Note
 On matroids without a non-Fano minor

J.F. Geelen
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

Received 5 January 1998; revised 30 October 1998; accepted 30 November 1998

Abstract

We study the family of matroids that do not contain the non-Fano matroid or its dual as a minor. In particular, we prove that, for any connected matroid M, there are just finitely many minor-minimal matroids in the family that contain both an M-minor and a $U_{2,4}$-minor. (c) 1999 Elsevier Science B.V. All rights reserved.

Keywords: Matroids; Intertwining

1. Introduction

Let \mathscr{M}_{1} and \mathscr{M}_{2} be two families of matroids that are both closed under isomorphism and taking minors. It follows that both the intersection and the union of \mathscr{M}_{1} and \mathscr{M}_{2} are closed under isomorphism and taking minors. It is straightforward to see that, if \mathscr{M}_{1} and \mathscr{M}_{2} are both described by a finite set of excluded minors, then $\mathscr{M}_{1} \cap \mathscr{M}_{2}$ is described by a finite set of excluded minors. The intertwining problem, posed by Brylawski [2], asks, if \mathscr{M}_{1} and \mathscr{M}_{2} are both described by a finite set of excluded minors, then is $\mathscr{M}_{1} \cup \mathscr{M}_{2}$ described by a finite set of excluded minors. Vertigan [10] showed that it is often the case that $\mathscr{M}_{1} \cup \mathscr{M}_{2}$ has infinitely many excluded minors, even when \mathscr{M}_{1} and \mathscr{M}_{2} are each described by one excluded minor.

Nevertheless, the intertwining problem is still of interest for certain classes of matroids. For instance, one can deduce from Seymour's decomposition of regular matroids [9], that the intertwining problem holds for the class of graphic matroids and the class of cographic matroids. That is, there are finitely many excluded minors for the union of the family of graphic matroids and the family of cographic matroids. Another interesting instance of the intertwining problem is for the families of binary and ternary

[^0]matroids. It is not known whether there are only finitely many excluded minors for the union of the families of binary and ternary matroids, however there is strong evidence to suggest that this is the case; see Oporowski, Oxley and Whittle [6].

Let F_{7}^{-}denote the non-Fano matroid; see Oxley [7]. Let $\operatorname{EX}\left(M_{1}, \ldots, M_{k}\right)$ denote the family of matroids that do not contain a minor isomorphic to any of M_{1}, \ldots, M_{k}. Our main result is stated in the following theorem.

Theorem 1.1. Let $M_{1}, M_{2}, \ldots, M_{k}$ be connected matroids and let $\mathscr{M}=\mathrm{EX}\left(M_{1}, \ldots, M_{k}\right)$. If \mathscr{M} contains neither F_{7}^{-}nor $\left(F_{7}^{-}\right)^{*}$, then there are just finitely many excluded minors for the union of the family of binary matroids and \mathscr{M}.

The condition that the excluded minors for \mathscr{M} are connected could possibly be dropped from the theorem. However, as many interesting classes of matroids are closed under taking direct sums, this condition seems reasonable. Note that the non-Fano matroid is not representable over any field of characteristic two. Therefore, Theorem 1.1 can be applied to many families of matroids that are representable over some field of characteristic two.

Our results rely on the following crucial lemma, the proof of which is based on Gerards' simple proof of Tutte's excluded-minor characterization of regular matroids [4]. This lemma was already known for matroids representable over fields of characteristic two; see Semple and Whittle [8].

Lemma 1.2. Let (x, y) be a coindependent pair of elements of a matroid M. If $M \backslash x$ and $M \backslash y$ are binary, and $M \backslash x, y$ is connected, then either M is binary or M contains an F_{7}^{-}-minor.

We assume that the reader is familiar with elementary notions in matroid theory, including representability, minors, duality and connectivity. For an excellent introduction to the subject read Oxley [7].

2. Twisted matroids

For convenience we work with twisted matroids, which were introduced in [3]. A twisted matroid is just a matroid viewed with respect to a particular basis. Let \mathscr{B} be the set of bases of a matroid M having ground set S. For $B \in \mathscr{B}$, define $M_{B}=\left(S, \mathscr{F}_{B}\right)$, where $\mathscr{F}_{B}=\left\{B \Delta B^{\prime}: B^{\prime} \in \mathscr{B}\right\} . \mathscr{F}_{B}$ is the set of feasible sets of the twisted matroid M_{B}. If X is feasible then $|X \cap B|=|X-B|$; in particular, all feasible sets have even cardinality. M_{B} is also endowed with a rank function r_{B} where $r_{B}(X)$ is half the size of the largest feasible set in X. Equivalently, $r_{B}(X)=r(X \Delta B)-|B \backslash X|$. Duality is absorbed in the definition of a twisted matroid, since $M_{B}=\left(M^{*}\right)_{S \backslash B}$. Given $X \subseteq S$, we define $M_{B}[X]=\left(X, \mathscr{F}^{\prime}\right)$, where $\mathscr{F}^{\prime}=\left\{F \subseteq X: F \in \mathscr{F}_{B}\right\} ; M_{B}[X]$ is the restriction of M_{B} to X. Matroidally, this corresponds to the deletion of $(S \backslash B) \backslash X$ and contraction of $B \backslash X$ from
M. That is, $M_{B}[X]=N_{X \cap B}$ where $N=M \backslash((S \backslash B) \backslash X) /(B \backslash X)$. We denote by $M_{B}-X$ the twisted matroid $M_{B}[S \backslash X]$. The following results follow from the well-known fact that, if N is a minor of M, then there exists an independent set X and a coindependent set Y of M such that $N=M \backslash Y / X$.
2.1. If N is a minor of M, then there exists a basis B of M such that $M_{B}[E(N)]=$ $N_{B \cap E(N)}$.

The fundamental graph of M_{B} is the graph $G_{B}=\left(S, E_{B}\right)$, where $E_{B}=\left\{i j:\{i, j\} \in \mathscr{F}_{B}\right\}$. Thus G_{B} is bipartite, with bipartition $(B, S-B)$. For $X \subseteq S, G_{B}[X]$ denotes the subgraph of G_{B} induced by X. The following propositions are well known.

Proposition 2.2. M is connected if and only if G_{B} is connected.

Proposition 2.3 (Brualdi [1]). If X is a feasible set of M_{B}, then $G_{B}[X]$ has a perfect matching.

Proposition 2.4 (Krogdahl [5]). If $G_{B}[X]$ has a unique perfect matching, then X is feasible in M_{B}.

Proposition 2.5. If y is the only neighbour of x in $G_{B}[X]$, then X is feasible if and only if $X-\{x, y\}$ is feasible.

2.1. Representations

Let A be a matrix, over a field \boldsymbol{F}, whose rows and columns are indexed by the sets B and $S \backslash B$, respectively. Then A is an \boldsymbol{F}-representation of M_{B} if, for each $X \subseteq B$ and $Y \subseteq(S \backslash B), \operatorname{rank}(A[X, Y])=r_{B}(X \cup Y)$. Equivalently, A is an \boldsymbol{F}-representation of M_{B} if and only if (I, A) is an \boldsymbol{F}-representation of M.

For any twisted matroid M_{B}, there exists a unique binary twisted matroid N_{B} such that M_{B} and N_{B} have the same fundamental graph. We call N the binary approximation of M at B. Note that M_{B} is binary if and only if M and N have the same bases. A set $X \subseteq S$ is said to distinguish M from N if X is a basis in exactly one of M and N. Similarly, X is said to distinguish M_{B} from N_{B} if X is feasible in exactly one of M_{B} and N_{B}. Note that, if X distinguishes M_{B} and N_{B} then, by construction, $|X| \geqslant 4$.

2.2. Pivoting

For any feasible set X of $M_{B}, \mathscr{F}_{B \Delta X}=\left\{F \Delta X: F \in \mathscr{F}_{B}\right\}$. For an edge $x y$ of G_{B}, we refer to the shift from M_{B} to $M_{B \Delta\{x, y\}}$ as a pivot on $x y$. Let B^{\prime} denote $B \Delta\{x, y\}$. Much of the structure of $G_{B^{\prime}}$ is determined by G_{B}. The following observations are easy consequences of Propositions 2.3 and 2.4. (Here we denote the set of neighbours of x
in G_{B} by $\operatorname{nigh}_{B}(x)$.)
(i) $\operatorname{nigh}_{B^{\prime}}(x)=\operatorname{nigh}_{B}(y) \Delta\{x, y\}$,
(ii) If $v \notin \operatorname{nigh}_{B}(x) \cup \operatorname{nigh}_{B}(y)$, then $\operatorname{nigh}_{B^{\prime}}(v)=\operatorname{nigh}_{B}(v)$, and
(iii) If $v \in \operatorname{nigh}_{B}(x), w \in \operatorname{nigh}_{B}(y) \backslash \operatorname{nigh}_{B}(v)$, then $v w$ is an edge of $G_{B^{\prime}}$.

Thus we can account for most edges of $G_{B^{\prime}}$. The only confusion arises for elements v, w, for which $\{x, y, v, w\}$ induces a circuit in G_{B}. In this case, $v w \in E_{B^{\prime}}$ if and only if $\{x, y, v, w\}$ is feasible in M_{B}; which we cannot determine from G_{B} alone.

3. The main lemma

In this section we prove Lemma 1.2. Suppose that M is a nonbinary matroid, and that x and y are coindependent elements of M such that $M \backslash x$ and $M \backslash y$ are both binary, and $M \backslash x, y$ is connected.

Choose $B \subseteq E(M)-x-y$, and $X \subseteq E(M)$ such that
(i) B is a basis of M,
(ii) X distinguishes M from its binary approximation N at B, and
(iii) $|X-B|$ is as small as possible with respect to (i) and (ii).

Since $M \backslash x$ and $M \backslash y$ are binary, $M \backslash x=N \backslash x$ and $M \backslash y=N \backslash y$. Hence $x, y \in X$.
We claim $|X-B|=2$. The proof is as follows. Suppose that $|X-B|>2$. Then choose $a \in(X-B)-\{x, y\}$. Let $N^{\prime} \in\{N, M\}$ such that X is a basis of N^{\prime}. By the basis exchange axiom, there exists $b \in B-X$ such that $B-b+a$ is a basis of N^{\prime}. Note that neither x nor y is in $B-b+a$, so $B-b+a$ is a basis of M. Furthermore, if Y is any set that distinguishes M and N, then $|Y \Delta(B-b+a)| \geqslant|Y \Delta B|-2 \geqslant|X \Delta B|-2 \geqslant 4$. Hence N is the binary approximation to M at $B-b+a$, and X distinguishes M and N. However, $|X-B|>|X-(B-a+b)|$, which contradicts our choice of X and B.

Therefore, $X-B=\{x, y\}$. Note that $|X-B|=|B-X|$. Label the elements of $B-X$ by a and b. So $\{x, y, a, b\}$ distinguishes M_{B} and N_{B}. By construction, M_{B} and N_{B} have the same fundamental graph G_{B}. Note that x and y are in one colour class of G_{B} and a and b are in the other. Furthermore, by Propositions 2.3 and 2.2 and since $\{x, y, a, b\}$ is feasible in exactly one of M_{B} and $N_{B}, G_{B}[x, y, a, b]$ is a circuit. Since N is binary, $\{x, y, a, b\}$ is not feasible in N_{B}, and hence $\{x, y, a, b\}$ is feasible in M_{B}.

Since $M \backslash x, y$ is connected, there exists a path from a to b in $G_{B}-x-y$; let $v_{0}=a, v_{1}, \ldots, v_{k}, v_{k+1}=b$ be the vertices of a chordless path from a to b. Since a and b are in the same colour class, k is odd. Let M^{\prime} be the minor of M associated with $M_{B}\left[\left\{x, y, v_{0}, \ldots, v_{k}\right\}\right]$ (that is, $M_{\left\{v_{0}, v_{3}, \ldots, v_{k}\right\}}^{\prime}=M_{B}\left[\left\{x, y, v_{0}, \ldots, v_{k}\right\}\right.$), and let N^{\prime} be the minor of N associated with $N_{B}\left[\left\{x, y, v_{0}, \ldots, v_{k}\right\}\right]$.

Consider the case that $k=1$. Thus v_{1} is adjacent to both a and b. The following matrix is a binary representation of N^{\prime} :

$$
\left.\begin{array}{ccccc}
a & b & x & y & v_{1} \\
\left(\begin{array}{cc}
1 & 0
\end{array}\right. & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

Since $M^{\prime} \backslash x=N^{\prime} \backslash x$ and $M^{\prime} \backslash x=N^{\prime} \backslash y, y$ and x are both parallel with v_{1} in M^{\prime}. But then, x and y must be parallel in M^{\prime}, contradicting the fact that $\{x, y\}$ distinguishes M^{\prime} and N^{\prime}.

Now consider the case that $k \geqslant 5$. Since v_{0}, \ldots, v_{k+1} is a chordless path, v_{3} is adjacent to neither $a=v_{0}$ nor $b=v_{k+1}$. Furthermore, v_{3} is in the same colour class of G_{b} as x and y, so v_{3} is adjacent to neither x nor y. Therefore, the only neighbour of v_{3} in $G_{B}\left[\left\{x, y, a, b, v_{2}, v_{3}\right\}\right]$ is v_{2}. Hence, by Proposition 2.4, $\left\{x, y, a, b, v_{2}, v_{3}\right\}$ is feasible in M_{B} but not in N_{B}. Therefore $\{x, y, a, b\}$ distinguishes $M_{B \Delta\left\{v_{2}, v_{3}\right\}}$ from $N_{B \Delta\left\{v_{2}, v_{3}\right\}}$. Moreover, $v_{0}, v_{1}, v_{4}, \ldots, v_{k+1}$ is a shortest path from a to b in $G_{B \Delta\left\{v_{2}, v_{3}\right\}}$. So, by replacing B with $B \Delta\left\{v_{2}, v_{3}\right\}$, we bring a and b closer together; so inductively we reduce to the case where $k=3$.

The following matrix is a binary representation of N^{\prime} :

$$
\left.\begin{array}{lllllll}
a & b & v_{2} & x & y & v_{1} & v_{3} \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & \alpha & \beta & 1 & 1
\end{array}\right),
$$

where $\alpha, \beta \in\{0,1\}$. We will show that M^{\prime} is isomorphic to F_{7}^{-}.
Suppose that $Y \subseteq\left\{x, y, v_{0}, \ldots, v_{k+1}\right\}$ distinguishes M_{B} and N_{B}. Since $M \backslash x=N \backslash x$ and $M \backslash y=N \backslash y$, we have $x, y \in Y$. Furthermore, since $|Y-B|=|B \cap Y|, Y$ must be one of $\{x, y, a, b\},\left\{x, y, a, v_{2}\right\},\left\{x, y, b, v_{2}\right\},\left\{x, y, v_{1}, a, b, v_{2}\right\}$ or $\left\{x, y, v_{3}, a, b, v_{2}\right\}$. If $\left\{x, y, a, v_{2}\right\}$ distinguishes M_{B} and N_{B}, we could replace b by v_{2}; which puts us in the impossible case when $k=1$. So $\left\{x, y, a, v_{2}\right\}$ does not distinguish M_{B} and N_{B}; by symmetry, $\left\{x, y, b, v_{2}\right\}$ does not distinguish M_{B} and N_{B}. If $\left\{x, y, v_{1}, a, b, v_{2}\right\}$ distinguishes M_{B} and N_{B}, then $\{x, y, a, b\}$ distinguishes $M_{B \Delta\left\{v_{1}, v_{2}\right\}}$ from $N_{B \Delta\left\{v_{1}, v_{2}\right\}}$. Moreover, v_{3} is adjacent to both a and b in $G_{B \Delta\left\{v_{2}, v_{3}\right\}}$. This again reduces us to the case when $k=1$. So $\left\{x, y, v_{1}, a, b, v_{2}\right\}$ does not distinguish M_{B} and N_{B}; by symmetry, $\left\{x, y, v_{3}, a, b, v_{2}\right\}$ does not distinguish M_{B} and N_{B}. So $\{x, y, a, b\}$ is the only subset of $\left\{x, y, v_{0}, \ldots, v_{k+1}\right\}$ that distinguishes M_{B} from N_{B}.

Now M^{\prime} is obtained from N^{\prime} by relaxing the dependent set $\left\{x, y, v_{2}\right\}$. It follows that $\left\{x, y, v_{2}\right\}$ must be a circuit of N^{\prime}. So we cannot have $\alpha=\beta$. By possibly interchanging x and y we may assume that $\alpha=1$ and $\beta=0$. Hence N^{\prime} is isomorphic to the Fano matroid, and M^{\prime} is isomorphic to the non-Fano matroid as claimed in Lemma 1.2.

4. Intertwining

In this section we prove Theorem 1.1.

Theorem 4.1. Let N be a connected matroid. If M is a minor-minimal matroid in $\operatorname{EX}\left(F_{7}^{-},\left(F_{7}^{-}\right)^{*}\right)$ that contains both a $U_{2,4}$-minor and an N-minor, then $|E(M)| \leqslant$ $|E(N)|+4$.

We require the following elementary result, whose proof is left as an exercise.
4.2. If N_{1} and N_{2} are connected matroids, and M is a minor-minimal matroid that contains both an N_{1}-minor and an N_{2}-minor, then either M is connected or M is isomorphic to the direct sum of N_{1} and N_{2}.

Proof of Theorem 4.1. If N is nonbinary, then N contains a $U_{2,4}$-minor; so any minor-minimal matroid that contains both an N-minor and a $U_{2,4}$-minor is isomorphic to N. Therefore, we may assume that N is binary. Let M be a minor-minimal matroid in $\operatorname{EX}\left(F_{7}^{-},\left(F_{7}^{-}\right)^{*}\right)$ that contains both a $U_{2,4}$-minor and an N-minor; furthermore, suppose that $|E(M)|>|E(N)|+4$. By 4.2, M is connected. Let $X=E(N)$, and let B be any basis of M such that $M_{B}[X]=N_{B \cap X}$.
4.3. If $x, y \in E(M)-X$ are distinct elements in the same colour class of G_{B}, then $G_{B}-x-y$ is disconnected.

Suppose to the contrary that $G_{B}-x-y$ is connected. By possibly replacing M, N and B by M^{*}, N^{*} and $E(M)-B$, we may assume that $x, y \in E-B$. Therefore, $M \backslash x, y$ is connected. Note that $M \backslash x$ and $M \backslash y$ both contain N as a minor. By our choice of M, neither $M \backslash x$ nor $M \backslash y$ contains a $U_{2,4}$-minor. Therefore, both $M \backslash x$ and $M \backslash y$ are binary. So, by Lemma 1.2, either M is binary or M contains an F_{7}^{-}-minor, in either case we have a contradiction. This proves 4.3.

Let Ω_{B}^{i} denote the set of vertices in G_{B} that are at distance i from X; that is, a vertex v of G_{B} is in Ω_{B}^{i} if the number of edges in a shortest path from v to a vertex in X is i. In particular $\Omega_{B}^{0}=X$, and Ω_{B}^{1} is the set of vertices, not in X, that have a neighbour in X.

4.4. For $i \geqslant 1,\left|\Omega_{B}^{i}\right| \leqslant 2$.

Since M and N are connected, G_{B} and $G_{B}[X]$ are connected. Take a spanning tree of $G_{B}[X]$ and expand it, breadth first, to a spanning tree T of G_{B}. (That is, T is chosen so that, for each $v \S, T$ contains a shortest path from v to X in G_{B}.) If $\left|\Omega_{B}^{i}\right|>2$ for some $i \geqslant 1$, then T will have at least 3 leaves in $E(M)-X$. Therefore, there exist two leaves, say x and y, of T in $E(M)-X$ that are in the same colour class of G_{B}. Then $G_{B}-x-y$ is connected, contradicting 4.3. This proves 4.4.

Define r_{B} to be the largest integer i for which Ω_{B}^{i} is nonempty. Since $|E(M)|-$ $|X|>4, r_{B} \geqslant 3$.
4.5. There exists a choice of B such that $\left|\Omega_{B}^{i}\right|=2$ for $i=1, \ldots, r_{B}-2$. Furthermore, for $i=1, \ldots, r_{B}, \Omega_{B}^{i}$ is in one of the colour classes of G_{B}.

Let x_{0}, x_{1}, x_{2} be a path in G_{B} where $x_{j} \in \Omega_{B}^{i+j}$ and $i \geqslant 1$. Consider pivoting on x_{0}, x_{1}. Note that x_{1} has no neighbours in $\Omega_{B}^{0} \cup \cdots \cup \Omega_{B}^{i-1}$. Hence, by Proposition 2.5,
$M_{B}\left[\Omega_{B}^{0} \cup \cdots \cup \Omega_{B}^{i-1} \cup\left\{x_{0}, x_{1}\right\}\right]$ is isomorphic to $M_{B \Delta\left\{x_{0}, x_{1}\right\}}\left[\Omega_{B}^{0} \cup \cdots \cup \Omega_{B}^{i-1} \cup\left\{x_{0}, x_{1}\right\}\right]$, under swapping x_{0} and x_{1}. It follows that $M_{B \Delta\left\{x_{0}, x_{1}\right\}}[X]=N_{B \cap X}$, and that $\Omega_{B}^{j}=\Omega_{B \Delta\left\{x_{0}, x_{1}\right\}}^{j}$, for $j=0, \ldots, i-1$. Furthermore x_{1} and x_{2} are both in $\Omega_{B \Delta\left\{x_{0}, x_{1}\right\}}^{i}$. By 4.4, $\Omega_{B \Delta\left\{x_{0}, x_{1}\right\}}^{i}=\left\{x_{1}, x_{2}\right\}$; moreover x_{1} and x_{2} are in the same colour class of $G_{B \Delta\left\{x_{0}, x_{1}\right\}}$. So 4.5 is now clear.

Note that deleting the vertices in $\Omega_{B}^{r_{B}}$ cannot disconnect G_{B}, hence, by 4.3, $\left|\Omega_{B}^{r_{B}}\right|=1$. Suppose that $\Omega_{B}^{r_{B}}=\{z\}$ and that $\Omega_{B}^{r_{B}-2}=\left\{x_{1}, x_{2}\right\}$. By 4.3, $G_{B}-z-x_{1}$ and $G_{B}-z-x_{2}$ are both disconnected. It follows that $\Omega_{B}^{r_{B}-1}$ contains two elements, say y_{1} and y_{2}, where y_{1} is adjacent to x_{1} but not to x_{2}, and y_{2} is adjacent to x_{2} but not to $x_{1} . z$ is adjacent to at least one of y_{1} and y_{2}; we may assume that z is adjacent to y_{1}. Consider pivoting on x_{1}, y_{1}, and let $B^{\prime}=B \Delta\left\{x_{1}, y_{1}\right\}$. Since the only neighbour of y_{1} in $G_{B}-z$ is x_{1}, $M_{B^{\prime}}-z$ is isomorphic to $M_{B}-z$ under swapping x_{1} and y_{1}. Therefore $M_{B^{\prime}}[X]=N_{B^{\prime} \cap X}$, and y_{1} and x_{2} are both in $\Omega_{B^{\prime}}^{r_{B^{\prime}}-2}$. However, z is also in $\Omega_{B^{\prime}}^{r_{B^{\prime}}-2}$, contradicting 4.4. This proves 4.5 and consequently Theorem 1.1.

Proof of Theorem 1.1. Suppose that $\mathscr{M}=\operatorname{EX}\left(M_{1}, \ldots, M_{k}\right)$, where M_{1}, \ldots, M_{k} are connected, and that \mathscr{M} contains neither F_{7}^{-}nor $\left(F_{7}^{-}\right)^{*}$ as a minor. Therefore

$$
\begin{aligned}
\mathscr{M}= & \operatorname{EX}\left(F_{7}^{-},\left(F_{7}^{-}\right)^{*}, M_{1}, \ldots, M_{k}\right)=\cap \cdots \cap \operatorname{EX}\left(F_{7}^{-},\left(F_{7}^{-}\right)^{*}, M_{k}\right) \\
& \operatorname{EX}\left(F_{7}^{-},\left(F_{7}^{-}\right)^{*}, M_{1}\right) .
\end{aligned}
$$

Let \mathscr{B} denote the family of binary matroids. Then

$$
\mathscr{M} \cup \mathscr{B}=\left(\operatorname{EX}\left(F_{7}^{-},\left(F_{7}^{-}\right)^{*}, M_{1}\right) \cup \mathscr{B}\right) \cap \cdots \cap\left(\operatorname{EX}\left(F_{7}^{-},\left(F_{7}^{-}\right)^{*}, M_{k}\right) \cup \mathscr{B}\right) .
$$

By Theorem 4.1, for $i=1, \ldots, k, \operatorname{EX}\left(F_{7}^{-},\left(F_{7}^{-}\right)^{*}, M_{i}\right) \cup \mathscr{B}$ is described by a finite list of excluded minors. Therefore, \mathscr{M} is described by a finite list of excluded minors.

References

[1] R.A. Brualdi, Comments on bases in dependence structures, Bull. Austral. Math. Soc. 1 (1969) 161-167.
[2] T.H. Brylawski, Constructions, in: N. White (Ed.), Theory of Matroids, Cambridge University Press, Cambridge, 1986, pp. 127-223.
[3] J.F. Geelen, A.M.H. Gerards, A. Kapoor, The excluded minors for GF(4)-representable matroids, submitted for publication.
[4] A.M.H. Gerards, A short proof of Tutte's characterization of totally unimodular matrices, Linear Algebra Appl. 114/115 (1989) 207-212.
[5] S. Krogdahl, The dependence graph for bases in matroids, Discrete Math. 19 (1977) 47-59.
[6] B. Oporowski, J. Oxley, G. Whittle, On the excluded minors for the matroids that are either binary or ternary, submitted for publication.
[7] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[8] C. Semple, G.P. Whittle, On representable matroids having neither $U_{2,5^{-}}$nor $U_{3,5}$-minors, in: J.E. Bonin, J.G. Oxley, B. Servatius (Eds.), Matroid Theory, Contemporary Mathematics, vol. 197, American Mathematical Society, Providence, RI, 1996, pp. 377-386.
[9] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980) 305-359.
[10] D.L. Vertigan, On the intertwining conjecture for matroids, in preparation.

[^0]: E-mail address: jfgeelen@math.uwaterloo.ca (J.F. Geelen)

