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We describe a common generalization of the weighted matching problem and the weighted 
matroid intersection problem. In this context we establish common generalizations of the main 
results on those two problems--polynomial-time solvability, rain-max theorems, and totally dual 
integral polyhedral descriptions. New applications of these results include a strongly polynomial 
separation algorithm for the convex hull of matchable sets of a graph, and a polynomial-time 
algorithm to compute the rank of a certain matrix of indeterminates. 

1. I n t r o d u c t i o n  

Given a graph G : (V,E), a perfect matching of G is a subset of edges such 
that  each vertex of G is incident to exactly one edge of the subset. Tut te  [19] 
gave a necessary and sufficient condition for the existence of a perfect matching. 
Later Edmonds [6], [7] gave polynomial-time algorithms to decide whether a given 
graph has a perfect matching, and (given a weighting of the edges) to find a perfect 
matching of maximum weight. He also gave a polyhedral description of the perfect 
matchings of G, by characterizing their convex hull as the solution set of a certain 
system of linear inequalities. Finally, Cunningham and Marsh [5] proved the total  
dual integrMity of the system of inequalities. 

Given matroids M1,M2 on the same set T, a common basis of M1, M2 is 
a subset of T tha t  is a basis in both matroids. Edmonds [9] gave a necessary 
and sufficient condition for the existence of a common basis, and po!ynomial-t ime 
algorithms to determine whether there exists a common basis and to find a common 
basis of maximum weight. (In analyzing such "matroid algorithms", we regard each 
independence test as a single step of the algorithm.) He also found a totally dual 
integral polyhedral description of the common bases. 

Here we propose a common generalization of matching and matroid intersec- 
tion, and establish common generalizations for the results mentioned above. Let 
G=(V,E)  be a graph and T1,T2 disjoint stable sets of G, that  is, sets of mutually 
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Figure 1. A basic path~matching 

nonadjacent vertices. We denote V \  (T1 UT2) by R. Let Mi be a matroid on Ti, 
for i =  1,2, and suppose that  M1 and/1//2 have rank r. A basic path-matching is a 
collection of r vertex-disjoint paths, all of whose internal vertices are in R, linking 
a basis of M1 to a basis of M2, together with a perfect matching of the vertices of 
R not in any of the paths. (Figure 1 shows an example. Here we assume tha t  the 
only basis of M1 is T1 and the only basis of M2 is T2. The thick edges form a basic 
path-matching.)  In the special case when R =  V, a basic path-matching is nothing 
but a perfect matching of G. In the special case when R = 0, and G consists of 
a perfect matching joining copies T1,T2 of a set T, a basic path-matching corre- 
sponds to a common basis of M1 and M2. Another important  special case occurs 
when there are no special restrictions on G, T1,T2, but 2/41 and M2 are free, tha t  is, 
T i is a basis of Mi for i = 1 and 2. In this case we refer to a basic path-matching as 
a perfect path-matching with respect to G,T1,T2. Perfect path-matching is itself a 
nontrivial generalization of matching. With the exception of matroid intersection, 
all of the applications of basic path-matching that  we cite are actually special cases 
of perfect path-matching. 

T h e  e x i s t e n c e  t h e o r e m  

Given a graph G, we denote by odd (G) the number of components of G having 
an odd number of vertices. For a subset S of vertices of G, G[S] denotes the 
subgraph of G induced by S. A pair of subsets D1 C T1 U R, D2 C_ T2 U R is called 
stable if no edge of G joins a vertex in D1 \ D2 to a vertex in D2 or a vertex in 
D2\D1 to a vertex in D1. (To see where the name comes from, consider the special 
case in which R = 0 . )  The sets of vertices contained in the ellipses of Figure 2 form 
a stable pair. We use rt,r2 to denote the rank functions of M1,M2. We now state 
the main result on the existence of basic path-matchings. 

Theorem 1.1. There exists a basic path-matching with respect to G, M1, M2 if and 
only if there does not exist a stable pair (D1, D2) for which 

rl(T1 \ D1) + r2(T2 \ D2) + ]R \ (D1 U D2)] < r + odd (G[D1 A D2]). 
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T~ R T2 
Figure 2. A stable pair 

Proof  of necessity in Theorem 1.1. Suppose that  there exists a basic path-matching 
K,  and let (01,D2) be a stable pair. We think of the paths o f / (  as being from T1 
to T2. There are at least r,r l(Tl\D1) paths o f / (  beginning in DlnT1. Each 
of them has a first vertex not in D1. Since (01,D2)  is stable, that  vertex must be 
in (RUT2)\(D1UD2). Also, for each odd component H of G[DIAD2], either an 
edge of a path of K leaves H or a matching edge leaves H. In either case the other 
end of this edge is again in (RUT2)\(DIUD2). Now we have identified at least 
r - r l  (T1 \ D1) + odd (G[D1 N D2]) vertices of (R U 7'2) \ (D1 U D2), and all of them 
must be distinct. Moreover, at most r2(T2\D2) of them can be from T2. Therefore, 

r - rl(T1 \ D1) q- odd (G[D1 N D2]) < IR \ (D1 U D2)] q- r2(T2 \ D2). 

The result follows. | 

The stable pair indicated in Figure 2 shows that  there is no perfect path- 
matching in that  example. N o w  we apply the existence theorem to derive the 
existence theorems for matching and matroid intersection mentioned above. 

Matching. Tutte 's Theorem [19] states that  G = (V, E)  has a perfect matching if 
and only if there does not exist a subset S of V such that  odd (G-S) > IS]. It is easy 
to see that  the condition is necessary. Now suppose that  G has no perfect matching, 
and take R =  V. Then by Theorem 1.1, there exists a stable pair (D1, D2) such that  

I V \  (D1 UD2)[ < odd (G[D1N D2]). 

Now observe that,  because (D1,D2) is stable, every odd component of G[D1 N D2] 
is also an odd component of G[O]U 92]. Therefore, odd (G[D1N 02]) _< odd (G[OltJ  
92]). If we take S = Y \ (D1 U D2), it follows that  odd ( G -  S) > IS  I, as required. 

Matroid Intersection. Suppose that  M1,M2 are matroids on T, each of rank r. 
Edmonds'  Matroid Intersection Theorem [9] states that  there exists a common basis 
if and only if there does not exist a subset A of T such that  r l (A)  + r2 (T \ A) < r. 
It is easy to see that  this condition is necessary. Now suppose that  there does not 
exist a common basis. If we take G to be a perfect matching joining copies T1,T2 
of T, and R to be 0, then by Theorem 1.1 there exists a stable pair (D1,D2) such 
that 

rl(T1 \ O1) + r2(T2 \ 92) < r. 
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We see from the stability of (D1, D2) that  at least one end of any edge of G is in 
T1 \D1  or in T2\D2. Thus, if A denotes the subset of T corresponding to TI \D1 ,  
then r l  (A) + r2 (T \ A) < r, as required. 

Algorithms 

The main algorithmic result of this paper is the following. 

Theorem 1.2. There is a polynomial-time matroid algorithm to decide whether 
there exists a basic path-matching with respect to G, M1, M2. 

We have already mentioned that  Edmonds also gave polynomial-t ime algo- 
ri thms for weighted versions of the matching and matroid intersection problems; 
we want to generalize these results, too. We need to be careful, however, to find 
an appropriate weighted generalization of the basic path-matching problem. The 
simplest choice, to consider the weight of a basic path-matching to be the sum of 
the weights of its edges, leads to an XSD-hard problem. For suppose tha t  all edge- 
weights are 1, ]Tll = [T2J = 1 ,  and M1,M2 have rank 1. Then there exists a basic 
path-matching of weight I V I -  1 if and only if G has a hamiltonian pa th  joining 
T1 to T2. Instead, we define the weight of a basic path-matching to be the sum 
of the weights of the edges of the paths plus twice the weights of its other edges. 
Notice that  this choice has the nice property that  it does not favour put t ing edges 
into paths over putting them into the matching, and the resulting maximum-weight 
problem still contains the weighted versions of the matching and matroid  intersec- 
tion problems. 

Theorem 1.3. There is a polynomial-time matroid algorithm to find (if there is one) 
a maximum-weight basic path-matching with respect to G, M1, M2. 

P o l y h e d r a  

The algorithmic results will be derived as consequences of a polyhedral theo- 
rem, which we now describe. First, we introduce some terminology and notation. 
We use R to denote the set of real numbers. If B is a finite set, a polyhedron in 

R B is a set of the form {x C R B : Ax <_ b} for some real matr ix  A and vector b 
of appropriate dimensions. A polytope is a bounded polyhedron. We say tha t  a 
polyhedron is integral if it is the convex hull of its integral points. I t  is well-known 
that  a polytope is the convex hull of a finite set of points, and the minimal such 

set consists of its extreme points. For x E R B and C C B, we denote by x(C) the 
sum E(xj:jcC). For a graph G=(V,E)  and a subset S of V, we denote by 5(S) 

(or 5G(S)) the set of edg6s of G that  have exactly one end in S, and by "/(S) (or 
"ya(S)) the set of edges of G having both ends in S. If G is a digraph and S is a 

subset of its vertices, we denote by 5 - ( S )  the set of arcs of G having tail in S and 

head not in S, and by 6+(S) the set of arcs of G having head in S and tail not in S. 
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Given a basic path-matching K,  let K1 be the set of edges in the paths and let 
K2 consist of the remaining edges of K.  We define the basic path-matching vector 

corresponding to K to be the vector e K E  R E such that,  for e E E, 

1, i f e ' E K 1  

ee K =  2, i f e � 9  

0, i fe  ~ K .  

We denote the set of all basic path-matchings by aT---aT(G, M1,M2).  Notice that,  
given a weight vector c, the problem of finding a maximnm-weight basic path- 

matching can be written as max(er K : K �9 aT). The convex hull of all basic 

path-matching vectors, conv({r : K �9 aT}), is called the basic path-matching 
polyhedron.. By a slight abuse of notation, we will sometimes denote this polyhedron 
by conv (aT). The maximum weight basic path-matching problem is equivalent to 
d" linear programming problem over conv (aT). 

Theorem 1.4. cony (aT(G, M1, M2)) is the set of all x C R E satisfying: 

(1) x(5(v)) = 2 
(2) x(5(s)) >__ r 
(3)  x (6 ( s ) )  > 2 
(4) x(5(A))  < rl(A) 
(5) x(5(A))  <__ r2(A) 
(6) x(5(T1)) = r 
(7) x(5(T2)) = r 
(8) ~ > o. 

(v c R) 
(T1C S C T1U R) 
(S c_ R, IS] odd) 
(A c T1) 
(A c_ T2) 

Theorem 1.4 is proved in Section 3. Here we apply it to matching and matroid 
intersection. Edmonds [7] proved the following result on the polytope of perfect 
matchings. 

Theorem 1.5. (Matching Polytope Theorem) The convex hull of incidence vectors 

of perfect matchings of a graph G = (V, E) ~is the set of all x E R E satisfying: 

x(6(v)) = 1 (v e V) 

x(5(S))  >_ 1 (S C R, [S I odd) 

x~O. 

Now. consider the~, special case of Theorem 1.4 in which T1 = T2 = 0. Then 
we get a description by linear inequalities of the convex hull of twice the inci- 
dence vectors of perfect matchings of G. In the resulting description, the inequali- 
ties (2), (4), (5), (6), and (7)~each collapse to a single redundant inequality. Divid- 
ing the right-hand sides of the remaining inequalities by 2, we obtain a description 
of the perfect matching polyhedron, and it is precisely that  of Theorem 1.5, as 
required. 

Edmonds [91 also proved the!f011owing polyhedral theorem on common bases. 
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Theorem 1.6. (Matroid Intersection Polyhedron Theorem) The  convex  hull  o f  
incidence vectors o f  common  bases o f  two matroids  M1, M 2 on T wi th  rank  funct ions  

r l ,  r2 is the  set  o f  all x E R T satisfying: 

x ( A )  <_ r l (A)  (A C_ T) 

x ( A )  <_ r2(A) (A C T) 

x ( T )  = r 

x ~ O .  

Applying Theorem 1.4 in the case in which R = 0 and G consists of a perfect 
matching joining T1 to T2, we get a description of the convex hull of incidence 
vectors of common bases of M1 and M2. In this description, inequalities (1) and (3) 
disappear, inequalities (2) are redundant, and inequality (6) is the same as (7). 
Therefore, Theorem 1.6 also follows from Theorem 1.4. 

It is also quite easy to prove the algorithmic results stated above from Theo- 
rem 1.4. 

Proof  of Theorems 1.2 and 1.3 from Theorem 1.4. By the equivalence of optimiza- 
tion and separation--see Gr5tschel, Lovs and Schrijver [13]--it is possible to 
optimize an arbitrary linear function over cony (X(G, M], 1]//2)) in polynomial time 
if and only if it is possible to solve the separation problem for the same polytope in 
polynomial time. (The separation problem for a polytope P C R n is, given a point 

C R n, either to determine that  ~ E P or to find a linear inequality ax  < ~ that  is 
violated by ~ but  satisfied by every point in P.) However, it is straightforward to 
show that  the latter is true for the polyhedron of Theorem 1.4. First, it is easy to 

check that  a given point ~ E R E satisfies inequalities (1) and (8), since there are 
only a few of them. Henceforth, we may assume that ~ > 0. Now inequalities (2) 
can be checked by solving a minimum-cut problem. Inequalities (3) require a more 
sophisticated use of minimum:cut methods, but these can also be checked in poly- 
nomial time; see Padberg and Rao [16]. Next, ~ satisfies inequalities (4) and (6) 

if and only if the vector y E R T1 defined by Yv = 2(5(v)) is in the convex hull of 
incidence vectors of bases of M1. Polynomial-time algorithms for the separation 
problem for this polytope are given in [13] and [2]. The inequalities involving M2 
can be handled similarly. This completes the proof. | 

Note that the algorithms that result from these proofs use the ellipsoid method, 
and are not practical. 

Independent path-matchings 

Many important results are formulated in terms of matchings of graphs (rather 
than perfect matchings), and in terms of common independent sets of two matroids 
(rather than common bases). There is an analogous theory for path-matchings, 
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Figure 3. An independent path-matching 
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which we describe here. In particular, we show how these results lead to a proof of 
Theorem 1.1. 

We begin as before with G, M1,M2, except that  we no longer require that  
M1 and M2 have the same rank. An independent path-matching with respect to 
G, M1, M2 is a set K of edges such that  every component of G(V, K) having at least 
one edge is a simple path from T1 t2 R to T2 U R, all of whose internal vertices are 
in R, and such that  the set of vertices of Ti in any of these paths is independent in 
Mi, for i = 1 and 2. (Of course, any basic path-matching is an independent path- 
matching.) The thick edges in Figure 3 form an independent path-matching with 

respect to the free matroids M1,M2. It is easy to see, in the case where R=O and 
G consists of a perfect matching of T1 to T2, that  an independent path-matching 
corresponds to a common independent set of M1 and M2. In the case where R--V, 
we do not get such a simple correspondence to matchings of G, since there may be 
paths of length more than 1 in G(V, K). However, let us define the independent 
path-matching vector cK corresponding to K in the same way as before, namely, an 
edge of a one-edge component of G(V, K) having both ends in R gets an entry of 2, 
the other edges of K get entries of 1, and edges not in K get entries of 0. Also, we 

define the weight of K with respect to a given weight vector c to be cr K. Then in 
the case where R =  V, it is easy to see that the maximum weight of an independent 
path-matching is twice the maximum weight of a matching, although there may 
be maximum-weight independent path-matchings that  do not arise directly from a 
single maximum-weight matching. Finally, there is the important  special case in 
which M1, M2 are free; then we may refer to an independent path-matching with 
respect to  G, M1, M2 as a path-matching with respect to G, T1, T2. : 

The problem of finding a maximum-weight independent path-matching can be 
reduced by a trick to the problem of finding a maximum-weight basic path-matching 
(in a different graph with different matroids). However, as mentioned above, there 
is something to be gained by attacking this problem more directly. A main result is 
the following polyhedral description of the independent path-matchings. We denote 
by •* =X*(G, M1, M2), the set of all independent path-matchings with respect to 

G, M1, M2. (As before, we may abbreviate conv ({r  K E3~'*}) to conv (~f*).) 
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Theorem 1.7. conv (Jr:* (G, M1, M2)) is the set of all x e R E satisfying: 

(9) ~(6(~)) _< 2 (~ e R) 
(so) ~(~(s)) _< IS n RI (T1 c_ S c_ T1 u R) 
(11) x('T(S)) _< IS n RI (T2 C_ S C_ T2 U R) 
(]2) .(G(s)) < IsI - 1 (s  c_ R, ISl odd) 
(13) x(5(A))  <_ r l(A) (A C_ t l )  
(14) z (5(A))  < r2(d) (A C 2"2) 
(15) z >_ o. 

Theorem 1.7 is proved from Theorem 1.4 in Section 3. It is easy to derive from 
it the polyhedral theorems of Edmonds on matchings and common independent 
sets. We also call attention to the path-matching polyhedron, that is, the special 
case in which M1, M2 are free. 

Corollary 1.8. The convex hull of path-matchings determined by G, T1,T2 is the set 
of  all 'x E R E satisfying: 

(16) x(5(v)l < 1 (v e T10T2) 
(17) x(6(v)) <:: 2 (v C R) 
(~S) x(~(S)) _< IS n RI (T1 c S c T1 U R) 
'(19) x(~/(S)) < ISAR I (T2C_SCT2UR) 
(20) x('y(S)) < ISI-  1 (S C R, IS] odd) 
(21~ ~ > 0. 

~:. system Ax <_ b of linear inequalities is totally dual integral if for every integral 
vector c for which the linear prQgramming problem minimize (yb:yA = c, y >_ O) has 
an optimal solution, it has an optimal solution that is integral. (A fundamental 
theorem states that ,  if Ax, < b is totally dual integral and b is integral, then 
P = {x: Ax < b} is an integral Polyhedron.) Cunningham and Marsh [5] proved that 
the system , of inequalities describing the convex hull of matchings is totally dual 
integral, and Edmonds [9] proved the same thing for the convex hull of common 
independent sets of two matroids. (However, the system of inequalities appearing 
in Theorem 1.hjs~tot  totally dual integral.) These results generalize well-known 
min-max theorems characterizing the maximum cardinality of a matching and of a 
common independent set. We prove in Section 4 that  the system of Theorem 1.7 
is totally dual integral. This theorem generalizes the similar results for matching 
and matro'id inthrsection. It also can be used to prove a generalization of the 
correspon~ding min-max formulas, whichwe now state. 

Theorem 1.9. The maximum over K EI~.*(G, M1,M2) of tbK(E) is the minimum 
over stable pairs (91,0~)  of 

r.l(T1 \ 91)  ~- r2(T2 \:D2) q - I R \  (D1 U D2)l + IRI - odd (G[D1 A D21 ) 
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We leave to the reader the exercise of obtaining from this theorem the Tutte- 
Berge matching formula, and Edmonds' matroid intersection min-max theorem. 
We can now prove the existence result for basic path-matchings, Theorem 1.1. 

P roof  of Theorem 1.1 from Theorem 1.9. We already showed that  the condition 
is necessary. Now suppose that  there is no basic path-matching. Notice that  this 
implies that  the maximum of ~(Xe :e E E) over independent path-matching vectors 
x is less than IRI + r .  It follows from Theorem 1.9 that there exists a stable pair 
(D1,D2) such that  

rl(T1 \ D1) + r2(T2 \ D2) + [R \ (D1 U D2)[ + [R[ - odd (G[D1 (7 D2]) < [R[ + r. 

So (D1,D2) is the required stable pair. | 

2. A p p l i c a t i o n s  

In this section we treat some further applications of path-matchings. 

Dis jo in t  p a t h s  

Suppose that we are given a graph Gl= (V I, E t) whose vertex-set is partit ioned 

into sets T{,T~,R with IT~] = IT~I = k. We wish to find, if possible, k vertex- 

disjoint paths of G I from T~ to T~. This is, of course, a standard problem, for 
which Menger's Theorem gives a characterization, and network flow methods give 
efficient algorithms. Our purpose here is just to show that  it can be transformed 
into a perfect path-matching problem. 

Here is the construction. Form a new graph G by adding, for every r E It, 
vertices r l ,  r2 and edges rrl,  rr2, rlr2 and put T1 = R1 U T~, T2 = R2 tJ T~, where Ri 
denotes  {ri : r C R}. Then there is a perfect path-matching of G with respect to 

T1, T2 if and only if the desired paths exist in G I. Thus the existence of a polynomial- 
t ime algorithm for the disjoint paths problem is a consequence of Theorem 1.2. 

We can also use the construction to derive Menger's Theorem from Theo- 
rem 1.1. Menger's Theorem states that  the disjoint paths exist if there exists no 
set S that  separates T{ from T~ in G I and has size less than k. (A set of vertices 

separates T~ from T~ if it meets every path from T~ to T~.) It  is easy to show that  

the condition is necessary. Now suppose that  G ~ does not contain the desired paths. 
Then there exists a stable pair (D1,D2) of G such that  

(22) ID1 7~ T~I + odd (G[D1 N D2]) > IT2 \ 921 + IR \ (D1 U D2)I. 

For every r E D l n D 2 ,  r l  ~ D 1  and r2 ~ D 2 .  For every such r, delete r from 
D1 and add r l  to D1. Then we get a new stable pair with D1 riD2 = 0 and still 
satisfying (22). Now 

S = (T~ \ D1) U (T~ \ D2) tJ (R \ (D1 U D2)) 
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separates T~ from Ts in G',  and a calculation shows that  ISI < k, proving Menger's 
Theorem. 

R a n k  in t h e  m a t c h i n g  m a t r o i d  

Another application of the maximum path-matching formula occurs when 
T1 = ~. Then the maximum value of a path-matching is the maximum intersection 
of a matchable set with R. This is the rank of R in the "matching matroid" 
determined by G. This matroid was introduced by Edmonds and Fulkerson [10]. 
The following formula for the rank of R is well known, although it was not explicitly 
stated in [10]. We use the notation o d d r ( H )  for the nmnber of odd components of 
H,  each having all of its vertices contained in T. This result can be derived from 
the min-max theorem by a method similar to ones used above, and we leave this 
to the reader. 

Theorem 2.1. Let G =  (V,E) be a graph and R a subset of V. The maximum size 
of a subset of  R covered by a matching of G is the minimum over S C V of 

1RI - I s l  + odd R(G[V \ S]) 

T h e  T u t t e  m a t r i x  

Let G I = (V~,E I) be a graph, and let xe, e E E I be distinct variables. Let 

A = (aij) be a V l by V t skew-symmetric matrix such tha t  aij = rkXe if i j  = e E E I, 

and aij = 0  otherwise. We call A the Tutte matrix of G I, even though it is not quite 

unique. Given subsets I ,  J of V l, both of size k, we want to determine whether the 
submatr ix  A[I, J] is nonsingular, that  is, whether its determinant is nonzero (as a 
polynomial), or more generally, to determine its rank. (Edmonds [8] seems to have 
been the first to emphasize such algorithmic questions. For example, he proposed 
the problem of finding a polynomial-time algorithm to compute the rank of a matr ix  
whose entries are multivariate polynomials with integral coefficients.) This problem 
is i n N S ,  because it is not difficult to show that  A is nonsingular if and only if there 
exist (small) rational values for the variables so that  the resulting rational matr ix  is 
nonsingular. (This observation is the basis for a well-known approach tha t  provides 
a randomized polynomial-time algorithm.) However, it is not obvious tha t  it is in 
co-Y~,  let alone that  there is a polynomial-time deterministic algorithm. 

There are two important  special cases where satisfactory results have been 
available. If I N J = O ,  then each Xe occurs at most once in A[I,J], so A[I,g] is 
nonsingular if and only if there is at least one nonzero te rm in the expansion of its 
determinant.  This property can be tested by solving a bipart i te matching problem. 
Also, if I =  J, then A[I, J] is nonsingular if and only if G[I] has a perfect matching. 
(The latter fact, which is not obvious but can be proved by elementary methods, 
played an important  role in Tutte 's  original paper  [19].) We generalize this fact, as 
follows. Define G-= (V,E) to be the graph obtained from G I by deleting the vertices 
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not in I U J  and the edges having both ends in I \ J  and those having both ends in 
J \ I .  The following result can be proved by elementary methods; see [11] or [4]. 

Theorem 2.2. The rank of A[I, J] is the maximum of CK(E) over path-matchings 
K with respect to G , I \ J , J \ I .  | 

From Theorems 2.2 and 1.2 we get immediately the following consequence. 

Corollary 2.3. There is a polynomial-time algorithm to determine the rank of  
given submatrix of the Tutte matrix, i 

We can combine Theorem 2.2 with the min-max theorem Theorem 1.9 to ob t~n  
a formula for the rank of A[I, J]. However, this formula is not really new. It  can be 
proved directly using a linear-algebra method of Lov~z  [14]. His proof, which can 
be found in [11], predates our polyhedral proof, also in [11], and our generalization, 
which first appeared in [4]. 

Theorem 2.4. The rank of A[I, Y] is equal to the minimum over all stable pairs 

(I ' ,J ' )  of G with respect to I \  J , J \  I of 

(23) [I \ i '  I + [J \ f [  + [I' A f [  - odd (G[I' A f ] ) .  | 

T h e  m a t c h a b l e  set  p o l y h e d r o n  

A matchable set of a graph is a set of vertices forming the ends of the edges 
of some matching. The matchable set polyhedron Q(G) of a graph G is the convex 
hull of incidence vectors of matchable sets of G. This polyhedron was introduced 
by Balas and Pulleyblank [1], who gave a nice description by linear inequalities. 
(We will not need that  description here.) 

There are several ways to obtain a polynomial-time algorithm for the separation 
problem for Q(G). The easiest method to describe briefly goes as follows. We use 
the equivalence of separation and optimization, so it is enough to show that  there 
is a polynomial-time algorithm to optimize any linear function ex over Q(G). One 
way to do this, is to reduce the problem to a weighted matching probIem, by 
defining edge weights cluv = cu + cv for any edge uv. The resulting algorithm for the 
separation problem is based on the ellipsoid method, and so is not combinatorial, 
and is not strongly polynomial. There does exist a polynomial-time combinatorial 
algorithm for the separation problem; see [3]. However, that  algorithm uses scaling, 
and is not strongly polynomial. Here we describe a strongly polynomial algorithm, 
based on the results of this paper. In fact, it was this problem that  originally led 
to the formulation of problems on path-matchings. 

Let A be a V by V matrix, and let :~ denote {I C V:A[I , I]  is nonsingular}. 
(If A is the Tutte matrix of G, then 5~ is the family of matchable sets of G.) Let 
A'=(A ,# ) ,  where # is a IV I by IV] identity matrix. We suppose that  the columns 
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of Y are indexed by V'-= {v t :v  E V}, and for any subset J of V we define JP to be 

{v ' :v  E J}.  I t  is easy to see that  A[J, J] is nonsingular if and only if B = JU ( V ' \ J ' )  
indexes a column basis of A I. (Of course, there are column bases of .4 / tha t  are not 

of this form.) Let :~ consist of the sets B C_ Vt_JV ~ such tha t  B indexes a column basis 

of A t. Then ~3 is the family of bases of a matroid N on V U V  ~. Theorem 2.5 below 
is the key observation. Its proof uses Edmonds '  Matroid Intersection Polyhedron 

Theorem 1.6. We use the following notation: Given a vector x E t t  V, define x ~ E R V' 
by x~, = xj  for all j E V. 

Theorem 2.5. Given x E R V, define y E R v u v '  by y = ( x , l -  x~). Then x is a 
convex combination of incidence vectors of elements of ~ i f  and only if y is a convex 
combination of incidence vectors of elements o f ~ .  

Proof. First, suppose that  x is a convex combination ~ ~,ix i of incidence vectors 

x i ~of members  Ci of ~.  Then for each i, Ci U (V' \ C~) is a basis of N1. Let yi be 

its in.cidence vector. Then y = ~ ~iy i, as required. 

Now suppose that  y is a convex combination of incidence vectors of elements 
of 2 .  Define a matroid N2 = (VUV' , :~2)  by 22  = {B C V U V ' :  B = C U ( V ' \  
C ~) for .same C C V}. Then y is a convex combination of incidence vectors of bases 
of N2. (There are marly ways to show this. One is to observe tha t  the coefficient 
matr ix  of the system yi-t-yi, = 1, y > 0 is totally unimodular.) Hence by Theorem 1.6, 

is a convex combination ~ )~iy i of incidence vectors yi of common bases Bi of N 

and N2. But  a common basis of N and N2 is of the form C U ( V ~ \ C  ~) where CE:~,  

so for each i, the vector x i, defined to be yi restricted to V, is the incidence vector 

of a member  of 1~. Therefore, since x = ~  )~i xi, w e  are done. | 

It follows from Theorem 2.5 that we can use a separation algorithm for the 
convex hull of incidence vectors of elements of :~ to determine whether a given vector 
x is in the convex hull of incidence vectors of elements of ~;. (In the alternative 
case when a is not in the polytope, we also need to be able to find a violated valid 
inequality, but clearly an inequality aa + b(l - x l) <_ a translates into an inequality 
(a-b)a <_ e~+~, where ~ is the sum of the components of b.) There is a strongly 
polynomial matroid algorithm for the former problem [2]. If we want to apply it 
to the special case where A is the Tutte matrix of a graph G, then we need an 
algorithm to decide whether a given subset of VUV I is independent in the matroid 
N. But it is easy to see that a subset PUQI is independent if and only if the 
submatrix A[V\Q,P] has rank IPI, so we can use the algorithm of Corollary 2.3. 
The latter algorithm is strongly polynomial, so we have a strongly polynomial 
separation algorithm for the matchable set polytope. 

Remark. Theorem 2.5 is the basis for a separation algorithm for "linear delta- 
matroid polyhedra". 
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3. P r o o f s  o f  p o l y h e d r a l  t h e o r e m s  

3 2 7  

In this section we prove Theorem 1.4, and then we use Theorem 1.4 to prove 
Theorem 1.7. An important  step in the proof of Theorem 1.4 is the proof  of the 
following key fact: If  the inequalities (3) are omit ted from the list of inequalities, 

the resulting polyhedron p / i s  integral. This fact is interesting in its own right; it 
generalizes both the matroid intersection polyhedron theorem and the "fractional 
matching polyhedron theorem". Moreover, its proof is the only par t  of the proof of 
Theorem 1.4 that  uses a new idea. 

Theorem 3.1. The set os solutions of (1), (2), and (4)-(8) is an integral polytope. 

Proof. Let P' denote the polytope that  is claimed to be integral. Let G = (V,/~) 
denote the digraph obtained from G by replacing each edge by a pair of oppositely 

directed arcs. We define a matroid N1 on/~,  as follows. A set A is a basis of N1 if 
and only if 

�9 No arc in A has its tail in T2; 

�9 Each vertex in R is the tail of exactly one arc in A; 

�9 Each vertex in 2"1 is the tail of at most one arc in A; 

�9 The set of elements of T1 that  are tails of arcs in A is a basis of M1. 

(N1 is a matroid because it is the direct sum of matroids of rank at most  one 
and a matroid obtained from M1 by making parallel copies of its elements.) We 
define M2 similarly, interchanging "head" with "tail" and T1 with 2"2. I t  follows 

from Theorem 1.6, the common basis polytope theorem, tha t  the polytope Q ___ R/~ 
defined to be the set of all y satisfying 

(Q)  

/ = 0, 

= 0, 

= 1, 

= 1, 

y(5- (A))  <_ rl(A),  

y(5+(A)) < r2(A), 

y(6-(T1)) = r 

y(5+(T2)) = r 

y > 0 

(v e T2) 

(v eT1) 
e R) 

(, e R) 
( A C  T1) 

(A C_ T2) 

has only integral extreme points. 

We define a function p : R E --* R E, by: P(Y)vw -= Yvw + Ywv, for vw E E. Let 
p(Q) denote {p(y):  y E Q}. I t  is easy to see that  p(Q) is an integral polyhedron. 
(Namely, if x E p(Q), then x = p(y) for some y E Q. Now y c a n  be expressed as a 
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convex combination of integral points in Q, and so by linearity of p, x is a convex 
combination of their images, which are integral points of p(Q).) So we can complete 
the proof by proving the following. 

Claim. P'=p(Q). 
Given xEp(Q), choose yEQ with x---p(y). For any S such that T1 C_SC_T1UR, 

we have 
= + > - 

= = 

yES 

so x satisfies (2). It is straightforward to check that  x also satisfies the other 
inequalities defining p / s o  p(Q)cP I. 

Now, suppose that  x E pf.  Let ~ denote the set of all paths in G from a vertex 
in T1 to a vertex in T2 and having internal vertices only from R. For vw E E, we 
denote by ~vw the set of paths in 5~ that  use the edge vw. By the Max-flow Min- 

cut Theorem, there exists a nonnegative vector A E R  ~, such that  A(~f)=r, and, for 

vwEE, A(.~w)<_Xvw. Let f E R/~ be the (T1,T2)-flow in G, corresponding to the 

path-flow A. That  is, for vw E E, fvw =~].kL where the sum is over L E~vw such 

that  v precedes w on L. Now, define a vector yER/~,  such that,  for vwEE, 

1 
Yw = fv~ + ~(Xvw - ( f ,~  + / ~ , ) ) .  

It is easily verified that  y E Q, and p(y) = x. Thus, x E p(Q), so P '  c_ p(Q), and we 
are done. I 

Remark. One might expect that  adding to (Q) the inequalities y(6-(S)) > 1 and 

y(6+(S)) > 1 for all S _ R such that  IS I is odd, also results in an integral polyhedron. 
This is false. 

Our proof of Theorem 1.4 follows a technique that  was used previously in 
proofs of Edmonds' description of the perfect matching polyhedron (Theorem 1.5); 
see Schrijver [17] or Green-Kr6tki [12]. The proof uses Theorem 1.5, but  could 
easily be modified to avoid doing so. 

Proof  of Theorem 1.4. Let P(G, M1,M2) C_ R E (or simply P)  denote the poly- 
hedron defined by the inequalities (1)-(8). Clearly, cony (JC) C_C_ P.  To prove the 
opposite inclusion, it suffices to prove that  P is integral. (Namely, an integral vec- 
tor x satisfying (1), (4), (5), (6), and (7) must determine a set of r disjoint paths 
joining pairs of vertices in T1UT2, together with disjoint circuits and edges in GIRl. 
Moreover, the vertices in T / t h a t  are ends of paths must form a basis of Mi for i - -  1 
and 2. Because of inequalities (2), the paths must go from T1 to T2, and because 
of inequalities (3), the circuits must all be even. If there are no circuits, then x 
is a basic path-matching vector, and if there are some even circuits, then x is the 
average of two such vectors.) 
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We prove that  P is integral by induction on the number of vertices of G; the 

result is obviously true when G has just one vertex. Let x'  E R E be an extreme 
point of P.  If x' does not satisfy with equality any of the inequalities (3) for which 

ISI > 3, then by Theorem 3.1, x' is integral. Otherwise, there exists S C__ R such that  

ISI>_3, ISl is odd, and x'(5(3))=2. 
Denote by G1 the graph GoS, that is, the graph obtained from G by deleting 

the edges in ~,(S) and shrinking the vertices in S to a single vertex which we 

call S. Let x 1 denote the restriction of x' to G1. Let P1 denote P(G1,M1,M2), 
and let 2~fl denote •(G1,M1,M2). It is easily verified that  x 1 E P1. Then, by 

induction, c onv (X1)=  P1. Thus there exists a nonnegative vector A 1 E R X1 such 

that  AI(J~'I)=I and 

xl= Z 
KEXI 

Let U = V \ S. Let G2 denote G o U, let ~2 denote the set of perfect matchings 

of G2, and let x 2 denote the restriction of x' to G2. It is easily verified, using the 

Perfect Matching Polyhedron Theorem 1.5, since x2(6(v))= 2 for all vertices v of 

G2, that  that  there exists a nonnegative vector A2E R X2 such that  A 2(~2) - -  1 and 

KEX2 

In what follows, when we speak of a basic path-matching in G or in G1, we 

I el I 

Figure 4. Combining solutions 

mean with respect to the matroids M1, M2. We will show explicitly that  x '  can 

be expressed as a convex combination ~(ttKCK:K EX).  Begin with all #K----0, 

and do the following until A 1 =0 .  Consider L E X l  such that  ) 1  >0.  Either there 

exist two edges et,e" E L that  are incident with the vertex S of G1, or there exists a 
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matching edge e I of L that  is incident to S. In the latter case, we take e I -- e I/. Now, 
2 1 x d ----x e, > O, and so there exists j t  EX2 containing e t such tha t  ~2, > 0. Similarly, 

there exists J "  E K2 containing e" such that  A2j, > 0. (An example is shown in 

Figure 4, where L is drawn with thin lines, J t \ {e l }  is drawn with thick solid lines, 

and J"\{e"} is drawn with thick dashed lines.) Let K =  LUJ~UJ ". Note tha t  .YUJ" 
may contain circuits of even length, so K is not necessarily a basic path-matching 
in G; however, K is the union of two basic path-matchings KI ,K"  (possibly equal) 

of G. If K t = K  ", then take e to be the minimum of .kl,A2,; increase tt K, by a and 
i 1 ~2, decrease A 1 and )~, by a. If K I # K  ", then take ~ to be the minimum of 2 /~L '  

and A 2  ;increase ttK, and pK,, by ~, decrease A~ by 2~ and decrease ~ ,  and Ag,, 

b y s .  
Thus we can obtain x ~ as a convex combination of path-matching vectors of 

basic path-matchings in G. However, x t is an extreme point of P ,  and so cannot be 
expressed as a convex combination of other elements of P.  Therefore, x I is a basic 
path-matching vector, and hence is integral. I 

Remark.  It. can be deduced from the proof that  any basic path-matching problem 
on a biparti te graph can be reduced to a matroid intersection problem. 

As a consequence of Theorem 1.4, we get a second description of conv (~f). 

Corollary 3.2. conv (9~(G,M1,M2) ) is the set of solutions of: 

(24) x(~(v)) = 2 (v e R) 
(25) x(~(S)) < iS n RI (T1 c_ s c T1 u R) 
(26) x(~/(S)) < ISI - 1 (S C R,[SI odd) 

(27) x(5(A)) <_ r l (A)  (A C T1) 

(28) x(5(A)) < r2(d)  C A c_ T2) 

(29) x(5(T1)) -- r 

(30) x(5(T2)) -= r 

(31) ~ > o. 

Proof. I t  is clear that  the above inequalities are valid for cony iX(G,  M~,M2)). 

Now suppose that  x E R  E satisfies all of them. Given a subset S of TIUR such tha t  
T1 C S, we have 

x(5(S))  = ~ z ( 5 ( v ) )  - 2x(w(S)) = 2IS n RI § r - 2x(~/(S)) 
yES  

> 2IS n RJ + ~ -  2IS n RI = ~ ,  

so x satisfies (2). A similar argument shows that  x satisfies (3). Trivially, x also 
satisfies (1) and (5)-(8). Therefore, by Theorem 1.4, xEconv  (X), as required. I 
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T h e  i n d e p e n d e n t  p a t h - m a t c h i n g  p o l y t o p e  

We now prove Theorem 1.7 as a consequence of Corollary 3.2. For the spe- 
cial case of the Matching Polyhedron Theorem, the proof reduces to one due to 
Schrijver [18]. 

P roof  of Theorem 1.7. I t  is clear thatdnequatities (9)-(15) are valid for conv(X*).~ 

Now suppose that  x E R E satisfies all of these inequalities. Create a copy 5 of 

each v E V, and for S C_ V, denote by S the corresponding copy of S. Similarly, 

for a subset F of E,  denote by /~ the set {5~5 : vw E F}. Now construct a graph 

GI=(V ' ,E  ') such that  V I = v u V  and E'=EUE,  U{v~:vEV},  and let T~ =TIU2r2, 

T~ = T2 u T1, and R'  = R U ~.  Let  s denote a copy of Mi on the set 2~ i for i = 1 

and 2. Let M[ be the direct sum of M1 with dV/2, and M9 / be the direct sum of 21//2 

with d17/1. In what follows, we use X* to denote 2C*(G, M1,M2) and ,9C to denote 
~(Gt,M[,M~).  

Claim. If z' Econv(X)  and z is the restriction of z t to E, then zEconv(X*) .  

I t  suffices to prove the claim when z t is an extreme point. Thus, assume that  

z' = e L  for some L E X.  Let K = L M E, and let F be the set of matching edges 
1 K of K tha t  are not matching edges of L. Then, clearly, z =  g ( r  -t-r Hence, 

z E cony (~;'*), which proves the claim. 

By the claim, we can prove the theorem by constructing x / E eonv (JC), such tha t  

x is the restriction of x '  to E. By the Matroid Polyhedron Theorem [9], the vector 
t = (x(6(v)):v  E T1) is a convex combination of incidence vectors of independent 
sets of M1. Therefore, there exists, for each v E T1, a number y~ >_ x(5(v)) such that  
(Yv : v E T1) is a convex combination of incidence vectors of bases of M1. (To get 
y, we simply extend to a basis each of the independent sets in the expression for t, 
and use the same coefficients.) We similarly define Yv for v E T2, using M2 instead 

of M1. Now we define x t E R E' by: 
I and I �9 for vwEE,  Xvw=Xvw, x~gv=Xvw; 

�9 for vER, x~r,=2-z(Sa(v)); 

�9 for veT~UT2, x~=~v-x(~a(~)) .  

By Corollary 3.2, conv (X) is defined by (24)-(31) (applied to G').  The proof 

will be finished if we can show that  x ~ satisfies all of these inequalities. We show 
that  it satisfies inequalities (25) and (26); it obviously satisfies the others. 

Let S ~ C T~ U R ~ such that  T~ _ S t. Define S, U C V such tha t  S ' = S U U. Thus 
T 1 C S C T l  UR and T2C_U C_T2UR. Then 

�9 '(~/a,(s')) = ~(~(s ) )  + x(~(u)) + 2Is n gl  - ~'~ ~(6(~)) 
vESNU 
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(32) = . (~ ( s ) )  + ~(7(u))  - 2~(v(s  n u))  - ~(e(s  n u)) + 2is  n uI 
(33) <_ x(.y(s \ u)) + x(v(u \ s)) + 2Is n uI 
(34) _<[(SkU) mR t §  N R [ + 2 t S 5 U ]  

= IS n RI + IV n RI = IS' n R'I, 

where we get (33) from (32) by nonnegativity, and we get (34) from (33) by 
inequalities (10) and (11). Thus x' satisfies the inequalities (25). 

Now, let S I C_R I such that IS1] is odd. Define S, U C V by $1= SUU. Thus 
S, UC__R, and exactly one of [S[, [U I is odd. Therefore exactly one of IS\U[, [U\S I 
is odd. Then, by the inequalities (12) and (9), 

(35) . ( z ( s  \ u)) + ~(~(u \ s)) < Is \ uI + tu \ sl - 1. 

Now, 

~'(zc,(s '))  = ~(~(s)) + x(~(u)) + 2Is n uI - 

(36) 
(3z) 
(as) 

~(5(~)) 
vESnT 

: x(~(s)) + x(.y(v)) - 2x(.~(s n u))  - x (~(s  n u))  + 2ts  n uI 

<_ x(.y(s \ u)) + ~(.~(u \ s)) + 2Is n Vl 
<_ I s \  Yl + Iy \ sl  - l + 2ts  N uI 

= ISI + I V l -  1 = ] S ' [ -  1, 

where we get (37) from (36) by nonnegativity, and we get (38) from (37) by 
inequality (35). Therefore, x ~ satisfies the inequalities (26). | 

4. Tota l  dua l  in teg ra l i ty  

By the Independent Path-Matching Polyhedron Theorem 1.7, the polyhedron 
defined by inequalities (9)-(15) has integral extreme points. Therefore, for any 

objective function c C R E, the linear programming problem (P) below has an 
integral optimal solution 

(P) 

max cx 

subject to 

(9)-(15). 
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Given a partit ion T1,T2,R of the vertices of G, we define 

~I={S:TICSCTIUR}, 

~2 = {S : T2 c S c T2u R}, 

~12 = {S C R :  I S ] is odd}, 

~2~ = {S :  S a_ T1}, 

aS = {s :  s c T2}. 

Let ~ = ~1 U ~2 U ~12, and ~ ' =  ft~ U ~ .  For a set S E f~, define f (S)E {0, 1} such 

that  f(S) = 1 exactly when S E ~t12. For a set S E ~' ,  define g(S) to be r l (S )  if 

SCT1, and to be r2iS) otherwise. For variables y E R  V, z E R  ~, and w E R  ~', the 
dual (D) of (P) is given by 

rain E 2y~ + E (IS n RI - f ( s ) )zs  + E g ( A ) ~  
vER SE~  AE~'  

subject to 
(1)) y ~ + y v +  ~ z s +  ~ ~ > ~ v  ( ~ E E )  

SECt A652~ 
u,vES urEa(A) 

y>_O,z>_O,w>_O. 

We will prove that,  whenever c is integral, there exists an integral optimal solution 
to (D). In other words, we will show that  the system of inequalities (9)-(15) is 
totally dual integral; see Schrijver [18]. Cunningham and Marsh [5] proved that  the 
system of inequalities in Edmonds' characterization of the matching polyhedron is 
totally dual integral, and Edmonds [9] proved that  the system of inequalities in 
his description of the matroid intersection polyhedron is totally dual integral. Our 
theorem generalizes these theorems. Our proof uses ideas from Schrijver's proof [17] 
of the matching result and from Edmonds'  proof of the m~troid intersection result. 

Let 5 p be a collection of subsets. We c a l l ]  a laminar family if, for each S, T E 5 p, 
either SCT, TC_ S or SMT=O. We call 5 p a chain if, for each S, TE5 P, either SC_T 
or TC_S. 

Theorem 4.1. For all integral c, there exists an integral optimal solution (y, z, w) to 

(D) s~ch that supp (~) is laminar, and supp (~) na~ a ~  supp (~) nag ~re ~hai.s. 

Proof. It suffices to prove the theorem for nonnegative c. Suppose that  the result 
fails, and let G, MbM2,c form a counterexample with IV[ + IE[ +c(E) as small as 
possible. For each edge e of G, ce>_ 1, since otherwise we can delete e. 

Claim 1. For every optimal soIution (y,z,w) to (D), y=O. 

Let :~ denote the set of independent path-matchings that  attain the optimum 

of (P). Suppose that  there exists v E R such that  .~K(6(v))=-2 for each K in 1~. 

We decrease the weight of each edge incident with v by 1 to get c'. Then, by our 
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choice of c, there exists an integral optimal solution (y l  z r,w r) to (D), with respect 

to c r, with the required properties. By increasing Y~v by 1, we obtain an integral 
optimal solution to (D), with respect to c, having these properties, and this is a 

contradiction. So, for all v E R, there exists K E :~ such that  CK(5(v) )<  2. Thus, 
by complementary slackness, Yv =0,  proving Claim 1. 

Claim 2. There exists an optimal solution to (D) such that supp (z) is lamix~ar. 

Let (y ,z ,w) be an optimal solution to (D) that minimizes ~ ( z s i S l i Y  \ S[:  
S E f~). Suppose that supp(z) is not laminar, and let S,U E supp (z) such that  
I S \ U I, I U \ S I, I S N U[ > 0. By a simple case analysis, we find that  either S \ U and 
U \ S are both in f~, or SN U and S U U are both in f~. We consider these cases 
separately. 

Case 1. S \ U and U \ S are both in f~. Let e be the minimum of z 5 and z U. We 

construct z lE R fl from z by decreasing z 5 and z U by c, and increasing zs \  U and 

zu \  S by ~. Now, construct yr E R V, by increasing Yv by c for all v E S N U. One 

easily checks that ( J , z ' , w )  is an optimal solution to (D). However, y r ~  0, which 
contradicts Claim 1. 

Case 2. SMU and S U U  are both in f~. Let e be the minimum of z S and z U. We 

construct z~E t t  fl from z by decreasing zs  and zu by r and increasing Zsnu and 
z s u y  by r One easily checks that (y, zr,w) is an optimal solution to (D), and that  
the choice of (y ,z ,w)  is contradicted. This proves Claim 2. 

Now choose (y, z, w) as in Claim 2, so that ~-~(w A [A[IV~A[ : A E f~r) is minimized. 
Suppose that  there exist A, B E supp (w) such that  A\B  and B \ A  are both nonempty, 

with A, B E f~  or A, B E ~ .  Let ~ be the minimum of WA and w s .  We construct 

wtE R ~' from w by decreasing WA and WB by r and increasing WAN B and wAu B 
by r One easily checks, using the submodularity of the rank functions, that  is, 
g ( A ) + g ( B )  >_ g ( A U B ) + g ( A M B ) ,  that ( y , z , w ' ) i s  an optimal solution to (D), 
and that the choice of (y,z,w) is contradicted. Therefore, there exists an optimal 

solution (y, z,w) of (D) such that y = 0, supp (z) is laminar, and supp (w) n f~  and 

supp (w) M fl~ are chains. 

We know that (D) has an optimal solution that  is an optimal solution of the 

linear program (D') obtained from (D) by deleting all the variables other than 
those for which z ,w take positive values. To show that (D) has an integral optimal 
solution, it suffices to show that  (D r) does. Let F be the constraint matr ix of (Dr). 
Now the families 

= {~,(S) : S E supp (z) N (~12 U f~l)} U {5(d) : d E supp (w) n f~}  

and 

2) = {7(S):  S E supp (z) f l~2} U {6(A): d E supp(w) N ~ }  

are laminar families of subsets of E,  and the columns of F are the incidence vectors 
of the elements of ~U2). By a result of [9], F is totally unimodular; since c is 
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integral, (D~), and therefore (D), has an integral optimal solution. This solution 
has all the required properties, so this is a contradiction. I 

Theorem 4.1 has the following consequences. The first one is just a specializa- 
tion to ordinary path-matching. 

Corollary 4.2. The system of inequalities (16)-(21) is totally dual integrM. 

Proof. This is almost immediate from the theorem. The dual variables w A corre- 
sponding to the constraints (13) and (14) must be replaced by dual variables Wv 
corresponding to the constraints (16). But this is quite easy to do. We simply set 
Wv = ~ ( W A : V  C A) for each v e T1 UT2. It is easy to check that  the resulting dual 
solution has the desired properties. I 

The second consequence gives a totally dual integral description for the basic 
path-matching polyhedron. This is a bit subtle. First, note that  the system (1)- 
(8) of Theorem 1.4, is not totally dual integral. This is already demonstrated in 
the case of perfect matchings of a graph. We do not know whether the system of 
inequalities (24)-(31) of Corollary 4.3 is totally dual integral, but we believe that  it 
is. We can show that  a closely related system describing the basic path-matching 
polyhedron is totally dual integral. The proof uses a simple trick (adding a large 
even integer to each objective coefficient in (P) and applying Theorem 4.1). 

Corollary 4.3. The system of inequalities (11), (24)-(31) is totally dual integral. I 

We remark that  it is quite easy to show from Corollary 4.3 that ,  as in the 
matching case, the system (1)-(8) is "totally dual half-integral", that  is, that  an 
optimal dual solution can be required to be half-integral if c is integral. 

Finally, we use Theorem 4.1 to prove the min-max formula of Theorem 1.9. 

P roof  of Theorem 1.9. By an argument similar to that used to prove the necessity 
of the condition in Theorem 1.1, we can show that  the maximum is at most the 
minimum. We omit the details. It remains to prove that  there is a stable pair 

making the second expression at most the maximum of CK(E)  over independent 
path-matchings K.  This maximum is the optimal value of the linear programming 
problem (P) when c - - ( 1 , 1 , . . . , 1 ) .  Therefore, by the duality theorem, it is the 
optimal value of problem (D) for this c. We apply Theorem 4.1 to obtain an optimal 
solution ( y ,Z ,W)wi th  the stated properties. It is easy to see that  this solution is 
(0,1}-valued. We can arrange that it has the following additional properties: 

�9 yv=O for all vETIUT2 .  (Proof: If y v = l ,  we can instead put  w{v}--1. ) 

�9 If $ 7 s  and zs=zT----1 , then S N T = ~ .  (Proof: Since it is easy to see that  
neither S C_ T nor T C S is possible, this follows from the laminar property.) 

�9 If z S = 1, then Yv = 0  for all v C S. (Proof: Suppose not. If S E ft l  Uf~2, then 
put zs\{v } = 1 instead of zs. If S E f~]2, take u E S \ {v} and put  yu = 1 and 

zs\{v,u } = 1 and zs  = 0.) 
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�9 There  exist sets A , B  such tha t  supp (w) N fl l  = {A} and supp (w) gl f12 = {B}. 
(Proof: If  w U = wo  = 1 for U, Q E f t l ,  then we can instead pu t  wuuQ = 1. If  no 

such set exists, we can take A=T1.  The same argument  works for t22.) 

�9 There  exist sets A',  B '  such tha t  supp (z)C'lf~ = { X }  and supp (z) Mft~ = {B'} .  

( P r o o f :  We can use the same argument  as for the previous property,  except 

tha t  if there is no such set we take A / = 0. ) 

Let C = {v :Yv = 1}, and let S1, . . .  ,Sk be the sets S E ~12, such tha t  zs = 1. 

Then  the max imum of CK(E)  over independent  pa th-matchings  is 

k 

c~ = r l ( A ' )  + IA N R I + r2( B') + [B Cl R I + 21C I + E ( I S i l  - 1). 
i=1 

We define D1 to be ((T1 \ A ' )  U A U  (U(Si : 1 < i < k)), and similarly for D2. Then  
no edge of G joins a vertex in D I \ D 2  to a vertex in D2 or a vertex in D2 \ D 1  
to a vertex in D1, since such an edge would violate the corresponding feasibility 
constraint  in problem (D). Moreover, 

rl(T1 \ 01) + r2(T2 \ D2) + IR \ (O1 u D2)I + IRI - odd ( a I D 1  A D2]) _< a,  

as required. I 
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