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Abstract

A (8, y)-net in a matroid M is a pair (N, P) where N is a minor of M, P is a set of series classes in N,
|P| > 8, and the pairwise connectivity, in M, between any two members of P is at least y. We prove that, for
any finite field I, nets provide a qualitative characterization for branch-width in the class of F-representable
matroids. That is, for an F-representable matroid M, we prove that: (1) if M contains a (8, y)-net where §
and y are both very large, then M has large branch-width, and, conversely, (2) if the branch-width of M is
very large, then M or M* contains a (8, y)-net where § and y are both large.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For matroids representable over a given finite field, we obtain a qualitative characterization
of large branch-width. For graphs, such a characterization was obtained by Robertson and Sey-
mour [8].

Theorem 1.1 (Robertson and Seymour). For any positive integer n there exists an integer k such
that, if G is a graph with branch-width at least k, then G contains a minor isomorphic to the n
by n grid.
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Ideally we would like to prove the following conjecture of Johnson, Robertson, and Sey-
mour [4].

Conjecture 1.2. For any positive integer n and prime power q, there exists an integer k such
that, if M is a GF(q)-representable matroid with branch-width at least k, then M contains a
minor isomorphic to the cycle-matroid of the n by n grid.

The cycle-matroid of the n by n grid has branch-width n. If true, the above conjecture would,
given a matroid with very large branch-width (at least k), provide a succinct certificate that the
branch-width is large (at least n). We provide a similar such certificate.

Let M be amatroidandlet A C E(M). Welet Ay (A) =ry(A)+ry(E(M)—A)—r(M)+1.
A partition (A, B) of E(M) is called a separation of order A (A). For disjoint subsets A and B
of E(M) we let

kp(A, B)y=min(Ay(X): AC X C E(M)— B).

A (8, y)-net of a matroid M is a pair (N, P) where N is a minor of M, P is a collection of
series classes of N, |P| > §, and xps (P, Q) > y for each distinct pair of sets P, Q € P. The next
result, proven in Section 4, shows that nets witness large branch-width.

Lemma 1.3. Let M be a GF(q)-representable matroid. If M contains a (¢*, k)-net, then M has
branch-width at least k.

Our main result is that nets provide a qualitative characterization of large branch-width.

Theorem 1.4. For all positive integers § and y and any finite field F there exists an integer k such
that if M is an F-representable matroid with branch-width at least k, then M or M* contains a
(8, y)-net.

We prove a slightly stronger version of Lemma 1.3 and Theorem 1.4, namely Lemma 4.1 and
Theorem 6.2, that do not require representability.

Verifying that a pair (N, P) is a (8, y)-net of M can be done efficiently. Most of the work
required is in verifying that kp; (P, Q) > y for each pair (P, Q) of sets in P. The number of
such pairs is

0+(*4")

For a given pair (P, Q) we can efficiently verify that (P, Q) > y using Tutte’s Linking The-
orem (Theorem 2.2). It suffices to provide a minor N’ of M such that E(N') = P U Q and
An’(P) = y; this can be verified using only four rank-evaluations. For our purpose, we do not
need to know how to compute «p (P, Q) efficiently. Nevertheless, « (P, Q) can be computed
efficiently via Edmonds’ Matroid Intersection Algorithm; this application, due to Edmonds, is
described by Bixby and Cunningham [1].

2. Preliminaries

We assume that the reader is familiar with matroid theory; we use the notation of Oxley [7].
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For any positive integer g we let U/ (g) denote the class of matroids with no Us 44 2-minor
and we let {*(g) denote the class of matroids with no Uy 442-minor. Note that, if ¢ is a prime-
power, then U (q) NU*(g) contains all GF(q)-representable matroids. We prove the more general
version of Theorem 1.4 by extending it to the class U (q) NU*(q). We use the following result of
Kung [5].

Lemma 2.1. For g > 2, if M is a simple rank-r matroid in U(q), then |[E(M)| < (¢" — 1)/
(g —D.

We also use the following theorem of Tutte [10].

Theorem 2.2 (Tutte’s Linking Theorem). If S and T are disjoint sets of elements in a matroid M,
then there exists a minor N of M such that E(N) =SUT and Ay (S) =k (S, T).

Let E be a finite set, and let A be an integer-valued function defined on subsets of E. We call
A a connectivity function on E if:

(1) AM(X)=A(E — X) foreach X C E, and
Q) M X)+2XY)>2AMXNY)+AXUY).

The following gives some elementary properties of connectivity functions that we will use
later without reference.

Lemma 2.3. If A is a connectivity function on E, then, for each X,Y C E, we have:

o AM(X) = A() and
e A(X)+A(Y) ZA(X =Y)+AY — X).

Proof. By symmetry and submodularity we have:
AMX)+AY)=A(X)+AE-Y)
>AX -Y)+AME—-(Y-X))
=AX-Y)+ 1Y - X).
Thus A(X) + A(Y) 2> AM(X —Y) + A(Y — X). When X = Y this inequality reduces to
AX)>A®). DO
A partition (A, B) of E is called a separation of order A(A). For disjoint sets S, T C E, we
let
.(S,T)=min(A(Z): SCZCE-T).
Lemma 2.4. Let X be a connectivity function on E andlet X CA C E. If (X, E — A) = A(A),
then, for each Z C E — X, we have A(Z — A) < A(Z).
Proof. Notethat X C A — Z C E — A. Therefore A(A — Z) > ik, (X, E — A) = L(A). Now
MA+AZ)ZAMA—-2Z)+21(Z — A).
Thus, L(Z) > M(Z — A), asrequired. O
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A tree is cubic if its internal vertices all have degree 3. A partial branch-decomposition of A
is a cubic tree T, with at least one edge, whose leaves are labelled by elements of E. That is,
each element in E labels exactly one leaf of T, but leaves may be unlabelled or multiply labelled.
A branch-decomposition is a partial branch-decomposition without multiply labelled leaves. If
T’ is a subgraph of T and X C E is the set of labels of T”, then we say that T’ displays X. The
width of an edge e of T, denoted e(e, T), is defined to be A(X) where X is the set displayed
by one of the components of T — {e}. The width of T, denoted €(T), is the maximum among
the widths of its edges. The branch-width of X is the minimum among the widths of all branch-
decompositions of A.

The following lemma is an immediate consequence of Lemma 2.4.

Lemma 2.5. Let A be a connectivity function on E, let T be a partial branch-decomposition of X,
and let X C E be the set labelling a vertex v € V(T). Now, let A C E with X C A and let T’
be the branch-decomposition of A obtained by relabelling T as follows: label v by A and label
weV(T)—{v}byY — A whereY is the set of labels of w in T. If k; (X, E — A) = A(A), then
e(e, T") < e(e, T) for each edge e of T.

The branch-width of a matroid M is the branch-width of its connectivity function A,s. We
require the following result of Oporowski [6].

Theorem 2.6. If M is a matroid of branch-width at least (méH), then M contains a circuit of
length at least m.

3. Tangles

Robertson and Seymour [9] introduced branch-width for connectivity functions and showed
that, for graphs, this parameter is characterized by ‘tangles.” In fact, Robertson and Seymour [9,
(3.5)] proved a more general duality notion for the branch-width of a connectivity function, but
they did not explicitly define ‘tangles’ for connectivity functions. Later, Dharmatilake [2] defined
tangles for matroids and proved the duality with branch-width. In this section we define tangles
for connectivity functions and reprove the duality with branch-width. We remark that, when
restricted to matroids, our definition, unlike that of Dharmatilake, is self-dual.

Let A be a connectivity function on E. A fangle of A of order k is a collection 7 of subsets of
E such that:

(T1) Foreach Be 7, A(B) <k.

(T2) For each separation (A, B) of order less than k, 7 contains A or B.
(T3) If A,B,C€7,then AUBUC#E.

(T4) Foreachec€ E, E —{e} ¢ 7.

Note that, by (T3), (T2) can be sharpened to say that 7 contains exactly one of A and B. The
following lemma gives alterate defining conditions for a tangle that are more straightforward to
verify.

Lemma 3.1. Let A be a connectivity function and let k € Z. Now let T be a collection of subsets
of E that satisfies:
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(T1) Foreach B €T, A\(B) <k.
(T2) For each separation (A, B) of order less than k, T contains A or B.

(T3a) fFAC B, BeT,and A(A) <k, then AeT.

(T3b) If (A, B, C) is a partition of E, then T cannot contain all three of A, B, and C.
(T4) Foreachec E, E —{e} ¢ 7.

Then T is a tangle.

Proof. If 7 is not a tangle, then there exists A, B, C € 7 such that AU BU C = E. Choose such
A, B, and C minimizing |[A N B|+ |BNC|+ |C N A|. By (T3b) and symmetry, we may assume
that |[A N B| # 0. Since A is symmetric and submodular, we have A(A — B) + A(B — A) <
A(A) + A(B). Then, by the symmetry between A and B, we may assume that A(A — B) < k.
Now A — B C A, so, by (T3a), we have A — B € 7. Thus we have (A — B)U BUC = E and
[(A—B)NB|+|BNC|+|CN(A—B)|<|ANB|+|BNC|+|C N AJ. This contradicts our
choiceof A, B,and C. O

The main result of this section is:

Theorem 3.2. Let A be a connectivity function on E. Then the maximum order of a tangle of A is
equal to the branch-width of A.

The rest of this section is devoted to the proof of Theorem 3.2. Let A be a collection of subsets
of E. We say that A extends to a tangle 7 of order k, if A C 7. We say that a partial branch-
decomposition T comforms to A if, for each leaf v of T, there is a set A € A that contains each of
the elements labelling v. (We do not require that the set elements labelling v is contained in .A.)
The following theorem is cryptomorphic to [9, (3.5)]; for completeness we will include a proof
of this result later in this section.

Theorem 3.3. Let A be a connectivity function on E, let k € Z, and let A be a collection of
subsets of E such that M(A) < k, for each A € A, and | J A= E. Then either

o A extends to a tangle of order k, or
e there is a partial branch-decomposition of A of width < k that conforms to A.

The two possible outcomes above are in fact exclusive, as we show in the following lemma.

Lemma 3.4. Let A be a connectivity function on E and let k € Z. If T is a tangle of order k and
T is a partial branch-decomposition of A that conforms with T, then €(T) > k.

Proof. Suppose, by way of contradiction, that €(T") < k. Construct an orientation of 7 as fol-
lows. Consider an edge e of T'; let a and b be the ends of e and let X, and X, be the sets displayed
by the components of T — e containing a and b, respectively. Thus (X,, Xj) is a separation of
order less than k. By (T2) and (T3), 7 contains exactly one of X, and Xj;. By symmetry, we
may assume that X, € 7. Now, orient e toward b. Consider a leaf w of T. Let e be the edge
of T incident with w and let X C V be the set of elements labelling w. By definition, there exists
A €7 suchthat X € A. By (T2) and (T3), we have X € 7. Therefore e is oriented away from w.
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Therefore, there must exist an internal node v of 7 with all three incident edges oriented toward
it. This, however, contradicts (T3). O

Before we prove Theorem 3.3, we will use it to prove Theorem 3.2.
Proof of Theorem 3.2. Let k € Z. By Lemma 3.4 it cannot be the case that there exists both a
branch-decomposition of width < k and a tangle of order k. Thus it suffices to prove that at least
one of the two exist.

Case 1. There exists e € E such that A({e}) > k.

Let 7 consist of all sets A C E — {e} with A(A) < k. It is easy to verify that 7 is a tangle of
order k.

Case 2. L({e}) <k foreache € E.

Let A be a partition of E into singletons. Then, by Theorem 3.3, either there exists a branch-
decomposition of width < k or A extends to a tangle of order k. O

Finally, we are ready to prove Theorem 3.3.
Proof of Theorem 3.3. We assume that:
3.4.1. There is no partial branch-decomposition of width < k that conforms with A.
We may also assume that:
3.4.2. A is maximal subject to 3.4.1 and to the condition that A(A) < k for each A € A.
From these assumptions we obtain:
343.IfBe A, AC B, and AM(A) <k, then A € A.

Subproof. Since A C B, a partial branch-decomposition conforms with A if and only if it con-
forms with AU {A}. O

Case 1. For each separation (X, Y) of A of order < k, A contains X or Y.

In this case we will prove that A is, in fact, a tangle of order k. It is clear that A satisfies
(T1) and (T2). Moreover, by 3.4.3, A satisfies (T3a) (of Lemma 3.1). Note that, by 3.4.1, A also
satisfies (T3b). Finally, consider an element ¢ € E. Since | JA = E there exists A € A such
that e € A. If A({e}) >k, then E — {e} ¢ A by (T1). If L({e}) < k, then {e} € A by (T3a) and,
hence, E — {e} ¢ A by (T3b). In either case, E — {e} ¢ A and, hence, A satisfies (T4). Then, by
Lemma 3.1, A is a tangle.

Case 2. There exists a separation (A1, Ay) of A of order < k such that Ay, A ¢ A.
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We choose such a separation (A1, Az) minimizing A(A1). Leti € {1, 2}. By 3.4.2, there exists
a partial branch-decomposition 7; of width < k that conforms with A U {A;}. By 3.4.1, there
exists a vertex v; € V(T;) such the set X; C E labelling v; is contained in A; but is not contained
in any set in A.

344. 1, (X;, E— A) =1(A)).

Subproof. Consider a set Z such that X; € Z C E — A;. Suppose that A(Z) < A(A;). Then, by
our choice of (X1, X»), we have Z € Aor E — Z € A. Since X; C Z, it must be the case that
E — Z € A. Then, by 3.4.3 and the fact that X, C E — Z, we have X; € A. This contradicts our
choice of (X1, X3). O

Let T/ be the branch-decomposition of A obtained from 7; by leaving the labels in X and
moving the labels in X to v;. By 3.4.4 and Lemma 2.5, we have E(Ti/) < €(T;) < k. Now, from
T{ and T, we can easily construct a partial branch-decomposition of width < k that conforms
with A; contrary to 3.4.1. O

4. Applications of tangles

Naturally, a fangle of a matroid M is a tangle of its connectivity function Ajs. The following
lemma generalizes Lemma 1.3.

Lemma 4.1. For all positive integers k and q > 2, if M € U(q) and M contains a (q*, k)-net,
then M has branch-width at least k.

Proof. Let (N, P) be a (¢*, k)-net. We define a collection of sets 7 such that A € 7 if and only
if Apr(A) < k and A does not contain a series class of P.

Consider any separation (A, B) of M of order less than k. If P and Q are distinct members
of P, then, since xy (P, Q) > Apy(A), we cannot have P C A and Q C B. That is, A and B
cannot both contain a member of P and, hence, 7 satisfies (T2). Evidently, 7 also satisfies (T1),
(T3a), and (T4).

Now, consider a partition (A1, Az, A3) of E(M) such that Ap;(A;) < k foreachi € {1,2,3}.
Let By = E(M) — Ay and By = E(M) — A;. By the argument above, for each i € {1, 2}, the
number of sets P € P such that either P N A1 and P N B are both non-empty or P N A, and
P N B, are both non-empty is at most 2(g*~! — 1) < g*. Therefore, there is some set in P that
is contained in Ay, Aj, or A3. Thus, 7 satisfies (T3b). So, by Lemma 3.1, 7 is a tangle of order
k and, hence, M has branch-width at least k. O

Let X be a subset of E(M). We call X an [k, n]-connected set if for each partition (X1, X2)
of M with | X ], |X32| = n we have k(X 1, X3) > k.

Lemma 4.2. Let X be a subset of E(M). If X is an [k, n]-connected set and | X| > 3n, then M
has branch-width at least k + 1.

Proof. Let 7 be the set of all sets A C E(M) such that Ay (A) < k and |[A N X| < n. Con-
sider a separation (A, B) of order less than k. Since X is [k, n]-connected, either |[A N X| < n or
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|BN X| <n. Thatis, 7 satisfies (T2). Moreover, 7 clearly satisfies (T1), (T3), and (T4). There-
fore, M has branch-width atleastk +1. O

Let 7 be a tangle of M of order k. For X € E(M), if X is a subset of a set in 7 then, we let
o7 (X) = min(AM(A) —1: XCAe T),

otherwise we let ¢p7(X) =k — 1.

Lemma 4.3. Let M be a matroid and let T be a tangle of M of order k. Then ¢ is the rank
function of a matroid of rank k — 1.

Proof. It is straightforward to see that:

(1) 0< o7 (X) < |X]| forany X € E(M) and
(i) ¢7(X1) < P7(X2) for X; € X2 € E(M).

Thus it suffices to prove that ¢z is submodular. Consider subsets Y; and Y, of E(M).
If ¢7(Y1) =k — 1, then ¢7 (Y1 U Y2) = k — 1. Moreover, ¢7 (Y1 N Yy) < ¢p7(Y2). There-
fore, p7 (Y1 U Y2) + o7 (Y1 N Y2) < d7 (Y1) + ¢7(Y2). Now suppose that ¢p7 (Y1) <k — 1 and
¢7(Y2) < k — 1. Thus, for i € {1, 2}, there exists A; € 7 such that ¥; C A; and Ay (A;) =
o7 (Y0).

As Ay € T, it follows from (T2) and (T3) that either Ap;(A; NAy) >kor AiNAyeT7.In
either case, ¢p7 (Y1 NY2) < Ay (A1 N Aj). Similarly, by (T2) and (T3), either Ay (A1 U A2) > k
or Aj U A € 7. Ineither case, ¢p7 (Y UY2) < Ap (A U Ajp). Therefore,

¢7(Y1) +¢7(Y2) = Am (A1) +Am(A2)
2Au(A1NA) + (A1 U A
Zor(Y1NY2) +o7r(Y1UY2),

as required. O
We obtain the following easy consequence.

Lemma 4.4. If M is a matroid with branch-width at least 3k + 1, then there exists a [k, k]-
connected subset X of E(M) with |X| > 3k.

Proof. Let 7 be a tangle of order 3k + 1, and let X be a subset of E(M) such that ¢7(X) =
| X | = 3k; such a set exists by Lemma 4.3. Now, consider any separation (A, B) of M of order
less than k. We may assume that A € 7. By Lemma 4.3, [ANX|=¢7(ANX) <Ay (A) <k. It
follows that X is a [k, k]-connected set. O

Together Lemmas 4.2 and 4.4 provide a qualitative characterization of branch-width. Unfor-
tunately, the amount of work needed to verify that a set is [k, n]-connected grows exponentially
with respect to n and k.
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5. Frames

For positive integers § and y, we define a (8, y)-frame in a matroid M to be a pair (N, P)
such that N is a minor of M, P is a set of series classes of N, |P| > 4, and |P| > y for each
P € P. The main result of this section is the following.

Lemma 5.1. There exists an integer-valued function f1(8, v, q) such that for any positive integers
8, y and q = 2, if M is a matroid in U(q) NU*(q) with branch-width at least f1(8,y,q), then
M or M* contains a (8, y)-frame.

We require the following preliminary results.

Lemma 5.2. There exists an integer-valued function f>(6,y,q, k) such that for any positive
integers 8, y, q =2, and k, if M is a matroid in U*(q) with branch-width at least 3(k + 8) + 1,
then either M contains a (8, y)-frame or there exists Y C E(M) such that M|Y has branch-width
atleast k and |Y| < f>(5,y,q, k).

Proof. Let (8, 7.4, k) = (° gckja‘s)qu*‘sy. Suppose that M does not contain a (8, y)-frame. By
Lemma 4.4, there exists a [k + &, k + §]-connected set Z in M with |Z| =3(k +§).

Let S and T be disjoint subsets of Z with |S| = |T| =k + 8. Then, xy(S,T) =k + 4.
Hence, by Tutte’s Linking Theorem, there exists a partition (I, J) of E(M) — (S U T) such
that A\ 7,7 (S) =k + 8; we choose such a partition with J minimal. Let N denote the restriction
of M to SUT U J. By the minimality of J, S U J is a basis of N and N has no coloops. Since
S U J is a basis of N, we have r(N*) < |T| =k + 8. Let P denote the series classes of N with
size at least y. Since M does not contain a (§, y)-frame, we have |P| < §. Let P denote the union
of the sets in P and let Ny = N \ P. The corank of Nj is at most k + § and each series class
of N not in P has size at most y — 1, so, by Lemma 2.1, |[E(N})| < gkt (y — 1). Moreover,
kN (SN E(ND, TNE(NY) Zkn(S, T)—|P| = k.

Let Y denote the set obtained by taking the union of Z and all sets of the form E(Nj) taken
over all possible choices of S and T'. Then, Z is a [k, k4 &]-connected setin M|Y. By Lemma 4.2,
M |Y has branch-width at least k. Moreover, since there are at most (S(kkj;))z different choices
for S and T, we have |Y| < f2(8, v, q,k). O

For subsets X and Y of E(M) we let My (X, Y) denote ryy (X) +ry(Y) —ry(XUY).

Lemma 5.3. There exists an integer-valued function f3(y, q,t) such that for any positive integers
8,v,q =2, andt, if M is a matroid in U*(q) that does not contain a (8, y)-frame and A C E(M)
with Ay (A) < t, then there exists X C E(M) — A such that Ay x (A) <6 and | X| < f3(y,q,1).

Proof. Let f3(y,q,t) = (y — 1)g'~! and let M be a matroid in 2/*(g) that does not contain a
(8, y)-frame and let A be a subset of E(M) with Ap(A) <t.

Let J be a minimal subset of E(M) — A such that My (A, J) = Ay(A) — 1 and let N =
(M/A)|J. Note that N has no coloops and that, as J is independent, r(N*) = Ay (A) — 1 <
t — 1. Let X be the set of all elements of N that are in series classes of size at most y — 1
and let B=J — X. By Lemma 2.1, | X| < (y — Dg'~!' = f3(y,q.t). Since M has no (8, y)-
frame, there are at most § — 1 series classes of N that have size at least y. Thus, r*(N \ B) >
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r*(N)—8+1=2xpy(A)—38.Ttfollows that M (A, X) > Ap(A) — 8 and, hence, that Ay x (A) =
Am(A) —Mm(A, X)<é8. O

We need the following result in the case that k; = k»; the more technical version facilitates
induction.

Lemma 5.4. There exists an integer-valued function f1(8,y,q, k1, ko, n) such that for any pos-
itive integers 8, y, ki, ko, n > 2 and q > 2, if M is a matroid in U(q) NU*(q) such that M
has branch-width at least f4(8,y,q, k1, ka, n) and neither M nor M* contains a (38, y)-frame,
then there exists a restriction N of M and a partition (A1, Ay, ..., A,) of E(N) such that
N|Ay, ..., N|A,_1 each have branch-width at least ki, N|A, has branch-width at least kj,
and AN(A1U---UA) S forallie{l,...,n—1}.

Proof. Letksz = f»(5,y,q, k1) and kg = max(3(k; +8)+ 1, ko +k3+ f3(y, q, k3 +5)). Now de-
fine f1(8,v,q, k1, k2,2) =max(3(k; +98) + 1, ko + k3 + f3(y, q, k3)). For n > 2, we recursively
define f4(8, v, q, k1, ko, n) = f1(8, v, q, k1, ka,n —1). Let M be a matroid in U (¢) NU*(g) such
that M has branch-width at least f4(8, v, ¢, k1, k2, n) and neither M nor M* contains a (8, y)-
frame.

The proof is by induction on n; we begin with the case n = 2. By Lemma 5.2, there exists
A1 € E(M) such that M| A has branch-width at least k| and such that |A| < k3. Now by dual-
izing Lemma 5.3, there exists X € E(M) — Ay such that Apn x (A1) <6 and | X| < f3(y, g, k3).
Let N=M\ X andlet A = E(N) — Aj. Since |A; U X| < k3 + f3(y, g, k3), N|A; has branch-
width at least k»; as required.

Now consider the case that n > 2. By induction, there exists a restriction N; of M and a
partition (Aq, ..., A,—2, B) of E(Ny) such that, for each i € {1,...,n — 2}, Ni|A; has branch-
width at least k1, N|B has branch-width at least k4, and, foreachi € {1,...,n — 2}, An, (A1 U
---UA;) <45.ByLemma 5.2, there exists A,_; € B such that M|A, _; has branch-width exactly
k1 and such that |A,_1| < k3. Note that Ay, (A1 U---UA;_1) <An(A1U---UA,2)+]A-1] <
8 + k3. Thus, by dualizing Lemma 5.3, there exists X € E(Ny) — (A1 U---U A,_1) such that
ANpx(A1U---UA, 1) <dand [X]| < f3(y,q,0 +k3). Let N=N;\ X and let A, = E(N) —
(AjU---UA,_1). Since |A,—1 UX| <ks+ f3(y, 4, k3 +8) and N|A, = (N1|B) \ (4,1 UX),
N|A, has branch-width at least k»; as required. O

Proof of Lemma 5.1. Let m = y¢®, k= ("}"), and f1(8,y,q) = f4(8, 7.4, k, k, 8). Now let
M be a matroid in U (g) NU*(q) such that M has branch-width at least f(3, y, ¢) and neither
M nor M* contains a (8, y)-frame. By Lemma 5.4, there exists a minor Nj of M and a partition
(A1, Ay, ..., As) of E(Nyp) such that N|Ay, ..., N|As each have branch-width at least k, and
AN (AU---UA;) S foralli e{l,...,8 —1}. Now, by Theorem 2.6, for each i € {1, ..., 6}
there exists a circuit C; € A; of N of length at least m. Let N = N|(C1 U --- U Cs). For each
ie{l,..., &}, wehave

AN(C) <K AN(C1U---UCiZ1) + AN(Cix1 U---UCs)
=AN(C1U---UCi_)) +An(CLU---UCy)
<An (AU~ UA; 1) + Ay (AU~ UA;)
< 26.
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It follows easily by definitions that
ry(Ci) =AN(Ci) — 1+ r*(N|C;) < 26.

Thus, there exists a series class S; C C; with |S;| > v.So (N, {S1, ..., Ss}) isa (§, y)-frame. O
6. Nets

Let f be an integer valued function defined on the set of positive integers. A matroid M
is called (m, f)-connected if whenever (A, B) is a separation of order £ < m, then either
Al < f(£) or |B| < f(£). The following result was proved in [3].

Lemma 6.1. Let g(¢) = (6~ — 1)/5 for all positive integers £. If M is a minor-minimal matroid
with branch-width k, then M is (k + 1, g)-connected.

We are finally ready to prove the main result.

Theorem 6.2. For all positive integers 8§, y and q > 2, there exists an integer k such that if M is
a matroid in U(q) NU*(q) with branch-width at least k, then M or M* contains a (8, y)-net.

Proof. Lety’ =g(y — 1)+ 1 andletk = f1(8,y’, ¢). Now let M be a matroid in U(q) NU*(q)
with branch-width at least k. Evidently, we may assume that M is minor-minimal with branch-
width k. Thus, by Lemma 6.1, M is (k + 1, g)-connected. By Lemma 5.1 and duality, we may
assume that M contains a (8, y’)-frame (N, P). Consider a pair of distinct sets Py, P, € P. Let
(X1, X») be a partition of E(M) with P; € X1 and P, C X3. Now, | X1], |X2| 2 g(y — 1) + 1.
Thus, Ay (X1) > y. It follows that kp (P1, P,) > y. Thatis, (N, P)isa (8, y)-netin M. 0O
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