Obstructions to branch-decomposition of matroids ${ }^{\text {* }}$

J. Geelen ${ }^{\text {a }}$, B. Gerards ${ }^{\text {b,c }}$, N. Robertson ${ }^{\text {d }}$, G. Whittle ${ }^{e}$
${ }^{\text {a }}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
${ }^{\mathrm{b}}$ CWI, Postbus 94079, 1090 GB Amsterdam, The Netherlands
${ }^{\text {c }}$ Department of Mathematics and Computer Science, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
${ }^{\text {d }}$ Department of Mathematics, 231 West 18th Avenue, Ohio State University, Columbus, OH 43210, USA
${ }^{\mathrm{e}}$ School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

Received 11 February 2003
Available online 20 December 2005

Abstract

A (δ, γ)-net in a matroid M is a pair (N, \mathcal{P}) where N is a minor of M, \mathcal{P} is a set of series classes in N, $|\mathcal{P}| \geqslant \delta$, and the pairwise connectivity, in M, between any two members of \mathcal{P} is at least γ. We prove that, for any finite field \mathbb{F}, nets provide a qualitative characterization for branch-width in the class of \mathbb{F}-representable matroids. That is, for an \mathbb{F}-representable matroid M, we prove that: (1) if M contains a (δ, γ)-net where δ and γ are both very large, then M has large branch-width, and, conversely, (2) if the branch-width of M is very large, then M or M^{*} contains a (δ, γ)-net where δ and γ are both large. © 2005 Elsevier Inc. All rights reserved.

Keywords: Branch-width; Matroids; Connectivity

1. Introduction

For matroids representable over a given finite field, we obtain a qualitative characterization of large branch-width. For graphs, such a characterization was obtained by Robertson and Seymour [8].

Theorem 1.1 (Robertson and Seymour). For any positive integer n there exists an integer k such that, if G is a graph with branch-width at least k, then G contains a minor isomorphic to the n by n grid.

[^0]Ideally we would like to prove the following conjecture of Johnson, Robertson, and Seymour [4].

Conjecture 1.2. For any positive integer n and prime power q, there exists an integer k such that, if M is a $\mathrm{GF}(q)$-representable matroid with branch-width at least k, then M contains a minor isomorphic to the cycle-matroid of the n by n grid.

The cycle-matroid of the n by n grid has branch-width n. If true, the above conjecture would, given a matroid with very large branch-width (at least k), provide a succinct certificate that the branch-width is large (at least n). We provide a similar such certificate.

Let M be a matroid and let $A \subseteq E(M)$. We let $\lambda_{M}(A)=r_{M}(A)+r_{M}(E(M)-A)-r(M)+1$. A partition (A, B) of $E(M)$ is called a separation of order $\lambda_{M}(A)$. For disjoint subsets A and B of $E(M)$ we let

$$
\kappa_{M}(A, B)=\min \left(\lambda_{M}(X): A \subseteq X \subseteq E(M)-B\right)
$$

A (δ, γ)-net of a matroid M is a pair (N, \mathcal{P}) where N is a minor of M, \mathcal{P} is a collection of series classes of $N,|\mathcal{P}| \geqslant \delta$, and $\kappa_{M}(P, Q) \geqslant \gamma$ for each distinct pair of sets $P, Q \in \mathcal{P}$. The next result, proven in Section 4, shows that nets witness large branch-width.

Lemma 1.3. Let M be $a \operatorname{GF}(q)$-representable matroid. If M contains $a\left(q^{k}, k\right)$-net, then M has branch-width at least k.

Our main result is that nets provide a qualitative characterization of large branch-width.

Theorem 1.4. For all positive integers δ and γ and any finite field \mathbb{F} there exists an integer k such that if M is an \mathbb{F}-representable matroid with branch-width at least k, then M or M^{*} contains a (δ, γ)-net.

We prove a slightly stronger version of Lemma 1.3 and Theorem 1.4, namely Lemma 4.1 and Theorem 6.2, that do not require representability.

Verifying that a pair (N, \mathcal{P}) is a (δ, γ)-net of M can be done efficiently. Most of the work required is in verifying that $\kappa_{M}(P, Q) \geqslant \gamma$ for each pair (P, Q) of sets in \mathcal{P}. The number of such pairs is

$$
\binom{\delta}{2} \leqslant\binom{|E(M)|}{2}
$$

For a given pair (P, Q) we can efficiently verify that $\kappa_{M}(P, Q) \geqslant \gamma$ using Tutte's Linking Theorem (Theorem 2.2). It suffices to provide a minor N^{\prime} of M such that $E\left(N^{\prime}\right)=P \cup Q$ and $\lambda_{N^{\prime}}(P) \geqslant \gamma$; this can be verified using only four rank-evaluations. For our purpose, we do not need to know how to compute $\kappa_{M}(P, Q)$ efficiently. Nevertheless, $\kappa_{M}(P, Q)$ can be computed efficiently via Edmonds' Matroid Intersection Algorithm; this application, due to Edmonds, is described by Bixby and Cunningham [1].

2. Preliminaries

We assume that the reader is familiar with matroid theory; we use the notation of Oxley [7].

For any positive integer q we let $\mathcal{U}(q)$ denote the class of matroids with no $U_{2, q+2}$-minor and we let $\mathcal{U}^{*}(q)$ denote the class of matroids with no $U_{q, q+2}$-minor. Note that, if q is a primepower, then $\mathcal{U}(q) \cap \mathcal{U}^{*}(q)$ contains all $\mathrm{GF}(q)$-representable matroids. We prove the more general version of Theorem 1.4 by extending it to the class $\mathcal{U}(q) \cap \mathcal{U}^{*}(q)$. We use the following result of Kung [5].

Lemma 2.1. For $q \geqslant 2$, if M is a simple rank-r matroid in $\mathcal{U}(q)$, then $|E(M)| \leqslant\left(q^{r}-1\right) /$ $(q-1)$.

We also use the following theorem of Tutte [10].
Theorem 2.2 (Tutte's Linking Theorem). If S and T are disjoint sets of elements in a matroid M, then there exists a minor N of M such that $E(N)=S \cup T$ and $\lambda_{N}(S)=\kappa_{M}(S, T)$.

Let E be a finite set, and let λ be an integer-valued function defined on subsets of E. We call λ a connectivity function on E if:
(1) $\lambda(X)=\lambda(E-X)$ for each $X \subseteq E$, and
(2) $\lambda(X)+\lambda(Y) \geqslant \lambda(X \cap Y)+\lambda(X \cup Y)$.

The following gives some elementary properties of connectivity functions that we will use later without reference.

Lemma 2.3. If λ is a connectivity function on E, then, for each $X, Y \subseteq E$, we have:

- $\lambda(X) \geqslant \lambda(\emptyset)$ and
- $\lambda(X)+\lambda(Y) \geqslant \lambda(X-Y)+\lambda(Y-X)$.

Proof. By symmetry and submodularity we have:

$$
\begin{aligned}
\lambda(X)+\lambda(Y) & =\lambda(X)+\lambda(E-Y) \\
& \geqslant \lambda(X-Y)+\lambda(E-(Y-X)) \\
& =\lambda(X-Y)+\lambda(Y-X)
\end{aligned}
$$

Thus $\lambda(X)+\lambda(Y) \geqslant \lambda(X-Y)+\lambda(Y-X)$. When $X=Y$ this inequality reduces to $\lambda(X) \geqslant \lambda(\emptyset)$.

A partition (A, B) of E is called a separation of $\operatorname{order} \lambda(A)$. For disjoint sets $S, T \subseteq E$, we let

$$
\kappa_{\lambda}(S, T)=\min (\lambda(Z): S \subseteq Z \subseteq E-T)
$$

Lemma 2.4. Let λ be a connectivity function on E and let $X \subseteq A \subseteq E$. If $\kappa_{\lambda}(X, E-A)=\lambda(A)$, then, for each $Z \subseteq E-X$, we have $\lambda(Z-A) \leqslant \lambda(Z)$.

Proof. Note that $X \subseteq A-Z \subseteq E-A$. Therefore $\lambda(A-Z) \geqslant \kappa_{\lambda}(X, E-A)=\lambda(A)$. Now

$$
\lambda(A)+\lambda(Z) \geqslant \lambda(A-Z)+\lambda(Z-A) .
$$

Thus, $\lambda(Z) \geqslant \lambda(Z-A)$, as required.

A tree is cubic if its internal vertices all have degree 3. A partial branch-decomposition of λ is a cubic tree T, with at least one edge, whose leaves are labelled by elements of E. That is, each element in E labels exactly one leaf of T, but leaves may be unlabelled or multiply labelled. A branch-decomposition is a partial branch-decomposition without multiply labelled leaves. If T^{\prime} is a subgraph of T and $X \subseteq E$ is the set of labels of T^{\prime}, then we say that T^{\prime} displays X. The width of an edge e of T, denoted $\epsilon(e, T)$, is defined to be $\lambda(X)$ where X is the set displayed by one of the components of $T-\{e\}$. The width of T, denoted $\epsilon(T)$, is the maximum among the widths of its edges. The branch-width of λ is the minimum among the widths of all branchdecompositions of λ.

The following lemma is an immediate consequence of Lemma 2.4.
Lemma 2.5. Let λ be a connectivity function on E, let T be a partial branch-decomposition of λ, and let $X \subseteq E$ be the set labelling a vertex $v \in V(T)$. Now, let $A \subseteq E$ with $X \subseteq A$ and let T^{\prime} be the branch-decomposition of λ obtained by relabelling T as follows: label v by A and label $w \in V(T)-\{v\}$ by $Y-A$ where Y is the set of labels of w in T. If $\kappa_{\lambda}(X, E-A)=\lambda(A)$, then $\epsilon\left(e, T^{\prime}\right) \leqslant \epsilon(e, T)$ for each edge e of T.

The branch-width of a matroid M is the branch-width of its connectivity function λ_{M}. We require the following result of Oporowski [6].

Theorem 2.6. If M is a matroid of branch-width at least $\binom{m+1}{2}$, then M contains a circuit of length at least m.

3. Tangles

Robertson and Seymour [9] introduced branch-width for connectivity functions and showed that, for graphs, this parameter is characterized by 'tangles.' In fact, Robertson and Seymour [9, (3.5)] proved a more general duality notion for the branch-width of a connectivity function, but they did not explicitly define 'tangles' for connectivity functions. Later, Dharmatilake [2] defined tangles for matroids and proved the duality with branch-width. In this section we define tangles for connectivity functions and reprove the duality with branch-width. We remark that, when restricted to matroids, our definition, unlike that of Dharmatilake, is self-dual.

Let λ be a connectivity function on E. A tangle of λ of $\operatorname{order} k$ is a collection \mathcal{T} of subsets of E such that:
(T1) For each $B \in \mathcal{T}, \lambda(B)<k$.
(T2) For each separation (A, B) of order less than k, \mathcal{T} contains A or B.
(T3) If $A, B, C \in \mathcal{T}$, then $A \cup B \cup C \neq E$.
(T4) For each $e \in E, E-\{e\} \notin \mathcal{T}$.
Note that, by (T3), (T2) can be sharpened to say that \mathcal{T} contains exactly one of A and B. The following lemma gives alterate defining conditions for a tangle that are more straightforward to verify.

Lemma 3.1. Let λ be a connectivity function and let $k \in \mathbb{Z}$. Now let \mathcal{T} be a collection of subsets of E that satisfies:
(T1) For each $B \in \mathcal{T}, \lambda(B)<k$.
(T2) For each separation (A, B) of order less than k, \mathcal{T} contains A or B.
(T3a) If $A \subseteq B, B \in \mathcal{T}$, and $\lambda(A)<k$, then $A \in \mathcal{T}$.
(T3b) If (A, B, C) is a partition of E, then \mathcal{T} cannot contain all three of A, B, and C.
(T4) For each $e \in E, E-\{e\} \notin \mathcal{T}$.
Then \mathcal{T} is a tangle.

Proof. If \mathcal{T} is not a tangle, then there exists $A, B, C \in \mathcal{T}$ such that $A \cup B \cup C=E$. Choose such A, B, and C minimizing $|A \cap B|+|B \cap C|+|C \cap A|$. By (T3b) and symmetry, we may assume that $|A \cap B| \neq 0$. Since λ is symmetric and submodular, we have $\lambda(A-B)+\lambda(B-A) \leqslant$ $\lambda(A)+\lambda(B)$. Then, by the symmetry between A and B, we may assume that $\lambda(A-B)<k$. Now $A-B \subseteq A$, so, by (T3a), we have $A-B \in \mathcal{T}$. Thus we have $(A-B) \cup B \cup C=E$ and $|(A-B) \cap B|+|B \cap C|+|C \cap(A-B)|<|A \cap B|+|B \cap C|+|C \cap A|$. This contradicts our choice of A, B, and C.

The main result of this section is:

Theorem 3.2. Let λ be a connectivity function on E. Then the maximum order of a tangle of λ is equal to the branch-width of λ.

The rest of this section is devoted to the proof of Theorem 3.2. Let \mathcal{A} be a collection of subsets of E. We say that \mathcal{A} extends to a tangle \mathcal{T} of order k, if $\mathcal{A} \subseteq \mathcal{T}$. We say that a partial branchdecomposition T comforms to \mathcal{A} if, for each leaf v of T, there is a set $A \in \mathcal{A}$ that contains each of the elements labelling v. (We do not require that the set elements labelling v is contained in \mathcal{A}.) The following theorem is cryptomorphic to [9, (3.5)]; for completeness we will include a proof of this result later in this section.

Theorem 3.3. Let λ be a connectivity function on E, let $k \in \mathbb{Z}$, and let \mathcal{A} be a collection of subsets of E such that $\lambda(A)<k$, for each $A \in \mathcal{A}$, and $\bigcup \mathcal{A}=E$. Then either

- \mathcal{A} extends to a tangle of order k, or
- there is a partial branch-decomposition of λ of width $<k$ that conforms to \mathcal{A}.

The two possible outcomes above are in fact exclusive, as we show in the following lemma.
Lemma 3.4. Let λ be a connectivity function on E and let $k \in \mathbb{Z}$. If \mathcal{T} is a tangle of order k and T is a partial branch-decomposition of λ that conforms with \mathcal{T}, then $\epsilon(T) \geqslant k$.

Proof. Suppose, by way of contradiction, that $\epsilon(T)<k$. Construct an orientation of T as follows. Consider an edge e of T; let a and b be the ends of e and let X_{a} and X_{b} be the sets displayed by the components of $T-e$ containing a and b, respectively. Thus (X_{a}, X_{b}) is a separation of order less than k. By (T2) and (T3), \mathcal{T} contains exactly one of X_{a} and X_{b}. By symmetry, we may assume that $X_{a} \in \mathcal{T}$. Now, orient e toward b. Consider a leaf w of T. Let e be the edge of T incident with w and let $X \subseteq V$ be the set of elements labelling w. By definition, there exists $A \in \mathcal{T}$ such that $X \subseteq A$. By (T2) and (T3), we have $X \in \mathcal{T}$. Therefore e is oriented away from w.

Therefore, there must exist an internal node v of T with all three incident edges oriented toward it. This, however, contradicts (T3).

Before we prove Theorem 3.3, we will use it to prove Theorem 3.2.
Proof of Theorem 3.2. Let $k \in \mathbb{Z}$. By Lemma 3.4 it cannot be the case that there exists both a branch-decomposition of width $\leqslant k$ and a tangle of order k. Thus it suffices to prove that at least one of the two exist.

Case 1. There exists $e \in E$ such that $\lambda(\{e\}) \geqslant k$.
Let \mathcal{T} consist of all sets $A \subseteq E-\{e\}$ with $\lambda(A)<k$. It is easy to verify that \mathcal{T} is a tangle of order k.

Case 2. $\lambda(\{e\})<k$ for each $e \in E$.
Let \mathcal{A} be a partition of E into singletons. Then, by Theorem 3.3, either there exists a branchdecomposition of width $<k$ or \mathcal{A} extends to a tangle of order k.

Finally, we are ready to prove Theorem 3.3.
Proof of Theorem 3.3. We assume that:
3.4.1. There is no partial branch-decomposition of width $<k$ that conforms with \mathcal{A}.

We may also assume that:
3.4.2. \mathcal{A} is maximal subject to 3.4 .1 and to the condition that $\lambda(A)<k$ for each $A \in \mathcal{A}$.

From these assumptions we obtain:
3.4.3. If $B \in \mathcal{A}, A \subseteq B$, and $\lambda(A)<k$, then $A \in \mathcal{A}$.

Subproof. Since $A \subseteq B$, a partial branch-decomposition conforms with A if and only if it conforms with $\mathcal{A} \cup\{A\}$.

Case 1. For each separation (X, Y) of λ of order $<k, \mathcal{A}$ contains X or Y.
In this case we will prove that \mathcal{A} is, in fact, a tangle of order k. It is clear that \mathcal{A} satisfies (T1) and (T2). Moreover, by 3.4.3, \mathcal{A} satisfies (T3a) (of Lemma 3.1). Note that, by 3.4.1, \mathcal{A} also satisfies (T3b). Finally, consider an element $e \in E$. Since $\cup \mathcal{A}=E$ there exists $A \in \mathcal{A}$ such that $e \in A$. If $\lambda(\{e\}) \geqslant k$, then $E-\{e\} \notin \mathcal{A}$ by (T1). If $\lambda(\{e\})<k$, then $\{e\} \in \mathcal{A}$ by (T3a) and, hence, $E-\{e\} \notin \mathcal{A}$ by (T3b). In either case, $E-\{e\} \notin \mathcal{A}$ and, hence, \mathcal{A} satisfies (T4). Then, by Lemma 3.1, \mathcal{A} is a tangle.

Case 2. There exists a separation $\left(A_{1}, A_{2}\right)$ of λ of order $<k$ such that $A_{1}, A_{2} \notin \mathcal{A}$.

We choose such a separation $\left(A_{1}, A_{2}\right)$ minimizing $\lambda\left(A_{1}\right)$. Let $i \in\{1,2\}$. By 3.4.2, there exists a partial branch-decomposition T_{i} of width $<k$ that conforms with $\mathcal{A} \cup\left\{A_{i}\right\}$. By 3.4.1, there exists a vertex $v_{i} \in V\left(T_{i}\right)$ such the set $X_{i} \subseteq E$ labelling v_{i} is contained in A_{i} but is not contained in any set in \mathcal{A}.

$$
\text { 3.4.4. } \kappa_{\lambda}\left(X_{i}, E-A_{i}\right)=\lambda\left(A_{i}\right) \text {. }
$$

Subproof. Consider a set Z such that $X_{i} \subseteq Z \subseteq E-A_{i}$. Suppose that $\lambda(Z)<\lambda\left(A_{i}\right)$. Then, by our choice of (X_{1}, X_{2}), we have $Z \in \mathcal{A}$ or $E-Z \in \mathcal{A}$. Since $X_{i} \subseteq Z$, it must be the case that $E-Z \in \mathcal{A}$. Then, by 3.4.3 and the fact that $X_{2} \subseteq E-Z$, we have $X_{2} \in \mathcal{A}$. This contradicts our choice of (X_{1}, X_{2}).

Let T_{i}^{\prime} be the branch-decomposition of λ obtained from T_{i} by leaving the labels in X_{2} and moving the labels in X_{1} to v_{i}. By 3.4.4 and Lemma 2.5, we have $\epsilon\left(T_{i}^{\prime}\right) \leqslant \epsilon\left(T_{i}\right)<k$. Now, from T_{1}^{\prime} and T_{2}^{\prime} we can easily construct a partial branch-decomposition of width $<k$ that conforms with \mathcal{A}; contrary to 3.4.1.

4. Applications of tangles

Naturally, a tangle of a matroid M is a tangle of its connectivity function λ_{M}. The following lemma generalizes Lemma 1.3.

Lemma 4.1. For all positive integers k and $q \geqslant 2$, if $M \in \mathcal{U}(q)$ and M contains $a\left(q^{k}, k\right)$-net, then M has branch-width at least k.

Proof. Let (N, \mathcal{P}) be a $\left(q^{k}, k\right)$-net. We define a collection of sets \mathcal{T} such that $A \in \mathcal{T}$ if and only if $\lambda_{M}(A)<k$ and A does not contain a series class of \mathcal{P}.

Consider any separation (A, B) of M of order less than k. If P and Q are distinct members of \mathcal{P}, then, since $\kappa_{M}(P, Q)>\lambda_{M}(A)$, we cannot have $P \subseteq A$ and $Q \subseteq B$. That is, A and B cannot both contain a member of \mathcal{P} and, hence, \mathcal{T} satisfies (T2). Evidently, \mathcal{T} also satisfies (T1), (T3a), and (T4).

Now, consider a partition $\left(A_{1}, A_{2}, A_{3}\right)$ of $E(M)$ such that $\lambda_{M}\left(A_{i}\right)<k$ for each $i \in\{1,2,3\}$. Let $B_{1}=E(M)-A_{1}$ and $B_{2}=E(M)-A_{2}$. By the argument above, for each $i \in\{1,2\}$, the number of sets $P \in \mathcal{P}$ such that either $P \cap A_{1}$ and $P \cap B_{1}$ are both non-empty or $P \cap A_{2}$ and $P \cap B_{2}$ are both non-empty is at most $2\left(q^{k-1}-1\right)<q^{k}$. Therefore, there is some set in \mathcal{P} that is contained in A_{1}, A_{2}, or A_{3}. Thus, \mathcal{T} satisfies (T3b). So, by Lemma 3.1, \mathcal{T} is a tangle of order k and, hence, M has branch-width at least k.

Let X be a subset of $E(M)$. We call X an $[k, n]$-connected set if for each partition $\left(X_{1}, X_{2}\right)$ of M with $\left|X_{1}\right|,\left|X_{2}\right| \geqslant n$ we have $\kappa_{M}\left(X_{1}, X_{2}\right) \geqslant k$.

Lemma 4.2. Let X be a subset of $E(M)$. If X is an $[k, n]$-connected set and $|X| \geqslant 3 n$, then M has branch-width at least $k+1$.

Proof. Let \mathcal{T} be the set of all sets $A \subseteq E(M)$ such that $\lambda_{M}(A) \leqslant k$ and $|A \cap X|<n$. Consider a separation (A, B) of order less than k. Since X is $[k, n]$-connected, either $|A \cap X|<n$ or
$|B \cap X|<n$. That is, \mathcal{T} satisfies (T2). Moreover, \mathcal{T} clearly satisfies (T1), (T3), and (T4). Therefore, M has branch-width at least $k+1$.

Let \mathcal{T} be a tangle of M of order k. For $X \subseteq E(M)$, if X is a subset of a set in \mathcal{T} then, we let

$$
\phi_{\mathcal{T}}(X)=\min \left(\lambda_{M}(A)-1: X \subseteq A \in \mathcal{T}\right)
$$

otherwise we let $\phi_{\mathcal{T}}(X)=k-1$.
Lemma 4.3. Let M be a matroid and let \mathcal{T} be a tangle of M of order k. Then $\phi_{\mathcal{T}}$ is the rank function of a matroid of rank $k-1$.

Proof. It is straightforward to see that:
(i) $0 \leqslant \phi_{\mathcal{T}}(X) \leqslant|X|$ for any $X \subseteq E(M)$ and
(ii) $\phi_{\mathcal{T}}\left(X_{1}\right) \leqslant \phi_{\mathcal{T}}\left(X_{2}\right)$ for $X_{1} \subseteq X_{2} \subseteq E(M)$.

Thus it suffices to prove that $\phi_{\mathcal{T}}$ is submodular. Consider subsets Y_{1} and Y_{2} of $E(M)$. If $\phi_{\mathcal{T}}\left(Y_{1}\right)=k-1$, then $\phi_{\mathcal{T}}\left(Y_{1} \cup Y_{2}\right)=k-1$. Moreover, $\phi_{\mathcal{T}}\left(Y_{1} \cap Y_{2}\right) \leqslant \phi_{\mathcal{T}}\left(Y_{2}\right)$. Therefore, $\phi_{\mathcal{T}}\left(Y_{1} \cup Y_{2}\right)+\phi_{\mathcal{T}}\left(Y_{1} \cap Y_{2}\right) \leqslant \phi_{\mathcal{T}}\left(Y_{1}\right)+\phi_{\mathcal{T}}\left(Y_{2}\right)$. Now suppose that $\phi_{\mathcal{T}}\left(Y_{1}\right)<k-1$ and $\phi_{\mathcal{T}}\left(Y_{2}\right)<k-1$. Thus, for $i \in\{1,2\}$, there exists $A_{i} \in \mathcal{T}$ such that $Y_{i} \subseteq A_{i}$ and $\lambda_{M}\left(A_{i}\right)=$ $\phi_{\mathcal{T}}\left(Y_{i}\right)$.

As $A_{1} \in \mathcal{T}$, it follows from (T2) and (T3) that either $\lambda_{M}\left(A_{1} \cap A_{2}\right) \geqslant k$ or $A_{1} \cap A_{2} \in \mathcal{T}$. In either case, $\phi_{\mathcal{T}}\left(Y_{1} \cap Y_{2}\right) \leqslant \lambda_{M}\left(A_{1} \cap A_{2}\right)$. Similarly, by (T2) and (T3), either $\lambda_{M}\left(A_{1} \cup A_{2}\right) \geqslant k$ or $A_{1} \cup A_{2} \in \mathcal{T}$. In either case, $\phi_{\mathcal{T}}\left(Y_{1} \cup Y_{2}\right) \leqslant \lambda_{M}\left(A_{1} \cup A_{2}\right)$. Therefore,

$$
\begin{aligned}
\phi_{\mathcal{T}}\left(Y_{1}\right)+\phi_{\mathcal{T}}\left(Y_{2}\right) & =\lambda_{M}\left(A_{1}\right)+\lambda_{M}\left(A_{2}\right) \\
& \geqslant \lambda_{M}\left(A_{1} \cap A_{2}\right)+\lambda_{M}\left(A_{1} \cup A_{2}\right) \\
& \geqslant \phi_{\mathcal{T}}\left(Y_{1} \cap Y_{2}\right)+\phi_{\mathcal{T}}\left(Y_{1} \cup Y_{2}\right)
\end{aligned}
$$

as required.
We obtain the following easy consequence.

Lemma 4.4. If M is a matroid with branch-width at least $3 k+1$, then there exists $a[k, k]-$ connected subset X of $E(M)$ with $|X| \geqslant 3 k$.

Proof. Let \mathcal{T} be a tangle of order $3 k+1$, and let X be a subset of $E(M)$ such that $\phi_{\mathcal{T}}(X)=$ $|X|=3 k$; such a set exists by Lemma 4.3. Now, consider any separation (A, B) of M of order less than k. We may assume that $A \in \mathcal{T}$. By Lemma 4.3, $|A \cap X|=\phi_{\mathcal{T}}(A \cap X) \leqslant \lambda_{M}(A)<k$. It follows that X is a $[k, k]$-connected set.

Together Lemmas 4.2 and 4.4 provide a qualitative characterization of branch-width. Unfortunately, the amount of work needed to verify that a set is $[k, n]$-connected grows exponentially with respect to n and k.

5. Frames

For positive integers δ and γ, we define a (δ, γ)-frame in a matroid M to be a pair (N, \mathcal{P}) such that N is a minor of M, \mathcal{P} is a set of series classes of $N,|\mathcal{P}| \geqslant \delta$, and $|P| \geqslant \gamma$ for each $P \in \mathcal{P}$. The main result of this section is the following.

Lemma 5.1. There exists an integer-valued function $f_{1}(\delta, \gamma, q)$ such that for any positive integers δ, γ and $q \geqslant 2$, if M is a matroid in $\mathcal{U}(q) \cap \mathcal{U}^{*}(q)$ with branch-width at least $f_{1}(\delta, \gamma, q)$, then M or M^{*} contains a (δ, γ)-frame.

We require the following preliminary results.
Lemma 5.2. There exists an integer-valued function $f_{2}(\delta, \gamma, q, k)$ such that for any positive integers $\delta, \gamma, q \geqslant 2$, and k, if M is a matroid in $\mathcal{U}^{*}(q)$ with branch-width at least $3(k+\delta)+1$, then either M contains $a(\delta, \gamma)$-frame or there exists $Y \subseteq E(M)$ such that $M \mid Y$ has branch-width at least k and $|Y| \leqslant f_{2}(\delta, \gamma, q, k)$.

Proof. Let $f_{2}(\delta, \gamma, q, k)=\binom{3(k+\delta)}{k+\delta}^{2} q^{k+\delta} \gamma$. Suppose that M does not contain a (δ, γ)-frame. By Lemma 4.4, there exists a $[k+\delta, k+\delta]$-connected set Z in M with $|Z|=3(k+\delta)$.

Let S and T be disjoint subsets of Z with $|S|=|T|=k+\delta$. Then, $\kappa_{M}(S, T)=k+\delta$. Hence, by Tutte's Linking Theorem, there exists a partition (I, J) of $E(M)-(S \cup T)$ such that $\lambda_{M \backslash I / J}(S)=k+\delta$; we choose such a partition with J minimal. Let N denote the restriction of M to $S \cup T \cup J$. By the minimality of $J, S \cup J$ is a basis of N and N has no coloops. Since $S \cup J$ is a basis of N, we have $r\left(N^{*}\right) \leqslant|T|=k+\delta$. Let \mathcal{P} denote the series classes of N with size at least γ. Since M does not contain a (δ, γ)-frame, we have $|\mathcal{P}|<\delta$. Let P denote the union of the sets in \mathcal{P} and let $N_{1}=N \backslash P$. The corank of N_{1} is at most $k+\delta$ and each series class of N_{1} not in \mathcal{P} has size at most $\gamma-1$, so, by Lemma 2.1, $\left|E\left(N_{1}\right)\right| \leqslant q^{k+\delta}(\gamma-1)$. Moreover, $\kappa_{N_{1}}\left(S \cap E\left(N_{1}\right), T \cap E\left(N_{1}\right)\right) \geqslant \kappa_{N}(S, T)-|\mathcal{P}| \geqslant k$.

Let Y denote the set obtained by taking the union of Z and all sets of the form $E\left(N_{1}\right)$ taken over all possible choices of S and T. Then, Z is a $[k, k+\delta]$-connected set in $M \mid Y$. By Lemma 4.2, $M \mid Y$ has branch-width at least k. Moreover, since there are at most $\binom{3(k+\delta)}{k+\delta}^{2}$ different choices for S and T, we have $|Y| \leqslant f_{2}(\delta, \gamma, q, k)$.

For subsets X and Y of $E(M)$ we let $\Pi_{M}(X, Y)$ denote $r_{M}(X)+r_{M}(Y)-r_{M}(X \cup Y)$.
Lemma 5.3. There exists an integer-valued function $f_{3}(\gamma, q, t)$ such that for any positive integers $\delta, \gamma, q \geqslant 2$, and t, if M is a matroid in $\mathcal{U}^{*}(q)$ that does not contain a (δ, γ)-frame and $A \subseteq E(M)$ with $\lambda_{M}(A) \leqslant t$, then there exists $X \subseteq E(M)-A$ such that $\lambda_{M / X}(A) \leqslant \delta$ and $|X| \leqslant f_{3}(\gamma, q, t)$.

Proof. Let $f_{3}(\gamma, q, t)=(\gamma-1) q^{t-1}$ and let M be a matroid in $\mathcal{U}^{*}(q)$ that does not contain a (δ, γ)-frame and let A be a subset of $E(M)$ with $\lambda_{M}(A) \leqslant t$.

Let J be a minimal subset of $E(M)-A$ such that $\sqcap_{M}(A, J)=\lambda_{M}(A)-1$ and let $N=$ $(M / A) \mid J$. Note that N has no coloops and that, as J is independent, $r\left(N^{*}\right)=\lambda_{M}(A)-1 \leqslant$ $t-1$. Let X be the set of all elements of N that are in series classes of size at most $\gamma-1$ and let $B=J-X$. By Lemma 2.1, $|X| \leqslant(\gamma-1) q^{t-1}=f_{3}(\gamma, q, t)$. Since M has no (δ, γ) frame, there are at most $\delta-1$ series classes of N that have size at least γ. Thus, $r^{*}(N \backslash B) \geqslant$
$r^{*}(N)-\delta+1=\lambda_{M}(A)-\delta$. It follows that $\sqcap_{M}(A, X) \geqslant \lambda_{M}(A)-\delta$ and, hence, that $\lambda_{M / X}(A)=$ $\lambda_{M}(A)-\sqcap_{M}(A, X) \leqslant \delta$.

We need the following result in the case that $k_{1}=k_{2}$; the more technical version facilitates induction.

Lemma 5.4. There exists an integer-valued function $f_{4}\left(\delta, \gamma, q, k_{1}, k_{2}, n\right)$ such that for any positive integers $\delta, \gamma, k_{1}, k_{2}, n \geqslant 2$ and $q \geqslant 2$, if M is a matroid in $\mathcal{U}(q) \cap \mathcal{U}^{*}(q)$ such that M has branch-width at least $f_{4}\left(\delta, \gamma, q, k_{1}, k_{2}, n\right)$ and neither M nor M^{*} contains a (δ, γ)-frame, then there exists a restriction N of M and a partition $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of $E(N)$ such that $N\left|A_{1}, \ldots, N\right| A_{n-1}$ each have branch-width at least $k_{1}, N \mid A_{n}$ has branch-width at least k_{2}, and $\lambda_{N}\left(A_{1} \cup \cdots \cup A_{i}\right) \leqslant \delta$ for all $i \in\{1, \ldots, n-1\}$.

Proof. Let $k_{3}=f_{2}\left(\delta, \gamma, q, k_{1}\right)$ and $k_{4}=\max \left(3\left(k_{1}+\delta\right)+1, k_{2}+k_{3}+f_{3}\left(\gamma, q, k_{3}+\delta\right)\right)$. Now define $f_{4}\left(\delta, \gamma, q, k_{1}, k_{2}, 2\right)=\max \left(3\left(k_{1}+\delta\right)+1, k_{2}+k_{3}+f_{3}\left(\gamma, q, k_{3}\right)\right)$. For $n>2$, we recursively define $f_{4}\left(\delta, \gamma, q, k_{1}, k_{2}, n\right)=f_{4}\left(\delta, \gamma, q, k_{1}, k_{4}, n-1\right)$. Let M be a matroid in $\mathcal{U}(q) \cap \mathcal{U}^{*}(q)$ such that M has branch-width at least $f_{4}\left(\delta, \gamma, q, k_{1}, k_{2}, n\right)$ and neither M nor M^{*} contains a (δ, γ) frame.

The proof is by induction on n; we begin with the case $n=2$. By Lemma 5.2, there exists $A_{1} \subseteq E(M)$ such that $M \mid A_{1}$ has branch-width at least k_{1} and such that $\left|A_{1}\right| \leqslant k_{3}$. Now by dualizing Lemma 5.3, there exists $X \subseteq E(M)-A_{1}$ such that $\lambda_{M \backslash X}\left(A_{1}\right) \leqslant \delta$ and $|X| \leqslant f_{3}\left(\gamma, q, k_{3}\right)$. Let $N=M \backslash X$ and let $A_{2}=E(N)-A_{1}$. Since $\left|A_{1} \cup X\right| \leqslant k_{3}+f_{3}\left(\gamma, q, k_{3}\right), N \mid A_{2}$ has branchwidth at least k_{2}; as required.

Now consider the case that $n>2$. By induction, there exists a restriction N_{1} of M and a partition $\left(A_{1}, \ldots, A_{n-2}, B\right)$ of $E\left(N_{1}\right)$ such that, for each $i \in\{1, \ldots, n-2\}, N_{1} \mid A_{i}$ has branchwidth at least $k_{1}, N_{1} \mid B$ has branch-width at least k_{4}, and, for each $i \in\{1, \ldots, n-2\}, \lambda_{N_{1}}\left(A_{1} \cup\right.$ $\left.\cdots \cup A_{i}\right) \leqslant \delta$. By Lemma 5.2, there exists $A_{n-1} \subseteq B$ such that $M \mid A_{n-1}$ has branch-width exactly k_{1} and such that $\left|A_{n-1}\right| \leqslant k_{3}$. Note that $\lambda_{N_{1}}\left(A_{1} \cup \cdots \cup A_{n-1}\right) \leqslant \lambda_{N_{1}}\left(A_{1} \cup \cdots \cup A_{n-2}\right)+\left|A_{n-1}\right| \leqslant$ $\delta+k_{3}$. Thus, by dualizing Lemma 5.3, there exists $X \subseteq E\left(N_{1}\right)-\left(A_{1} \cup \cdots \cup A_{n-1}\right)$ such that $\lambda_{N_{1} \backslash X}\left(A_{1} \cup \cdots \cup A_{n-1}\right) \leqslant \delta$ and $|X| \leqslant f_{3}\left(\gamma, q, \delta+k_{3}\right)$. Let $N=N_{1} \backslash X$ and let $A_{n}=E(N)-$ $\left(A_{1} \cup \cdots \cup A_{n-1}\right)$. Since $\left|A_{n-1} \cup X\right| \leqslant k_{3}+f_{3}\left(\gamma, q, k_{3}+\delta\right)$ and $N \mid A_{n}=\left(N_{1} \mid B\right) \backslash\left(A_{n-1} \cup X\right)$, $N \mid A_{n}$ has branch-width at least k_{2}; as required.

Proof of Lemma 5.1. Let $m=\gamma q^{2 \delta}, k=\binom{m+1}{2}$, and $f_{1}(\delta, \gamma, q)=f_{4}(\delta, \gamma, q, k, k, \delta)$. Now let M be a matroid in $\mathcal{U}(q) \cap \mathcal{U}^{*}(q)$ such that M has branch-width at least $f_{1}(\delta, \gamma, q)$ and neither M nor M^{*} contains a (δ, γ)-frame. By Lemma 5.4, there exists a minor N_{1} of M and a partition ($A_{1}, A_{2}, \ldots, A_{\delta}$) of $E\left(N_{1}\right)$ such that $N\left|A_{1}, \ldots, N\right| A_{\delta}$ each have branch-width at least k, and $\lambda_{N_{1}}\left(A_{1} \cup \cdots \cup A_{i}\right) \leqslant \delta$ for all $i \in\{1, \ldots, \delta-1\}$. Now, by Theorem 2.6, for each $i \in\{1, \ldots, \delta\}$ there exists a circuit $C_{i} \subseteq A_{i}$ of N_{1} of length at least m. Let $N=N \mid\left(C_{1} \cup \cdots \cup C_{\delta}\right)$. For each $i \in\{1, \ldots, \delta\}$, we have

$$
\begin{aligned}
\lambda_{N}\left(C_{i}\right) & \leqslant \lambda_{N}\left(C_{1} \cup \cdots \cup C_{i-1}\right)+\lambda_{N}\left(C_{i+1} \cup \cdots \cup C_{\delta}\right) \\
& =\lambda_{N}\left(C_{1} \cup \cdots \cup C_{i-1}\right)+\lambda_{N}\left(C_{1} \cup \cdots \cup C_{i}\right) \\
& \leqslant \lambda_{N_{1}}\left(A_{1} \cup \cdots \cup A_{i-1}\right)+\lambda_{N_{1}}\left(A_{1} \cup \cdots \cup A_{i}\right) \\
& \leqslant 2 \delta .
\end{aligned}
$$

It follows easily by definitions that

$$
r_{N}^{*}\left(C_{i}\right)=\lambda_{N}\left(C_{i}\right)-1+r^{*}\left(N \mid C_{i}\right) \leqslant 2 \delta .
$$

Thus, there exists a series class $S_{i} \subseteq C_{i}$ with $\left|S_{i}\right| \geqslant \gamma$. So $\left(N,\left\{S_{1}, \ldots, S_{\delta}\right\}\right)$ is a (δ, γ)-frame.

6. Nets

Let f be an integer valued function defined on the set of positive integers. A matroid M is called (m, f)-connected if whenever (A, B) is a separation of order $\ell<m$, then either $|A| \leqslant f(\ell)$ or $|B| \leqslant f(\ell)$. The following result was proved in [3].

Lemma 6.1. Let $g(\ell)=\left(6^{\ell-1}-1\right) / 5$ for all positive integers ℓ. If M is a minor-minimal matroid with branch-width k, then M is $(k+1, g)$-connected.

We are finally ready to prove the main result.
Theorem 6.2. For all positive integers δ, γ and $q \geqslant 2$, there exists an integer k such that if M is a matroid in $\mathcal{U}(q) \cap \mathcal{U}^{*}(q)$ with branch-width at least k, then M or M^{*} contains a (δ, γ)-net.

Proof. Let $\gamma^{\prime}=g(\gamma-1)+1$ and let $k=f_{1}\left(\delta, \gamma^{\prime}, q\right)$. Now let M be a matroid in $\mathcal{U}(q) \cap \mathcal{U}^{*}(q)$ with branch-width at least k. Evidently, we may assume that M is minor-minimal with branchwidth k. Thus, by Lemma $6.1, M$ is $(k+1, g)$-connected. By Lemma 5.1 and duality, we may assume that M contains a $\left(\delta, \gamma^{\prime}\right)$-frame (N, \mathcal{P}). Consider a pair of distinct sets $P_{1}, P_{2} \in \mathcal{P}$. Let $\left(X_{1}, X_{2}\right)$ be a partition of $E(M)$ with $P_{1} \subseteq X_{1}$ and $P_{2} \subseteq X_{2}$. Now, $\left|X_{1}\right|,\left|X_{2}\right| \geqslant g(\gamma-1)+1$. Thus, $\lambda_{M}\left(X_{1}\right) \geqslant \gamma$. It follows that $\kappa_{M}\left(P_{1}, P_{2}\right) \geqslant \gamma$. That is, (N, \mathcal{P}) is a (δ, γ)-net in M.

References

[1] R.E. Bixby, W.H. Cunningham, Matroid optimization and algorithms, in: R. Graham, M. Grôtschel, L. Lovász (Eds.), Handbook of Combinatorics, Elsevier, Amsterdam, 1995.
[2] J.S. Dharmatilake, A min-max theorem using matroid separations, in: Matroid Theory, Seattle, WA, 1995, in: Contemp. Math., vol. 197, Amer. Math. Soc., Providence, RI, 1996, pp. 333-342.
[3] J.F. Geelen, A.M.H. Gerards, N. Robertson, G.P. Whittle, On the excluded-minors for the matroids of branchwidth k, J. Combin. Theory Ser. B 88 (2003) 261-265.
[4] T. Johnson, N. Robertson, P.D. Seymour, Connectivity in binary matroids, handwritten manuscript.
[5] J.P.S. Kung, Extremal matroid theory, in: N. Robertson, P.D. Seymour (Eds.), Graph Structure Theory, Amer. Math. Soc., Providence, RI, 1993, pp. 21-62.
[6] B. Oporowski, Partitioning matroids with only small cocircuits, Combin. Probab. Comput. 11 (2002) 191-197.
[7] J.G. Oxley, Matroid Theory, Oxford Univ. Press, New York, 1992.
[8] N. Robertson, P.D. Seymour, Graph minors V: excluding a planar graph, J. Combin. Theory Ser. B 41 (1986) 92114.
[9] N. Robertson, P.D. Seymour, Graph minors X: Obstructions to tree-decomposition, J. Combin. Theory Ser. B 52 (1991) 153-190.
[10] W.T. Tutte, Menger's theorem for matroids, J. Res. Nat. Bur. Standards, B. Math. Math. Phys. B 69 (1965) 49-53.

[^0]: ty This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Marsden Fund of New Zealand.

