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Abstract

A (δ, γ )-net in a matroid M is a pair (N,P) where N is a minor of M , P is a set of series classes in N ,
|P| � δ, and the pairwise connectivity, in M , between any two members of P is at least γ . We prove that, for
any finite field F, nets provide a qualitative characterization for branch-width in the class of F-representable
matroids. That is, for an F-representable matroid M , we prove that: (1) if M contains a (δ, γ )-net where δ

and γ are both very large, then M has large branch-width, and, conversely, (2) if the branch-width of M is
very large, then M or M∗ contains a (δ, γ )-net where δ and γ are both large.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For matroids representable over a given finite field, we obtain a qualitative characterization
of large branch-width. For graphs, such a characterization was obtained by Robertson and Sey-
mour [8].

Theorem 1.1 (Robertson and Seymour). For any positive integer n there exists an integer k such
that, if G is a graph with branch-width at least k, then G contains a minor isomorphic to the n

by n grid.
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Ideally we would like to prove the following conjecture of Johnson, Robertson, and Sey-
mour [4].

Conjecture 1.2. For any positive integer n and prime power q , there exists an integer k such
that, if M is a GF(q)-representable matroid with branch-width at least k, then M contains a
minor isomorphic to the cycle-matroid of the n by n grid.

The cycle-matroid of the n by n grid has branch-width n. If true, the above conjecture would,
given a matroid with very large branch-width (at least k), provide a succinct certificate that the
branch-width is large (at least n). We provide a similar such certificate.

Let M be a matroid and let A ⊆ E(M). We let λM(A) = rM(A)+rM(E(M)−A)−r(M)+1.
A partition (A,B) of E(M) is called a separation of order λM(A). For disjoint subsets A and B

of E(M) we let

κM(A,B) = min
(
λM(X): A ⊆ X ⊆ E(M) − B

)
.

A (δ, γ )-net of a matroid M is a pair (N,P) where N is a minor of M , P is a collection of
series classes of N , |P| � δ, and κM(P,Q) � γ for each distinct pair of sets P,Q ∈P . The next
result, proven in Section 4, shows that nets witness large branch-width.

Lemma 1.3. Let M be a GF(q)-representable matroid. If M contains a (qk, k)-net, then M has
branch-width at least k.

Our main result is that nets provide a qualitative characterization of large branch-width.

Theorem 1.4. For all positive integers δ and γ and any finite field F there exists an integer k such
that if M is an F-representable matroid with branch-width at least k, then M or M∗ contains a
(δ, γ )-net.

We prove a slightly stronger version of Lemma 1.3 and Theorem 1.4, namely Lemma 4.1 and
Theorem 6.2, that do not require representability.

Verifying that a pair (N,P) is a (δ, γ )-net of M can be done efficiently. Most of the work
required is in verifying that κM(P,Q) � γ for each pair (P,Q) of sets in P . The number of
such pairs is(

δ

2

)
�

(|E(M)|
2

)
.

For a given pair (P,Q) we can efficiently verify that κM(P,Q) � γ using Tutte’s Linking The-
orem (Theorem 2.2). It suffices to provide a minor N ′ of M such that E(N ′) = P ∪ Q and
λN ′(P ) � γ ; this can be verified using only four rank-evaluations. For our purpose, we do not
need to know how to compute κM(P,Q) efficiently. Nevertheless, κM(P,Q) can be computed
efficiently via Edmonds’ Matroid Intersection Algorithm; this application, due to Edmonds, is
described by Bixby and Cunningham [1].

2. Preliminaries

We assume that the reader is familiar with matroid theory; we use the notation of Oxley [7].
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For any positive integer q we let U(q) denote the class of matroids with no U2,q+2-minor
and we let U∗(q) denote the class of matroids with no Uq,q+2-minor. Note that, if q is a prime-
power, then U(q)∩U∗(q) contains all GF(q)-representable matroids. We prove the more general
version of Theorem 1.4 by extending it to the class U(q) ∩U∗(q). We use the following result of
Kung [5].

Lemma 2.1. For q � 2, if M is a simple rank-r matroid in U(q), then |E(M)| � (qr − 1)/

(q − 1).

We also use the following theorem of Tutte [10].

Theorem 2.2 (Tutte’s Linking Theorem). If S and T are disjoint sets of elements in a matroid M ,
then there exists a minor N of M such that E(N) = S ∪ T and λN(S) = κM(S,T ).

Let E be a finite set, and let λ be an integer-valued function defined on subsets of E. We call
λ a connectivity function on E if:

(1) λ(X) = λ(E − X) for each X ⊆ E, and
(2) λ(X) + λ(Y ) � λ(X ∩ Y) + λ(X ∪ Y).

The following gives some elementary properties of connectivity functions that we will use
later without reference.

Lemma 2.3. If λ is a connectivity function on E, then, for each X,Y ⊆ E, we have:

• λ(X) � λ(∅) and
• λ(X) + λ(Y ) � λ(X − Y) + λ(Y − X).

Proof. By symmetry and submodularity we have:

λ(X) + λ(Y ) = λ(X) + λ(E − Y)

� λ(X − Y) + λ
(
E − (Y − X)

)
= λ(X − Y) + λ(Y − X).

Thus λ(X) + λ(Y ) � λ(X − Y) + λ(Y − X). When X = Y this inequality reduces to
λ(X) � λ(∅). �

A partition (A,B) of E is called a separation of order λ(A). For disjoint sets S,T ⊆ E, we
let

κλ(S,T ) = min
(
λ(Z): S ⊆ Z ⊆ E − T

)
.

Lemma 2.4. Let λ be a connectivity function on E and let X ⊆ A ⊆ E. If κλ(X,E − A) = λ(A),
then, for each Z ⊆ E − X, we have λ(Z − A) � λ(Z).

Proof. Note that X ⊆ A − Z ⊆ E − A. Therefore λ(A − Z) � κλ(X,E − A) = λ(A). Now

λ(A) + λ(Z) � λ(A − Z) + λ(Z − A).

Thus, λ(Z) � λ(Z − A), as required. �



J. Geelen et al. / Journal of Combinatorial Theory, Series B 96 (2006) 560–570 563
A tree is cubic if its internal vertices all have degree 3. A partial branch-decomposition of λ

is a cubic tree T , with at least one edge, whose leaves are labelled by elements of E. That is,
each element in E labels exactly one leaf of T , but leaves may be unlabelled or multiply labelled.
A branch-decomposition is a partial branch-decomposition without multiply labelled leaves. If
T ′ is a subgraph of T and X ⊆ E is the set of labels of T ′, then we say that T ′ displays X. The
width of an edge e of T , denoted ε(e, T ), is defined to be λ(X) where X is the set displayed
by one of the components of T − {e}. The width of T , denoted ε(T ), is the maximum among
the widths of its edges. The branch-width of λ is the minimum among the widths of all branch-
decompositions of λ.

The following lemma is an immediate consequence of Lemma 2.4.

Lemma 2.5. Let λ be a connectivity function on E, let T be a partial branch-decomposition of λ,
and let X ⊆ E be the set labelling a vertex v ∈ V (T ). Now, let A ⊆ E with X ⊆ A and let T ′
be the branch-decomposition of λ obtained by relabelling T as follows: label v by A and label
w ∈ V (T ) − {v} by Y − A where Y is the set of labels of w in T . If κλ(X,E − A) = λ(A), then
ε(e, T ′) � ε(e, T ) for each edge e of T .

The branch-width of a matroid M is the branch-width of its connectivity function λM . We
require the following result of Oporowski [6].

Theorem 2.6. If M is a matroid of branch-width at least
(
m+1

2

)
, then M contains a circuit of

length at least m.

3. Tangles

Robertson and Seymour [9] introduced branch-width for connectivity functions and showed
that, for graphs, this parameter is characterized by ‘tangles.’ In fact, Robertson and Seymour [9,
(3.5)] proved a more general duality notion for the branch-width of a connectivity function, but
they did not explicitly define ‘tangles’ for connectivity functions. Later, Dharmatilake [2] defined
tangles for matroids and proved the duality with branch-width. In this section we define tangles
for connectivity functions and reprove the duality with branch-width. We remark that, when
restricted to matroids, our definition, unlike that of Dharmatilake, is self-dual.

Let λ be a connectivity function on E. A tangle of λ of order k is a collection T of subsets of
E such that:

(T1) For each B ∈ T , λ(B) < k.
(T2) For each separation (A,B) of order less than k, T contains A or B .
(T3) If A,B,C ∈ T , then A ∪ B ∪ C 	= E.
(T4) For each e ∈ E, E − {e} 	∈ T .

Note that, by (T3), (T2) can be sharpened to say that T contains exactly one of A and B . The
following lemma gives alterate defining conditions for a tangle that are more straightforward to
verify.

Lemma 3.1. Let λ be a connectivity function and let k ∈ Z. Now let T be a collection of subsets
of E that satisfies:
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(T1) For each B ∈ T , λ(B) < k.
(T2) For each separation (A,B) of order less than k, T contains A or B .

(T3a) If A ⊆ B , B ∈ T , and λ(A) < k, then A ∈ T .
(T3b) If (A,B,C) is a partition of E, then T cannot contain all three of A, B , and C.
(T4) For each e ∈ E, E − {e} /∈ T .

Then T is a tangle.

Proof. If T is not a tangle, then there exists A,B,C ∈ T such that A∪B ∪C = E. Choose such
A, B , and C minimizing |A ∩ B| + |B ∩ C| + |C ∩ A|. By (T3b) and symmetry, we may assume
that |A ∩ B| 	= 0. Since λ is symmetric and submodular, we have λ(A − B) + λ(B − A) �
λ(A) + λ(B). Then, by the symmetry between A and B , we may assume that λ(A − B) < k.
Now A − B ⊆ A, so, by (T3a), we have A − B ∈ T . Thus we have (A − B) ∪ B ∪ C = E and
|(A − B) ∩ B| + |B ∩ C| + |C ∩ (A − B)| < |A ∩ B| + |B ∩ C| + |C ∩ A|. This contradicts our
choice of A, B , and C. �

The main result of this section is:

Theorem 3.2. Let λ be a connectivity function on E. Then the maximum order of a tangle of λ is
equal to the branch-width of λ.

The rest of this section is devoted to the proof of Theorem 3.2. Let A be a collection of subsets
of E. We say that A extends to a tangle T of order k, if A ⊆ T . We say that a partial branch-
decomposition T comforms to A if, for each leaf v of T , there is a set A ∈ A that contains each of
the elements labelling v. (We do not require that the set elements labelling v is contained in A.)
The following theorem is cryptomorphic to [9, (3.5)]; for completeness we will include a proof
of this result later in this section.

Theorem 3.3. Let λ be a connectivity function on E, let k ∈ Z, and let A be a collection of
subsets of E such that λ(A) < k, for each A ∈A, and

⋃
A = E. Then either

• A extends to a tangle of order k, or
• there is a partial branch-decomposition of λ of width < k that conforms to A.

The two possible outcomes above are in fact exclusive, as we show in the following lemma.

Lemma 3.4. Let λ be a connectivity function on E and let k ∈ Z. If T is a tangle of order k and
T is a partial branch-decomposition of λ that conforms with T , then ε(T ) � k.

Proof. Suppose, by way of contradiction, that ε(T ) < k. Construct an orientation of T as fol-
lows. Consider an edge e of T ; let a and b be the ends of e and let Xa and Xb be the sets displayed
by the components of T − e containing a and b, respectively. Thus (Xa,Xb) is a separation of
order less than k. By (T2) and (T3), T contains exactly one of Xa and Xb . By symmetry, we
may assume that Xa ∈ T . Now, orient e toward b. Consider a leaf w of T . Let e be the edge
of T incident with w and let X ⊆ V be the set of elements labelling w. By definition, there exists
A ∈ T such that X ⊆ A. By (T2) and (T3), we have X ∈ T . Therefore e is oriented away from w.
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Therefore, there must exist an internal node v of T with all three incident edges oriented toward
it. This, however, contradicts (T3). �

Before we prove Theorem 3.3, we will use it to prove Theorem 3.2.

Proof of Theorem 3.2. Let k ∈ Z. By Lemma 3.4 it cannot be the case that there exists both a
branch-decomposition of width � k and a tangle of order k. Thus it suffices to prove that at least
one of the two exist.

Case 1. There exists e ∈ E such that λ({e}) � k.

Let T consist of all sets A ⊆ E − {e} with λ(A) < k. It is easy to verify that T is a tangle of
order k.

Case 2. λ({e}) < k for each e ∈ E.

Let A be a partition of E into singletons. Then, by Theorem 3.3, either there exists a branch-
decomposition of width < k or A extends to a tangle of order k. �

Finally, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. We assume that:

3.4.1. There is no partial branch-decomposition of width < k that conforms with A.

We may also assume that:

3.4.2. A is maximal subject to 3.4.1 and to the condition that λ(A) < k for each A ∈ A.

From these assumptions we obtain:

3.4.3. If B ∈ A, A ⊆ B , and λ(A) < k, then A ∈A.

Subproof. Since A ⊆ B , a partial branch-decomposition conforms with A if and only if it con-
forms with A∪ {A}. �
Case 1. For each separation (X,Y ) of λ of order < k, A contains X or Y .

In this case we will prove that A is, in fact, a tangle of order k. It is clear that A satisfies
(T1) and (T2). Moreover, by 3.4.3, A satisfies (T3a) (of Lemma 3.1). Note that, by 3.4.1, A also
satisfies (T3b). Finally, consider an element e ∈ E. Since

⋃
A = E there exists A ∈ A such

that e ∈ A. If λ({e}) � k, then E − {e} /∈ A by (T1). If λ({e}) < k, then {e} ∈ A by (T3a) and,
hence, E − {e} /∈ A by (T3b). In either case, E − {e} /∈ A and, hence, A satisfies (T4). Then, by
Lemma 3.1, A is a tangle.

Case 2. There exists a separation (A1,A2) of λ of order < k such that A1,A2 /∈A.
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We choose such a separation (A1,A2) minimizing λ(A1). Let i ∈ {1,2}. By 3.4.2, there exists
a partial branch-decomposition Ti of width < k that conforms with A ∪ {Ai}. By 3.4.1, there
exists a vertex vi ∈ V (Ti) such the set Xi ⊆ E labelling vi is contained in Ai but is not contained
in any set in A.

3.4.4. κλ(Xi,E − Ai) = λ(Ai).

Subproof. Consider a set Z such that Xi ⊆ Z ⊆ E − Ai . Suppose that λ(Z) < λ(Ai). Then, by
our choice of (X1,X2), we have Z ∈ A or E − Z ∈ A. Since Xi ⊆ Z, it must be the case that
E − Z ∈ A. Then, by 3.4.3 and the fact that X2 ⊆ E − Z, we have X2 ∈A. This contradicts our
choice of (X1,X2). �

Let T ′
i be the branch-decomposition of λ obtained from Ti by leaving the labels in X2 and

moving the labels in X1 to vi . By 3.4.4 and Lemma 2.5, we have ε(T ′
i ) � ε(Ti) < k. Now, from

T ′
1 and T ′

2 we can easily construct a partial branch-decomposition of width < k that conforms
with A; contrary to 3.4.1. �
4. Applications of tangles

Naturally, a tangle of a matroid M is a tangle of its connectivity function λM . The following
lemma generalizes Lemma 1.3.

Lemma 4.1. For all positive integers k and q � 2, if M ∈ U(q) and M contains a (qk, k)-net,
then M has branch-width at least k.

Proof. Let (N,P) be a (qk, k)-net. We define a collection of sets T such that A ∈ T if and only
if λM(A) < k and A does not contain a series class of P .

Consider any separation (A,B) of M of order less than k. If P and Q are distinct members
of P , then, since κM(P,Q) > λM(A), we cannot have P ⊆ A and Q ⊆ B . That is, A and B

cannot both contain a member of P and, hence, T satisfies (T2). Evidently, T also satisfies (T1),
(T3a), and (T4).

Now, consider a partition (A1,A2,A3) of E(M) such that λM(Ai) < k for each i ∈ {1,2,3}.
Let B1 = E(M) − A1 and B2 = E(M) − A2. By the argument above, for each i ∈ {1,2}, the
number of sets P ∈ P such that either P ∩ A1 and P ∩ B1 are both non-empty or P ∩ A2 and
P ∩ B2 are both non-empty is at most 2(qk−1 − 1) < qk . Therefore, there is some set in P that
is contained in A1, A2, or A3. Thus, T satisfies (T3b). So, by Lemma 3.1, T is a tangle of order
k and, hence, M has branch-width at least k. �

Let X be a subset of E(M). We call X an [k,n]-connected set if for each partition (X1,X2)

of M with |X1|, |X2| � n we have κM(X1,X2) � k.

Lemma 4.2. Let X be a subset of E(M). If X is an [k,n]-connected set and |X| � 3n, then M

has branch-width at least k + 1.

Proof. Let T be the set of all sets A ⊆ E(M) such that λM(A) � k and |A ∩ X| < n. Con-
sider a separation (A,B) of order less than k. Since X is [k,n]-connected, either |A ∩ X| < n or
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|B ∩ X| < n. That is, T satisfies (T2). Moreover, T clearly satisfies (T1), (T3), and (T4). There-
fore, M has branch-width at least k + 1. �

Let T be a tangle of M of order k. For X ⊆ E(M), if X is a subset of a set in T then, we let

φT (X) = min
(
λM(A) − 1: X ⊆ A ∈ T

)
,

otherwise we let φT (X) = k − 1.

Lemma 4.3. Let M be a matroid and let T be a tangle of M of order k. Then φT is the rank
function of a matroid of rank k − 1.

Proof. It is straightforward to see that:

(i) 0 � φT (X) � |X| for any X ⊆ E(M) and
(ii) φT (X1) � φT (X2) for X1 ⊆ X2 ⊆ E(M).

Thus it suffices to prove that φT is submodular. Consider subsets Y1 and Y2 of E(M).
If φT (Y1) = k − 1, then φT (Y1 ∪ Y2) = k − 1. Moreover, φT (Y1 ∩ Y2) � φT (Y2). There-
fore, φT (Y1 ∪ Y2) + φT (Y1 ∩ Y2) � φT (Y1) + φT (Y2). Now suppose that φT (Y1) < k − 1 and
φT (Y2) < k − 1. Thus, for i ∈ {1,2}, there exists Ai ∈ T such that Yi ⊆ Ai and λM(Ai) =
φT (Yi).

As A1 ∈ T , it follows from (T2) and (T3) that either λM(A1 ∩ A2) � k or A1 ∩ A2 ∈ T . In
either case, φT (Y1 ∩ Y2) � λM(A1 ∩ A2). Similarly, by (T2) and (T3), either λM(A1 ∪ A2) � k

or A1 ∪ A2 ∈ T . In either case, φT (Y1 ∪ Y2) � λM(A1 ∪ A2). Therefore,

φT (Y1) + φT (Y2) = λM(A1) + λM(A2)

� λM(A1 ∩ A2) + λM(A1 ∪ A2)

� φT (Y1 ∩ Y2) + φT (Y1 ∪ Y2),

as required. �
We obtain the following easy consequence.

Lemma 4.4. If M is a matroid with branch-width at least 3k + 1, then there exists a [k, k]-
connected subset X of E(M) with |X| � 3k.

Proof. Let T be a tangle of order 3k + 1, and let X be a subset of E(M) such that φT (X) =
|X| = 3k; such a set exists by Lemma 4.3. Now, consider any separation (A,B) of M of order
less than k. We may assume that A ∈ T . By Lemma 4.3, |A ∩ X| = φT (A ∩ X) � λM(A) < k. It
follows that X is a [k, k]-connected set. �

Together Lemmas 4.2 and 4.4 provide a qualitative characterization of branch-width. Unfor-
tunately, the amount of work needed to verify that a set is [k,n]-connected grows exponentially
with respect to n and k.
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5. Frames

For positive integers δ and γ , we define a (δ, γ )-frame in a matroid M to be a pair (N,P)

such that N is a minor of M , P is a set of series classes of N , |P| � δ, and |P | � γ for each
P ∈P . The main result of this section is the following.

Lemma 5.1. There exists an integer-valued function f1(δ, γ, q) such that for any positive integers
δ, γ and q � 2, if M is a matroid in U(q) ∩ U∗(q) with branch-width at least f1(δ, γ, q), then
M or M∗ contains a (δ, γ )-frame.

We require the following preliminary results.

Lemma 5.2. There exists an integer-valued function f2(δ, γ, q, k) such that for any positive
integers δ, γ , q � 2, and k, if M is a matroid in U∗(q) with branch-width at least 3(k + δ) + 1,
then either M contains a (δ, γ )-frame or there exists Y ⊆ E(M) such that M|Y has branch-width
at least k and |Y | � f2(δ, γ, q, k).

Proof. Let f2(δ, γ, q, k) = (3(k+δ)
k+δ

)2
qk+δγ . Suppose that M does not contain a (δ, γ )-frame. By

Lemma 4.4, there exists a [k + δ, k + δ]-connected set Z in M with |Z| = 3(k + δ).
Let S and T be disjoint subsets of Z with |S| = |T | = k + δ. Then, κM(S,T ) = k + δ.

Hence, by Tutte’s Linking Theorem, there exists a partition (I, J ) of E(M) − (S ∪ T ) such
that λM\I/J (S) = k + δ; we choose such a partition with J minimal. Let N denote the restriction
of M to S ∪ T ∪ J . By the minimality of J , S ∪ J is a basis of N and N has no coloops. Since
S ∪ J is a basis of N , we have r(N∗) � |T | = k + δ. Let P denote the series classes of N with
size at least γ . Since M does not contain a (δ, γ )-frame, we have |P| < δ. Let P denote the union
of the sets in P and let N1 = N \ P . The corank of N1 is at most k + δ and each series class
of N1 not in P has size at most γ − 1, so, by Lemma 2.1, |E(N1)| � qk+δ(γ − 1). Moreover,
κN1(S ∩ E(N1), T ∩ E(N1)) � κN(S,T ) − |P| � k.

Let Y denote the set obtained by taking the union of Z and all sets of the form E(N1) taken
over all possible choices of S and T . Then, Z is a [k, k+δ]-connected set in M|Y . By Lemma 4.2,
M|Y has branch-width at least k. Moreover, since there are at most

(3(k+δ)
k+δ

)
2 different choices

for S and T , we have |Y | � f2(δ, γ, q, k). �
For subsets X and Y of E(M) we let 
M(X,Y ) denote rM(X) + rM(Y ) − rM(X ∪ Y).

Lemma 5.3. There exists an integer-valued function f3(γ, q, t) such that for any positive integers
δ, γ , q � 2, and t , if M is a matroid in U∗(q) that does not contain a (δ, γ )-frame and A ⊆ E(M)

with λM(A) � t , then there exists X ⊆ E(M)− A such that λM/X(A) � δ and |X| � f3(γ, q, t).

Proof. Let f3(γ, q, t) = (γ − 1)qt−1 and let M be a matroid in U∗(q) that does not contain a
(δ, γ )-frame and let A be a subset of E(M) with λM(A) � t .

Let J be a minimal subset of E(M) − A such that 
M(A,J ) = λM(A) − 1 and let N =
(M/A)|J . Note that N has no coloops and that, as J is independent, r(N∗) = λM(A) − 1 �
t − 1. Let X be the set of all elements of N that are in series classes of size at most γ − 1
and let B = J − X. By Lemma 2.1, |X| � (γ − 1)qt−1 = f3(γ, q, t). Since M has no (δ, γ )-
frame, there are at most δ − 1 series classes of N that have size at least γ . Thus, r∗(N \ B) �
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r∗(N)−δ+1 = λM(A)−δ. It follows that 
M(A,X) � λM(A)−δ and, hence, that λM/X(A) =
λM(A) − 
M(A,X) � δ. �

We need the following result in the case that k1 = k2; the more technical version facilitates
induction.

Lemma 5.4. There exists an integer-valued function f4(δ, γ, q, k1, k2, n) such that for any pos-
itive integers δ, γ , k1, k2, n � 2 and q � 2, if M is a matroid in U(q) ∩ U∗(q) such that M

has branch-width at least f4(δ, γ, q, k1, k2, n) and neither M nor M∗ contains a (δ, γ )-frame,
then there exists a restriction N of M and a partition (A1,A2, . . . ,An) of E(N) such that
N |A1, . . . ,N |An−1 each have branch-width at least k1, N |An has branch-width at least k2,
and λN(A1 ∪ · · · ∪ Ai) � δ for all i ∈ {1, . . . , n − 1}.

Proof. Let k3 = f2(δ, γ, q, k1) and k4 = max(3(k1 +δ)+1, k2 +k3 +f3(γ, q, k3 +δ)). Now de-
fine f4(δ, γ, q, k1, k2,2) = max(3(k1 + δ)+ 1, k2 + k3 +f3(γ, q, k3)). For n > 2, we recursively
define f4(δ, γ, q, k1, k2, n) = f4(δ, γ, q, k1, k4, n−1). Let M be a matroid in U(q)∩U∗(q) such
that M has branch-width at least f4(δ, γ, q, k1, k2, n) and neither M nor M∗ contains a (δ, γ )-
frame.

The proof is by induction on n; we begin with the case n = 2. By Lemma 5.2, there exists
A1 ⊆ E(M) such that M|A1 has branch-width at least k1 and such that |A1| � k3. Now by dual-
izing Lemma 5.3, there exists X ⊆ E(M) − A1 such that λM\X(A1) � δ and |X| � f3(γ, q, k3).
Let N = M \X and let A2 = E(N)−A1. Since |A1 ∪X| � k3 + f3(γ, q, k3), N |A2 has branch-
width at least k2; as required.

Now consider the case that n > 2. By induction, there exists a restriction N1 of M and a
partition (A1, . . . ,An−2,B) of E(N1) such that, for each i ∈ {1, . . . , n − 2}, N1|Ai has branch-
width at least k1, N1|B has branch-width at least k4, and, for each i ∈ {1, . . . , n − 2}, λN1(A1 ∪
· · ·∪Ai) � δ. By Lemma 5.2, there exists An−1 ⊆ B such that M|An−1 has branch-width exactly
k1 and such that |An−1| � k3. Note that λN1(A1 ∪· · ·∪An−1) � λN1(A1 ∪· · ·∪An−2)+|An−1| �
δ + k3. Thus, by dualizing Lemma 5.3, there exists X ⊆ E(N1) − (A1 ∪ · · · ∪ An−1) such that
λN1\X(A1 ∪ · · · ∪ An−1) � δ and |X| � f3(γ, q, δ + k3). Let N = N1 \ X and let An = E(N) −
(A1 ∪ · · · ∪ An−1). Since |An−1 ∪ X| � k3 + f3(γ, q, k3 + δ) and N |An = (N1|B) \ (An−1 ∪ X),
N |An has branch-width at least k2; as required. �
Proof of Lemma 5.1. Let m = γ q2δ , k = (

m+1
2

)
, and f1(δ, γ, q) = f4(δ, γ, q, k, k, δ). Now let

M be a matroid in U(q) ∩ U∗(q) such that M has branch-width at least f1(δ, γ, q) and neither
M nor M∗ contains a (δ, γ )-frame. By Lemma 5.4, there exists a minor N1 of M and a partition
(A1,A2, . . . ,Aδ) of E(N1) such that N |A1, . . . ,N |Aδ each have branch-width at least k, and
λN1(A1 ∪ · · · ∪ Ai) � δ for all i ∈ {1, . . . , δ − 1}. Now, by Theorem 2.6, for each i ∈ {1, . . . , δ}
there exists a circuit Ci ⊆ Ai of N1 of length at least m. Let N = N |(C1 ∪ · · · ∪ Cδ). For each
i ∈ {1, . . . , δ}, we have

λN(Ci) � λN(C1 ∪ · · · ∪ Ci−1) + λN(Ci+1 ∪ · · · ∪ Cδ)

= λN(C1 ∪ · · · ∪ Ci−1) + λN(C1 ∪ · · · ∪ Ci)

� λN1(A1 ∪ · · · ∪ Ai−1) + λN1(A1 ∪ · · · ∪ Ai)

� 2δ.
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It follows easily by definitions that

r∗
N(Ci) = λN(Ci) − 1 + r∗(N |Ci) � 2δ.

Thus, there exists a series class Si ⊆ Ci with |Si | � γ . So (N, {S1, . . . , Sδ}) is a (δ, γ )-frame. �
6. Nets

Let f be an integer valued function defined on the set of positive integers. A matroid M

is called (m,f )-connected if whenever (A,B) is a separation of order � < m, then either
|A| � f (�) or |B| � f (�). The following result was proved in [3].

Lemma 6.1. Let g(�) = (6�−1 − 1)/5 for all positive integers �. If M is a minor-minimal matroid
with branch-width k, then M is (k + 1, g)-connected.

We are finally ready to prove the main result.

Theorem 6.2. For all positive integers δ, γ and q � 2, there exists an integer k such that if M is
a matroid in U(q) ∩ U∗(q) with branch-width at least k, then M or M∗ contains a (δ, γ )-net.

Proof. Let γ ′ = g(γ − 1) + 1 and let k = f1(δ, γ
′, q). Now let M be a matroid in U(q) ∩U∗(q)

with branch-width at least k. Evidently, we may assume that M is minor-minimal with branch-
width k. Thus, by Lemma 6.1, M is (k + 1, g)-connected. By Lemma 5.1 and duality, we may
assume that M contains a (δ, γ ′)-frame (N,P). Consider a pair of distinct sets P1,P2 ∈ P . Let
(X1,X2) be a partition of E(M) with P1 ⊆ X1 and P2 ⊆ X2. Now, |X1|, |X2| � g(γ − 1) + 1.
Thus, λM(X1) � γ . It follows that κM(P1,P2) � γ . That is, (N,P) is a (δ, γ )-net in M . �
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