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Abstract. We introduce a new generalization of the maximum matching problem to matroids;
this problem includes Gallai’s T -path problem for graphs.
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1. Introduction. Let G = (V,E) be a simple graph and let T ⊆ V . A T -path
is a path in G connecting two vertices in T . Let νG(T ) denote the maximum number
of vertex disjoint T -paths in G. This parameter was introduced by Gallai [2], who
showed that determining νG(T ) is equivalent to the maximum matching problem.
(Note that νG(V ) is the size of a maximum matching in G.) As a consequence of an
exact min-max theorem for νG(T ), Gallai [2] proved the following theorem.

Theorem 1.1 (Gallai [2]). Let G = (V,E) be a graph and T ⊆ V . Then there
exists a set X ⊆ V that hits every T -path such that |X| ≤ 2νG(T ).

Note that if X ⊆ V hits each T -path, then νG(T ) ≤ |X|. Gallai’s theorem
shows that this natural upper bound for νG(T ) is within a factor of 2 of being tight.
We consider a matroidal generalization of νG(T ) and prove analogous upper bounds.
This problem arose naturally in proving structural results on minor-closed classes of
matroids represented over finite fields. The main result presented here is needed as a
lemma in that project.

Let M be a matroid. For X ⊆ E(M) we let

λM (X) = rM (X) + rM (E(M) −X) − r(M).

For disjoint sets S, T ⊆ E(M), we let

κM (S, T ) = min(λM (X) : S ⊆ X ⊆ E(M) − T ).

Then, for a set T ⊆ E(M), we let

νM (T ) = max(κM (X,T −X : X ⊆ T );

we call νM (T ) the T -connectivity of M . It is straightforward to verify that λM (X) =
λM∗(X). Therefore κM (S, T ) = κM∗(S, T ) and, hence, νM (T ) = νM∗(T ). We will
consider a slightly more general parameter. Let T be a collection of disjoint subsets
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MATROID T -CONNECTIVITY 589

of E(M). Then we define νM (T ) to be the maximum of κM (X,Y ), where X = ∪T1

and Y = ∪T2 for a partition (T1, T2) of T . Thus, if T is a partition of a set T ⊆ E(M)
into singletons, then νM (T ) = νM (T ). We also call νM (T ) the T -connectivity of M .

Let G = (V,E) be a simple graph. We can construct a matroid M on V ∪E such
that V is a basis of M and, for each edge e = uv of G, the element e is placed freely
on the line through u and v. Note that if P is a nontrivial (u, v)-path in G, then
{u, v} ∪ E(P ) is a circuit of M . Now it is a straightforward application of Menger’s
theorem to prove that for any two disjoint subsets S and T of vertices of G, κM (S, T )
is equal to the maximum number of vertex disjoint (S, T )-paths in G. Now it is easy
to see that, for any T ⊆ V , we have νM (T ) = νG(T ).

Let T be a collection of disjoint subsets of V . Let νG(T ) denote the maxi-
mum, taken over all partitions (T1, T2) of T , of the connectivity between ∪T1 and
∪T2 in G. Thus νG(T ) = νM (T ). A T -path is a path whose ends are in dis-
tinct parts of T . Mader [5] considered the related problem of finding the maxi-
mum number, μG(T ), of vertex disjoint T -paths. It is straightforward to show that
νM (T ) ≤ μG(T ) ≤ 2νM (T ). (Indeed, the first inequality is trivial and the second
comes from the fact that when taking a random partition (T1, T2) of T we expect
half of Mader’s T -paths to connect ∪T1 and ∪T2.) This bound is interesting since
μG(T ) can be computed efficiently (see Lovász [4] or Chudnovsky, Cunningham, and
Geelen [1]), while computing νG(T ) is NP-hard. Indeed, suppose that G is a graph
consisting of a perfect matching, T is a partition of V (G), and G′ is obtained from G
by shrinking each part of T to a single vertex. Then νG(T ) is the size of a maximum
cut in G′. Therefore computing νG(T ) is NP-hard, as claimed. Moreover, this implies
that computing νM (T ) is NP-hard.

Let M1 and M2 be matroids on a common ground set E. We say that M2 is
obtained by an elementary transformation on M1 if there exists a matroid N on
E ∪ {e} such that either M1 = N \ e and M2 = N/e or M1 = N/e and M2 = N \ e.
We define dist(M1,M2) to be the minimum number of elementary transformations
required to transform M1 into M2. The following properties are straightforward to
verify; the last of these properties shows that dist(M1,M2) is well defined:

• dist(M1,M2) = dist(M2,M1).
• dist(M∗

1 ,M
∗
2 ) = dist(M1,M2).

• If M ′ is the rank-zero matroid on E, then dist(M1,M
′) = r(M1).

• If M3 is a matroid on E, then dist(M1,M3) ≤ dist(M1,M2) + dist(M2,M3).
• dist(M1,M2) ≤ |E|.

We use the following lemma.
Lemma 1.2. Let M1 and M2 be matroids on a common ground set E and let T

be a collection of disjoint subsets of E. Then νM1(T ) ≤ νM2(T ) + dist(M1,M2).
Proof. By a simple inductive argument we may assume that dist(M1,M2) = 1.

Moreover, by duality we may assume that M1 = N \ e and M2 = N/e. Now it is easy
to check that νM1(T ) ≤ νN (T ) ≤ νM2

(T ) + 1, as required.
Note that νM (T ) = 0 if and only if no component of M contains elements from

two distinct parts of T . Let T = ∪T and let δM (T ) = max(κM (X,T −X) : X ∈ T ).
Note that δM (T ) ≤ νM (T ) and, when T contains only singletons, δM (T ) ≤ 1. The
main result of this paper is the following.

Theorem 1.3. Let M be a matroid and let T be a collection of disjoint subsets of
E(M). Then there exists a matroid M ′ on the ground set E(M) such that νM ′(T ) = 0
and dist(M,M ′) ≤ 2(δM (T ) + 1)νM (T ).

The next result is an easy consequence of Theorem 1.3. We say that a partition
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590 JIM GEELEN, BERT GERARDS, AND GEOFF WHITTLE

P of E(M) encloses T if each set in T is contained in some set in P and no set in P
contains two or more sets in T . The order of P, denoted by ordM (P), is defined as
max(λM (∪Q) : Q ⊆ P). Note that if P encloses T , then ordM (P) ≥ νM (T ).

Corollary 1.4. Let M be a matroid and let T be a collection of disjoint subsets
of E(M). Then there exists a partition P of E(M) enclosing T where ordM (P) ≤
2(δM (T ) + 1)νM (T ).

While Corollary 1.4 does follow from Theorem 1.3, we will not include the easy
proof since Corollary 1.4 is an immediate consequence of Theorem 4.1.

We conclude the introduction by stating some open problems.
Problem 1.5. Can the bound of 2(δM (T )+1)νM (T ) in Theorem 1.3 be improved

to cνM (T ) for some constant c?
Problem 1.6. In the case that each element of T is a singleton, can the bound

of 2(δM (T ) + 1)νM (T ) in Theorem 1.3 be improved to 2νM (T )?
We now turn to the problem of finding a tight bound on T -connectivity. If M ′ is

a matroid on the ground set E(M), then it is straightforward to prove that

νM (T ) ≤ dist(M,M ′) +
∑(⌊

|T ∩ F |
2

⌋
: F a component of M ′

)
.

Problem 1.7. Is there always a matroid M ′ for which equality is attained?
Recall that computing νM (T ) is NP-hard. The final problems concern the com-

plexity of determining νM (T ); as usual we assume that the matroid is given by its
rank oracle.

Problem 1.8. Is there a polynomial-time algorithm for computing νM (T )?
It is straightforward to show that νM (E(M)) is the size of a maximum common

independent set of M and M∗. So we can compute νM (E(M)) efficiently via matroid
intersection. The following special case of Problem 1.8 contains the matching problem.

Problem 1.9. Is there a polynomial-time algorithm for computing νM (B) where
B is a basis of M?

The above problems are all open for the class of representable matroids.

2. Submodular functions. This section contains notation, definitions, and el-
ementary results on submodular functions.

A set function on a set E is an integer valued function defined on the collection
of subsets of E. Let λ be a set function on E. Then

• λ is submodular if λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ) for each X,Y ⊆ E;
• λ is nonnegative if λ(X) ≥ 0 for each X ⊆ E;
• λ is symmetric if λ(X) = λ(E −X) for each X ⊆ E.

We call K = (E, λ) a connectivity system if λ is a symmetric, submodular, nonneg-
ative set function on a finite set E. For a matroid M we define K(M) = (E(M), λM );
K(M) is readily seen to be a connectivity system. Let K = (E, λ) be a connectivity
system and let S and T be disjoint subsets of E. Now let κK(S, T ) = min(λ(X) :
S ⊆ X ⊆ E − T ). Finally, for a collection T of disjoint subsets of E, we let
νK(T ) = maxκK(X,Y ) where the maximum is taken over all partitions (X,Y ) of
∪T where X is the union of a subcollection of T . When T is a partition of a set
T ⊆ E into singletons, then we let νM (T ) = νM (T ). In section 4 we provide upper
bounds on νK(T ). In the remainder of this section we consider preliminary results.

A set function r on E is nondecreasing if r(X) ≤ r(Y ) whenever X ⊆ Y .
Lemma 2.1. Let K = (E, λ) be a connectivity system, let T ⊆ E, and let

r(S) = κK(S, T ) for each S ⊆ E − T . Then r is a nondecreasing, submodular,
nonnegative set function on E − T .
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MATROID T -CONNECTIVITY 591

Proof. It is clear that r is nondecreasing and nonnegative. Let S1, S2 ⊆ E − T .
Then, for i ∈ {1, 2}, there exists a set Xi such that Si ⊆ Xi ⊆ E − T and λ(Xi) =
κK(Si, T ) = r(Si). Note that S1 ∩ S2 ⊆ X1 ∩X2 ⊆ E − T and S1 ∪ S2 ⊆ X1 ∪X2 ⊆
E − T . Therefore λ(X1 ∩ X2) ≥ κK(S1 ∩ S2, T ) = r(S1 ∩ S2) and λ(X1 ∪ X2) ≥
κK(S1 ∪ S2, T ) = r(S1 ∪ S2). Hence

r(S1) + r(S2) = λ(X1) + λ(X2)

≥ λ(X1 ∩X2) + λ(X1 ∪X2)

≥ r(S1 ∩ S2) + r(S1 ∪ S2).

Therefore r is submodular, as required.
The following result is well known in the context of polymatroids.
Lemma 2.2. Let r be a nondecreasing, submodular set function on a finite set E.

If X ⊆ Y ⊆ E and r(X ∪ {e}) = r(X) for each e ∈ Y −X, then r(X) = r(Y ).
Proof. Suppose otherwise and choose Y ′ minimal such that X ⊆ Y ′ ⊆ Y and

r(Y ′) > r(X). Clearly |Y ′| ≥ |X| + 2. Let e ∈ Y ′ − X. By our choice of Y ′,
r(Y ′ − {e}) = r(X) and r(X ∪ {e}) = r(X). Now, by submodularity, r(X ∪ {e}) +
r(Y ′−{e}) ≥ r(X)+ r(Y ′). But then r(Y ′) ≤ r(Y ′−{e}) = r(X); this contradiction
completes the proof.

Lemma 2.3. Let K = (E, λ) be a connectivity system and let S and T be disjoint
subsets of E. Then there exist sets S′ ⊆ S and T ′ ⊆ T such that κK(S′, T ′) =
κK(S, T ) and |S′|, |T ′| ≤ κK(S, T ).

Proof. Choose S′ ⊆ S maximal such that κK(S′, T ) ≥ |S′|. Note that this is well
defined since κK(∅, T ) ≥ 0. By the definition of S′ we have κK(S′ ∪ {e}) = κK(S′)
for all e ∈ S − S′. Therefore, by Lemmas 2.1 and 2.2, κK(S′, T ) = κK(S, T ). Now
choose T ′ ⊆ T maximal such that κK(S′, T ′) ≥ |T ′|. As above we get κK(S′, T ′) =
κK(S′, T ) = κK(S, T ), as required.

Lemma 2.4. Let K = (E, λ) be a connectivity system, let S and T be disjoint
subsets of E with κK(S, T ) = k, and let S = {X : S ⊆ X ⊆ E − T and λ(X) = k}.
If X,Y ∈ S, then X ∩ Y,X ∪ Y ∈ S.

Proof. Note that S ⊆ X∩Y ⊆ X∪Y ⊆ E−T . Then, since κK(S, T ) = k we have
λ(X ∩ Y ), λ(X ∪ Y ) ≥ k. Moreover, by submodularity, we have 2k = λ(X) + λ(Y ) ≥
λ(X∩Y )+λ(X∪Y ) ≥ 2k. It follows that λ(X∩Y ) = k and λ(X∪Y ) = k. Therefore
X ∩ Y,X ∪ Y ∈ S, as required.

3. Homomorphisms. Let K = (E, λ) be a connectivity system and let X ⊆ E.
We define a set function λ′ on (E − X) ∪ {eX} such that for each Y ⊆ E − X,
λ′(Y ) = λ(Y ) and λ′(Y ∪ {eX}) = λ(Y ∪X). Now let K ◦X = ((E −X)∪ {eX}, λ′).
It is easy to verify that K ◦X is a connectivity system; we say that K ◦X is obtained
from K by identifying X. If T is a collection of disjoint subsets of E, then we let
K ◦ T denote the connectivity system obtained by identifying each set in T .

Remark. If K = (E, λ) is a connectivity system and T is a collection of disjoint
subsets of E, and if T = {eX : X ∈ T }, then νK(T ) = νK◦T (T ).

By the above remark, we can reduce the problem of computing νK(T ) to the
apparently easier problem of computing νK(T ).

Theorem 3.1. Let K = (E, λ) be a connectivity system and let T = {T1, . . . , Tl}
be a partition of T ⊆ E. Then there exists a collection T ′ = {T ′

1, . . . , T
′
l } of disjoint

sets such that νK(T ′) = νK(T ) and, for each i ∈ {1, . . . , l}, Ti ⊆ T ′
i and λ(T ′

i ) =
κK(Ti, T − Ti).

Note that Theorem 3.1 is an immediate corollary of the following lemma.
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592 JIM GEELEN, BERT GERARDS, AND GEOFF WHITTLE

Lemma 3.2. Let K = (E, λ) be a connectivity system, let A, B, and C be
disjoint subsets of E, and let X be any set satisfying A ⊆ X ⊆ E − (B ∪ C) and
λ(X) = κK(A,B ∪ C). Then νK({A,B,C}) = νK({X,B,C}).

Proof. Note that by symmetry it suffices to prove that κK(B,A∪C) = κK(B,X∪
C). Let Y be a set satisfying B ⊆ Y ⊆ E− (A∪C) and λ(Y ) = κK(B,A∪C). Since
A ⊆ X−Y ⊆ E− (B ∪C) and B ⊆ Y −X ⊆ E− (A∪C), we have λ(Y ) ≤ λ(Y −X)
and λ(X) ≤ λ(X − Y ). However, by submodularity and symmetry, we have

λ(Y ) + λ(X) ≥ λ(Y −X) + λ(X − Y ).

Therefore λ(Y ) = λ(Y − X) and λ(X) = λ(X − Y ). Then, since B ⊆ Y − X ⊆
E − (X ∪ C), we have κK(B,X ∪ C) = κK(B,A ∪ C), as required.

4. Connectivity systems. Let K = (E, λ) be a connectivity system and let T
be a collection of disjoint subsets of E. Now let P be a partition of E. The order
of P, denoted ordK(P), is max(λ(∪S) : S ⊆ P). Note that if P encloses T , then
νK(T ) ≤ ordK(P). Let T = ∪T and let δK(T ) = max(κK(X,T −X) : X ∈ T ). One
of the main results of this section is the following.

Theorem 4.1. Let K = (E, λ) be a connectivity system and let T be a collection
of disjoint subsets of E. Then there exists a partition P of E enclosing T with
ordK(P) ≤ 2(1 + δK(T ))νK(T ).

We conjecture that this bound can be sharpened from 2(1 + δK(T ))νK(T ) to
2νK(T ).

The problem of computing ordK(P) is easily seen to contain the max-cut problem
and is therefore NP-hard. We will introduce another notion, a (T, k)-dissection, that
also provides an upper bound on νK(T ). However, the key properties of a (T, k)-
dissection can be verified efficiently.

A triple (A,B,P) is a (T, k)-dissection if it satisfies the following:
• P ∪ {A,B} is a partition of E.
• |A ∩ T |, |B ∩ T | ≤ k and |P ∩ T | = 1 for each P ∈ P.
• κK(A,B) = k.
• λ(A ∪ P ) = k for each P ∈ P.

Note that the third property above is the only property that is nontrivial to verify.
However, we can compute κK(A,B) efficiently via submodular function minimization
(see Iwata, Fleischer, and Fujishige [3] or Schrijver [7]). Therefore we can efficiently
verify that a triple is a (T, k)-dissection.

Theorem 4.2. Let K = (E, λ) be a connectivity system and let T ⊆ E where
νK(T ) = k. Then K admits a (T, k)-dissection.

Proof. Let (T1, T2) be a partition of T such that κK(T1, T2) = k. By Lemma 2.3,
there exists A′ ⊆ T1 and B′ ⊆ T2 such that κK(A′, B′) = k and |A′|, |B′| ≤ k. Let
A = {X : A′ ⊆ X ⊆ E − B′ and λ(X) = k}. By Lemma 2.4, A is closed under
intersections and unions.

For each set Z ⊆ T with A′ ⊆ Z ⊆ T −B′, we have κK(Z, T −Z) = k. Therefore
there exists X ∈ A such that X ∩ T = Z. Choose a set A ∈ A as large as possible
such that A ∩ T = A′. Now, for each element e ∈ T − (A′ ∪ B′), choose a set
Ae ∈ S as large as possible such that Ae ∩ T = A′ ∪ {e}. Note that A ∪ Ae ∈ A and
(A ∪Ae) ∩ T = A′ ∪ {e}. Therefore, by the maximality of Ae, we have A ⊆ Ae. Now
consider two distinct elements e, f ∈ T − (A′ ∪B′). Note that A ⊆ Ae ∩Af ∈ A and
(Ae ∩Af ) ∩ T = A′. Therefore, by the maximality of A, we have Ae ∩Af = A. Now
let B = E − ∪(Ae : e ∈ T − (A′ ∪ B′)) and let P = (Ae − A : e ∈ T − (A′ ∪ B′)).
Then (A,B,P) is a (T, k)-dissection.
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MATROID T -CONNECTIVITY 593

For T ⊆ E we let ΔK(T ) = max(λ({e} : e ∈ T )).
Theorem 4.3. Let K = (E, λ) be a connectivity system, let T ⊆ E, let T be the

partition of T into singletons, and let (A,B,P) be a (T, k)-dissection. Then there exist
partitions A of A and B of B such that A∪B∪P encloses T and ordK(A∪B∪P) ≤
2(1 + ΔK(T ))k. Hence νK(T ) ≤ 2(1 + ΔK(T ))k.

Proof. Let A = {A− T} ∪ {{e} : e ∈ A ∩ T}, B = {B − T} ∪ {{e} : e ∈ B ∩ T},
and C = A ∪ B ∪ P. Note that C encloses T ; it remains to prove that ord(C) ≤
2(1 + ΔK(T ))k.

4.3.1. ordK(P ∪ {A,B}) ≤ 2k.
Subproof. By definition, λ(A∪P ) = k for each P ∈ P. Therefore, by Lemma 2.4,

λ(A ∪ (∪Q)) = k for each Q ⊆ P. By symmetry, λ(B ∪ (∪Q)) = k for each Q ⊆ P.
Now, by submodularity, λ(∪Q) + λ(A ∪ B ∪ (∪Q)) ≤ λ(A ∪ (∪Q)) + λ(B ∪ (∪Q)) =
2k for each Q ⊆ P. Therefore λ(∪Q) ≤ 2k and λ(A ∪ B ∪ (∪Q)) ≤ 2k. Thus
ordK(P ∪ {A,B}) ≤ 2k, as required.

Consider a set Q ⊆ C. Let X = ∪Q and let Y = E − X. Note that either
|X ∩ A| ≤ k or |Y ∩ A| ≤ k. By symmetry we may assume that |X ∩ A| ≤ k.
Similarly, either |X ∩ B| ≤ k or |Y ∩ B| ≤ k. Consider the case that |X ∩ B| ≤ k.
Then, by submodularity and statement 4.3.1, λ(X) ≤ 2kΔK(T ) + λ(X − (A ∪B)) ≤
2kΔK(T ) + 2k. Finally, consider the case that |Y ∩ B| ≤ k. By submodularity and
statement 4.3.1, λ(X) ≤ 2kΔK(T ) + λ((X − A) ∪ B) ≤ 2kΔK(T ) + 2k. Therefore
ordK(A ∪ B ∪ P) ≤ 2(1 + ΔK(T ))k, as required.

We can now put these results together to prove Theorem 4.1. By Theorem 3.1
we may assume that λ(X) ≤ δK(T ) for each X ∈ T . Then, by possibly applying a
homomorphism, we may assume that each part of T is a singleton. Now Theorem 4.1
is an immediate consequence of Theorems 4.2 and 4.3.

5. Back to matroids.
Lemma 5.1. Let (S,A1, A2, T ) be a partition of the elements of a matroid M such

that λM (S ∪A1)+λM (S ∪A2) = λM (S)+λM (S ∪A1 ∪A2). Then λM/S\T (A1) = 0.
Proof. We have

0 = λM (S ∪A1) + λM (S ∪A2) − λM (S) − λM (S ∪A1 ∪A2)

= (rM (S ∪A1) + rM (T ∪A2) − rM (E))

+(rM (S ∪A2) + rM (T ∪A1) − rM (E))

−(rM (S) + rM (T ∪A1 ∪A2) − rM (E))

−(rM (S ∪A1 ∪A2) + rM (T ) − rM (E))

= (rM (S ∪A1) + rM (S ∪A2) − rM (S) − rM (S ∪A1 ∪A2))

+(rM (T ∪A1) + rM (T ∪A2) − rM (T ) − rM (T ∪A1 ∪A2))

= (rM/S(A1) + rM/S(A2) − rM/S(A1 ∪A2))

+(rM/T (A1) + rM/T (A2) − rM/T (A1 ∪A2))

= λM/S\T (A1) + λM\S/T (A1).

Therefore, since the last expression is the sum of two nonnegative values, we get
λM/S\T (A1) = 0 and λM\S/T (A1) = 0, as required.

Lemma 5.2. Let (S,A1, . . . , Al, T ) be a partition of the elements of a matroid
M such that κM (S, T ) = k and, for each i ∈ {1, . . . , l}, λM (S ∪ Ai) = k. Then
λM/S\T (Ai) = 0 for all i ∈ {1, . . . , l}.
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Proof. By Lemma 2.4, λM (S ∪ (∪i∈XAi)) = k for all X ⊆ {1, . . . , l}. Let A′
2 =

A2 ∪ · · · ∪ Al. Applying Lemma 5.1 to (S,A1, A
′
2, T ) we see that λM/S\T (A1) = 0.

Then, by symmetry, λM/S\T (Ai) = 0 for all i ∈ {1, . . . , l}.
The following result is an immediate corollary of Lemma 5.2 and Theorem 4.2.
Lemma 5.3. Let M =(E, r) be a matroid and let T be a collection of disjoint sub-

sets of E(M) with νM (T )=k. Then there exist disjoint sets A,B ⊆ E(M) such that
• each set T ∈ T is contained in A, B, or E − (A ∪B);
• A and B each contain at most k sets from T ;
• λM (A) ≤ k, λM (B) ≤ k;
• if T ′ is the collection of sets in T disjoint from A∪B, then νM/A\B(T ′) = 0.

We need the following lemma. (Note that the proof is not self-contained; we use
Theorem 6.1 from the next section.)

Lemma 5.4. Let M be a matroid and let (A,B) be a partition of E(M). Then
there exists a matroid M ′ on E(M) such that dist(M,M ′) = λM (A), λM ′(A) = 0,
M/B = M ′/B, and M/A = M ′/A.

Proof. The result is vacuous when λM (A) = 0, so suppose that λM (A) > 0. By
Theorem 6.1, there exists a matroid N on ground set E(M)∪{e} such that M = N \e,
e ∈ clN (A), e ∈ clN (B), and e is not a loop of N . Let M ′′ = N/e. Note that e is a loop
in both N/A and N/B. Therefore M ′′/A = (N/e)/A = (N/A)/e = (N/A) \ e = M/A
and, similarly, M ′′/B = M/B. Also note that λM ′′(A) = λM (A) − 1 and that
dist(M,M ′′) = 1. The result now follows by an easy inductive argument.

We are now ready to prove our main result, which we restate here for convenience.
Theorem 5.5. Let M = (E, r) be a matroid and let T be a collection of disjoint

subsets of E(M). Then there exists a matroid M ′ on ground set E(M) such that
νM ′(T ) = 0 and dist(M,M ′) ≤ 2(δM (T ) + 1)νM (T ).

Proof. Suppose that T = {T1, . . . , Tl} and let k = νM (T ). By Theorem 3.1, there
exists a collection S = {S1, . . . , Sl} of disjoint subsets of E(M) such that νM (S) = k
and, for each i ∈ {1, . . . , l}, Ti ⊆ Si and λM (Si) ≤ δM (T ). Then, by Lemma 5.3,
there exist disjoint subsets A and B of E(M) such that

• each set S ∈ B is contained in A, B, or E(M) − (A ∪B);
• A and B each contain at most k sets from S;
• λM (A) ≤ k, λM (B) ≤ k;
• if S ′ is the collection of sets in S disjoint from A ∪B, then νM/A\B(S ′) = 0.

By Lemma 5.4 and duality, there exists a matroid M ′ on ground set E(M) such that
dist(M,M ′) ≤ 2k, λ′

M (A) = λ′
M (B) = 0, and M ′/A \ B = M/A \ B. Note that, for

each S ∈ S − S ′, we have λM ′(S) ≤ δM (T ). Therefore, by Lemma 5.4, there exists
a matroid M ′′ such that dist(M ′,M ′′) ≤ 2kδM (T ), and νM ′′(S) = 0. Then, since
Ti ⊆ Si for each i ∈ {1, . . . , l}, we have νM ′′(T ) = 0, as required.

6. Modular cuts. In this section we prove the following theorem.
Theorem 6.1. Let M be a matroid and let (A,B) be a partition of E(M). If

λM (A) > 0, then there exists a matroid M ′ on ground set E(M) ∪ {e} such that
M = M ′ \ e, e ∈ clM ′(A), e ∈ clM ′(B), and e is not a loop of M ′.

Note that Theorem 6.1 is trivial for representable matroids.
Let X,Y ⊆ E(M). We call (X,Y ) a modular pair if rM (X) + rM (Y ) = rM (X ∩

Y ) + rM (X ∪ Y ). A collection F of subsets of E(M) is called a modular cut of M if
it satisfies the following three conditions:

1. If X ⊆ Y ⊆ E(M) and X ∈ F , then Y ∈ F .
2. If X,Y ∈ F and (X,Y ) is a modular pair, then X ∩ Y ∈ F .
3. If Y ∈ F and X ⊆ Y with rM (X) = rM (Y ), then X ∈ F .
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The following theorem is well known; see, for example, Oxley [6, Theorem 7.2.2].
Theorem 6.2. Let F be a modular cut in a matroid M . Then there exists a

matroid N on ground set E(M)∪{e} such that N \ e = M and, for each X ⊆ E(M),
rN (X ∪ {e}) = rM (X) if and only if X ∈ F .

Lemma 6.3. Let M be a matroid, let (A,B) be a partition of E(M), and let F
be the collection of all sets X ⊆ E(M) such that λM/X(A − X) = 0. Then F is a
modular cut of M .

Proof. Note that F clearly satisfies the first condition.
6.3.1. For any X ⊆ E(M), X ∈ F if and only if (A ∪X,B ∪X) is a modular

pair in M .
Subproof. Note that λM/X(A−X) = rM/X(A−X)+ rM/X(B−X)− r(M/X) =

rM (A ∪ X) + rM (B ∪ X) − r(M) − rM (X). Thus λM/X(A − X) = 0 if and only if
(A ∪X,B ∪X) is a modular pair.

Now consider the third condition. Suppose that Y ∈ F and X ⊆ Y with rM (X) =
rM (Y ). By the claim, (A∪ Y,B ∪ Y ) is a modular pair. Moreover, since X ⊆ Y with
rM (X) = rM (Y ), we have rM (A ∪ Y ) = rM (A ∪ X), rM (B ∪ Y ) = rM (B ∪ X),
rM ((A ∪ Y ) ∩ (B ∪ Y )) = rM ((A ∪ X) ∩ (B ∪ X)), and rM ((A ∪ Y ) ∪ (B ∪ Y )) =
rM ((A ∪X) ∪ (B ∪X)). Therefore (A ∪X,B ∪X) is a modular pair and hence, by
the claim, X ∈ F . This verifies the third condition.

Finally consider the second condition. Let X1, X2 ∈ F such that (X1, X2) is a
modular pair. By the definition of F , X1 ∪X2 ∈ F . Then, by statement 6.3.1, each
of (A ∪X1, B ∪X1), (A ∪X2, B ∪X2), (A ∪ (X1 ∪X2), B ∪ (X1 ∪X2)) is a modular
pair. Now

rM (A ∪ (X1 ∩X2)) + rM (B ∪ (X1 ∩X2))

= rM ((A ∪X1) ∩ (A ∪X2)) + rM ((B ∪X1) ∩ (B ∪X2))

≤ (rM (A ∪X1) + rM (A ∪X2) − rM (A ∪X1 ∪X2))

+ (rM (B ∪X1) + rM (B ∪X2) − rM (B ∪X1 ∪X2))

= (rM (A ∪X1) + rM (B ∪X1))

+ (rM (A ∪X2) + rM (B ∪X2))

− (rM (A ∪X1 ∪X2) + rM (B ∪X1 ∪X2))

= (rM (X1) + r(M)) + (rM (X2) + r(M))

− (rM (X1 ∪X2) + r(M))

= (rM (X1) + rM (X2) − rM (X1 ∪X2)) + r(M)

= rM (X1 ∩X2)) + r(M).

So (A ∪ (X1 ∩ X2), B ∪ (X1 ∩ X2)) is a modular pair. Then, by statement 6.3.1,
X1 ∩X2 ∈ F . Hence F is a modular cut, as required.

Now Theorem 6.1 is an immediate consequence of Theorem 6.2 and Lemma 6.3.

Acknowledgment. We thank the referee for carefully reading the manuscript
and for correcting a significant error in our definition of a modular cut.
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