2, . . .,vp is a blocking sequence for the subsplit ({x2,v1},Y ). Now, by the induction
hypothesis of the claim, one of the circuits C1 or C2, defined in Figure 11, is
sign-fixed. Let C′1 and C′2 be the circuits v1,x1,x3,x2,v1 and v1,x4,x3,x2,v1

respectively. C′1 and C′2 are both sign-fixed by Claim 1. If C1 is sign-fixed then
C′, which is the symmetric difference of C1 and C′1, is sign-fixed. Otherwise C2 is
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Fig. 11. Case 2.2

sign-fixed; then C, which is the symmetric difference of C2 and C′2, is sign-fixed.
In either case we have proved Claim 2.

The proof is now settled with two final cases.

1
C

C

3

2

C

Fig. 12. Decomposition when k=4

Case 1. k = 4. Let C1 be a circuit of length 4 in a prime graph G. If G[VC1
] is

not complete then G[VC1
] contains a vertex of degree 2, so, by Claim 1, C1 is sign-

fixed. Thus we may suppose that G[VC1
] is complete. Let C2 and C3 be defined

by Figure 12. By Claim 2, one of C1 and C2 is sign-fixed. If C1 is sign-fixed we
are done, so suppose C2 is sign-fixed. Similarly one of C1 and C3 are sign-fixed, so
suppose C3 is sign-fixed. However C1 is the symmetric difference of C2 and C3, so
C1 is sign-fixed.

Case 2. k > 4. Let C be a circuit of length k in a prime graph G. If C is
decomposable or if G[VC ] contains a vertex of degree 2 then C is sign-fixed. Suppose
then that C is indecomposable and that every vertex in G[VC ] has degree at least 3.
Let e be a chord of C such that the distance in C between the ends of e is minimum
among all chords of C. Let y1, . . .,yr be the internal vertices of a shortest path in
C between the ends of e. Since each vertex in VC has degree at least 3 in G[VC ],
each yi must subtend at least one chord of C; let ei be a chord having yi as an end.
The distance in C between the ends of ei is at least the distance between the ends
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of e in C, so ei must cross e. Since C is indecomposable, there is at most one chord
crossing e; therefore r=1. Furthermore e1 and e must be a tight crossing pair, so
the other end of e1 must also be adjacent to an end of e in C. Therefore there are
consecutive vertices x1,x2,x3,x4 of C such that x1 and x3 are the ends of e, and
x2 and x4 are the ends of e1. Let C′ be the circuit x1,x2,x4,x3,x1; C′ is sign-fixed
since it has length 4. By Claim 2 at least one of C and C∆C′ is sign-fixed. If C is
sign-fixed we are done. Otherwise C∆C′ is sign-fixed, so C (which is the symmetric
difference of C∆C′ and C′) is also sign-fixed. This completes the proof.

4. Constructing a PU-orientation

Let G= (V,E) be a simple graph that admits a PU-orientation. In Section 2 we
essentially described how to construct all PU-orientations of G from a single PU-
orientation. In this section, we outline a polynomial-time algorithm that provides
the initial PU-orientation. By Proposition 2.3, we may assume that G is prime.

We fix an arbitrary orientation ~G0 = (V, ~E0) of G. Thus orientations can be
conveniently encoded by (0,1)-vectors indexed by E. Specifically, an orientation
~G is encoded by x∈ {0,1}E where xe = 0 if and only if ~G and ~G0 concur in their
orientation of e. Henceforth we refer to an orientation by its encoding.

Let C0 denote the set of edge sets of even circuits of G. Let M be the incidence
matrix of even circuits versus edges of G. That is, M is a (0,1)-matrix with rows
C0 and columns E where, for C ∈ C0 and e ∈E, the (C,e) entry of M is 1 if and
only if e ∈C. Let v,v∗ ∈ {0,1}E, where v∗ is a PU-orientation, and let b=Mv∗.
Then, by Theorem 1.1, v is PU if and only if v satisfies the binary matrix equation
Mv= b. Let B0⊆C0 be a basis of the even-circuit space (that is, the rowspace of
M over GF(2)). We now define, M ′=M [B0,E] and b′=M ′v∗. Then, M ′v= b′ if
and only if Mv= b. Consequently, for v∈{0,1}E, v is PU if and only if M ′v= b′

over GF(2). Our algorithm finds a PU-orientation by solving the binary matrix
equation M ′v= b′. At this point there remain two obstacles in implementing the
algorithm, namely:

(1) How can we find a basis for the even-circuit space efficiently?
(2) For an even circuit C, how can we compute bC efficiently (without knowing

v∗)?
Let C denote the set of edge sets of circuits of G. The circuit space (that

is the rowspace, over GF (2), of the circuit-edge incidence matrix of G) is the set
of incidence vectors of eulerian subgraphs of G. Thus, by Proposition 3.5, there
exists a basis B ⊆ C of the circuit space that contains at most one odd circuit.
For bipartite graphs this is trivial; for nonbipartite graphs such a basis can be
constructed efficiently by making an ear decomposition of G that begins with an
odd circuit; we leave the details to the reader. Given such a basis of the circuit
space, the even circuits form a basis of the even-circuit space. This answers (1).
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The second of the aforementioned problems is less trivial. However, our proof
of Theorem 1.1 is essentially a recursive algorithm for computing bC . The algorithm
relies on the following strengthening of Proposition 3.4, whose proof is left to the
reader.

Proposition 4.1. Let C,C1, . . .,Ck be even circuits of G such that C=C1∆. . .∆Ck.
Then bC =bC1

+ . . .+bCk modulo 2.

Our algorithm immediately separates the cases where |C| = 4 and |C| > 4.
However, in each case we must solve the subproblem given in Claim 2; precisely,
the problem is as follows.
Subproblem: Let C be an even circuit with consecutive vertices x1, . . .,x4 such that

x1x3 and x2x4 are chords, and let C′ be the symmetric difference of C and the
circuit x1,x3,x4,x2,x1. Find bC or bC′ .

The algorithm for this subproblem comes directly from the proof of Claim 2. We
leave the details to the reader, and instead focus on the main algorithm.

Suppose that |C|=4. If G[VC ] has a vertex of degree 2, then bC can easily be
computed using Lemma 2.4. Thus we assume G[VC ] is complete, and is depicted in
Figure 12. By using the subproblem twice, we determine two of bC1

, bC2
, bC3

, and
the third is obtained by their sum.

We now consider the case that |C|>4.
If C is decomposable, then we can express C as the symmetric difference of

circuits C1, . . .,Ck, as described in Figures 5, 6 and 7, such that |Ci| < |C|, for

i= 1, . . .,k, and
∑k
i=1 |Ci| ≤ |C|+ 8. Thus bC can be computed recursively as the

sum of the bCi . The conditions on the sizes of these circuits maintains the efficiency
of the algorithm. Henceforth we assume that C is indecomposable.

Now suppose that G[VC ] has a vertex v of degree 2. Let w be a vertex adjacent
to v. Note that changing the orientation of an edge in ~G0 has a predictable effect
on bC . We change the orientation ~G0 so that we have the following property: Each
edge xy with x∈N(w) and y∈N(v) is oriented with its head being a neighbour of v
and its tail being a neighbour of w. (Note that we allow x=v and y=w.) We leave
it to the reader to check that this property ensures that partial pivoting on {v,w}
in the adjacency matrix of ~G0 yields a (0,±1)-matrix. Let ~G′0 be the oriented graph
obtained by this partial pivot, and let G′ be the graph obtained by performing a
partial pivot on vw in G. Note that ~G′0 is an orientation of G′; also C is a circuit
of G′ and bC is unaffected by the pivot. However, the partial pivot added an even
chord to C, making C decomposable. Henceforth we may assume that G[VC ] has
no vertex of degree 2.

By the assumptions on C, we can find consecutive vertices x1,x2,x3,x4 of C
such that x1x3 and x2,x4 are chords. Let C0 denote the circuit x1,x2,x4,x3,x1.
Since C is indecomposable, x1x4 is not a chord. Thus bC0

can be computed easily
by Lemma 2.4. Let C′ be the symmetric difference of C and C0. We now use the



PRINCIPALLY UNIMODULAR SKEW-SYMMETRIC MATRICES 485

subproblem to find bC or bC′ . Thus we know two of bC0
, bC , bC′ , their sum gives us

the third. This completes the algorithm.
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