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For any positive integer l we prove that if M is a simple matroid
with no (l + 2)-point line as a minor and with sufficiently large

rank, then |E(M)| � qr(M)−1
q−1 , where q is the largest prime power

less than or equal to l. Equality is attained by projective geometries
over GF(q).
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1. Introduction

Kung [5] proved the following theorem.

Theorem 1.1. For any integer l � 2, if M is a simple matroid with no U2,l+2-minor, then |E(M)| � lr(M)−1
l−1 .

The above bound is tight in the case that l is a prime power and M is a projective geometry. In
fact, among matroids of rank at least 4, projective geometries are the only matroids that attain the
bound; see [5]. Therefore, the bound is not tight when l is not a prime power. We prove the following
bound that was conjectured by Kung [5,4].

Theorem 1.2. Let l � 2 be a positive integer and let q be the largest prime power less than or equal to l. If M is

a simple matroid with no U2,l+2-minor and with sufficiently large rank, then |E(M)| � qr(M)−1
q−1 .

The case where l = 6 was resolved by Bonin and Kung in [1].
We will also prove that the only matroids of large rank that attain the bound in Theorem 1.2 are

the projective geometries over GF(q); see Corollary 4.2.
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A matroid M is round if E(M) cannot be partitioned into two sets of rank less than r(M). We
prove Theorem 1.2 by reducing it to the following result.

Theorem 1.3. For each prime power q, there exists a positive integer n such that, if M is a round matroid with

a PG(n − 1,q)-minor but no U2,q2+1-minor, then ε(M) � qr(M)−1
q−1 .

For any integer l � 2, there is an integer k such that 2k−1 < l � 2k . Therefore, if q is the largest
prime power less than or equal to l, then l < 2q. So, to prove Theorem 1.2, it would suffice to prove
the weaker version of Theorem 1.3 where U2,q2+1 is replaced by U2,2q+1. With this in mind, we find
the stronger version somewhat surprising.

We further reduce Theorem 1.3 to the following result.

Theorem 1.4. For each prime power q there exists an integer n such that, if M is a round matroid that contains
a U2,q+2-restriction and a PG(n − 1,q)-minor, then M contains a U2,q2+1-minor.

The following conjecture, if true, would imply all of the results above.

Conjecture 1.5. For each prime power q, there exists a positive integer n such that, if M is a round matroid
with a PG(n − 1,q)-minor but no U2,q2+1-minor, then M is GF(q)-representable.

The conjecture may hold with n = 3 for all q. Moreover, the conjecture may also hold when
“round” is replaced by “vertically 4-connected”.

2. Preliminaries

We assume that the reader is familiar with matroid theory; we use the notation and terminology
of Oxley [6]. A rank-1 flat in a matroid is referred to as a point and a rank-2 flat is a line. A line is
long if it has at least 3 points. The number of points in M is denoted ε(M).

Let M be a matroid and let A, B ⊆ E(M). We define �M(A, B) = rM(A) + rM(B) − rM(A ∪ B); this
is the local connectivity between A and B . This definition is motivated by geometry. Suppose that M
is a restriction of PG(n − 1,q) and let F A and F B be the flats of PG(n − 1,q) that are spanned by A
and B respectively. Then F A ∩ F B has rank �M(A, B). We say that two sets A, B ⊆ E(M) are skew if
�M(A, B) = 0.

We let U (l) denote the class of matroids with no U2,l+2-minor. Our proof of Theorem 1.2 relies
heavily on the following result of Geelen and Kabell [3, Theorem 2.1].

Theorem 2.1. There is an integer-valued function α(l,q,n) such that, for any positive integers l, q, n with
l � q � 2, if M ∈ U (l) is a matroid with ε(M) � α(l,q,n)qr(M) , then M contains a PG(n − 1,q′)-minor for
some prime-power q′ > q.

The following result is an important special case of Theorem 1.4.

Lemma 2.2. If M is a round matroid that contains a U2,q+2-restriction and a PG(2,q)-restriction, then M has
a U2,q2+1-minor.

Proof. Suppose that M is a minimum-rank counterexample. Let L, P ⊆ E(M) such that M|L = U2,q+2
and M|P = PG(2,q). If M has rank 3, then we may assume that E(M) = P ∪{e}. Since M|P is modular,
e is in at most one long line of M . Then, since |P | = q2 + q + 1, we have ε(M/e) � q2 + 1 and,
hence, M has a U2,q2+1-minor. This contradiction implies that r(M) > 3. Since M is round, there is an
element e that is spanned by neither L nor P . Now M/e is round and contains both M|L and M|P as
restrictions. This contradicts our choice of M . �

The base case of the following lemma is essentially proved in [3, Lemma 2.4].
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Lemma 2.3. Let λ ∈ R. Let k and l � q � 2 be positive integers, and let A and B be disjoint sets of elements
in a matroid M ∈ U (l) with �M(A, B) � k and εM(A) > λqrM (A) . Then there is a set A′ ⊆ A that is skew to B
and satisfies εM(A′) > λl−kqrM (A′) .

Proof. By possibly contracting some elements in B − clM(A), we may assume that A spans B and
thus that rM(B) = �M(A, B). When k = 1, this means B has rank 1. We resolve this base case first.

Let e be a non-loop element of B . We may assume that A is minimal with εM(A) > λqrM (A) ,
and that E(M) = A ∪ {e}. Let W be a flat of M not containing e, such that rM(W ) = r(M) − 2. Let
H0, H1, . . . , Hm be the hyperplanes of M containing W , with e ∈ H0. The sets {Hi − W : 1 � i � m}
are a disjoint cover of E(M)− W . Additionally, the matroid si(M/W ) is isomorphic to the line U2,m+1,
so we know that m � l.

By the minimality of A, we get εM(H0 ∩ A) � λqr(M)−1, so

εM(A − H0) > λ(q − 1)qr(M)−1.

Since the hyperplanes H1, . . . , Hm cover E(M) − H0, a majority argument gives some 1 � i � m such
that

εM(Hi ∩ A) � 1

m
εM(A − H0) >

λ

l
(q − 1)qr(M)−1.

Setting A′ = A ∩ Hi gives a set of the required number of points that is skew to e and therefore to B ,
which is what we want.

Now suppose that the result holds for k = t and consider the case that k = t + 1. Let A and B be
disjoint sets of elements in a matroid M with �M(A, B) � t + 1 and εM(A) > λqrM (A) . As mentioned
earlier, we have rM(B) = �M(A, B) � t +1. Let e be any non-loop element of B . By the base case, there
exists A′ ⊆ A that is skew to {e} and satisfies εM(A′) > λl−1qrM (A′) . Since e /∈ clM(A′) and rM(B) �
t + 1, we have �M(A′, B) � t . Now the result follows routinely by the induction hypothesis. �

The following two results are used in the reduction of Theorem 1.2 to Theorem 1.3.

Lemma 2.4. Let f (k) be an integer-valued function such that f (k) � 2 f (k − 1) − 1 for each k � 1 and
f (1) � 1. If M is a matroid with ε(M) � f (r(M)) and r(M) � 1, then there is a round restriction N of M such
that ε(N) � f (r(N)) and r(N) � 1.

Proof. We may assume that M is not round and, hence, there is a partition (A, B) of E(M) such that
rM(A) < r(M) and rM(B) < r(M). Clearly rM(A) � 1 and rM(B) � 1. Inductively we may assume that
εM(A) < f (rM(A)) and εM(B) < f (rM(B)). Thus ε(M) � ε(M|A) + ε(M|B) � f (rM(A)) + f (rM(B)) −
2 � 2 f (r(M) − 1) − 2 < f (r(M)), which is a contradiction. �
Lemma 2.5. Let q � 4 and t � 1 be integers and let M be a matroid with ε(M) � qr(M)−1

q−1 and r(M) � 3t. If M
is not round, then either M has a U2,q2+2-minor or there is a round restriction N of M such that r(N) � t and

ε(N) >
qr(N)−1

q−1 .

Proof. Let s = r(M) and let f (k) = (
q
2 )s−k(

qk−1
q−1 ). For any k � 1,

f (k + 1) =
(

q

2

)s−k−1(qk+1 − 1

q − 1

)

>

(
q

2

)s−k−1(
q

qk − 1

q − 1

)

= 2 f (k).
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Moreover f (1) � 1 and ε(M) � f (r(M)). Then, by Lemma 2.4, there is a round restriction N of M such

that r(N) � 1 and ε(N) � f (r(N)). Since M is not round, r(N) < r(M) = s and, hence, ε(N) >
qr(N)−1

q−1 .
We may assume that r(N) < t . Therefore, since s � 3t and q � 4,

ε(N) � f
(
r(N)

)

=
(

q

2

)s−r(N)(qr(N) − 1

q − 1

)

�
(

q

2

)2t(qr(N) − 1

q − 1

)

� qt
(

qr(N) − 1

q − 1

)

> qr(N)

(
qr(N) − 1

q − 1

)

�
(

qr(N) + 1

q + 1

)(
qr(N) − 1

q − 1

)

=
(

q2r(N) − 1

q2 − 1

)
.

Therefore, by Theorem 1.1, M has a U2,q2+2-minor, as required. �
3. The main results

We start with a proof of Theorem 1.4, which we restate here.

Theorem 3.1. There is an integer-valued function n(q) such that, for each prime power q, if M is a round
matroid that contains a U2,q+2-restriction and a PG(n(q) − 1,q)-minor, then M has a U2,q2+1-minor.

Proof. Recall that the function α(l,q,n) was defined in Theorem 2.1. Let q be a prime power, let
α = α(q2 − 1,q − 1,3). Let n be an integer that is sufficiently large so that (

q
q−1 )n > αq5(q − 1)2. We

define n(q) = n. Suppose that the result fails for this choice of n(q) and let M be a minimum-rank
counterexample. Thus M is a round matroid having a line L, with at least q + 2 points, and a minor
N isomorphic to PG(n − 1,q), but M ∈ U (q2 − 1).

Suppose that N = M/C \ D where C is independent. If e ∈ C − L, then M/e is round, contains
the line L, and has N as minor—contrary to our choice of M . Therefore C ⊆ L and, hence, r(M) �
r(N) + 2 � n + 2.

Let X = E(M) − L. By our choice of n, we have ε(M|(X − D)) � qn−1
q−1 − (q2 + 1) = q3 qn−3−1

q−1 + q �
qn−1 > q4α(q−1)n+2 � q4α(q−1)rM (X) . By Lemma 2.3, there is a flat F ⊆ X − D of M that is skew to L
and satisfies ε(M|F ) � α(q − 1)rM (F ) . Since F is skew to L, F is also skew to C . Therefore M|F = N|F
and hence M|F is GF(q)-representable. Then, by Theorem 2.1, M|F has a PG(2,q)-minor. Therefore
there is a set Y ⊆ F such that (M|F )/Y contains a PG(2,q)-restriction. Now M/Y is round, contains a
(q+2)-point line, and contains a PG(2,q)-restriction. Then, by Lemma 2.2, M has a U2,q2+1-minor. �

Now we will prove Theorem 1.3 which we reformulate here. The function n(q) was defined in
Theorem 3.1.

Theorem 3.2. For each prime power q, if M is a round matroid with a PG(n(q) − 1,q)-minor but no U2,q2+1-

minor, then ε(M) � qr(M)−1
q−1 .
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Proof. Let M be a minimum-rank counterexample. By Lemma 2.2, r(M) > n(q). Let e ∈ E(M) be a
non-loop element such that M/e has a PG(n −1,q)-minor. Note that M/e is round. Then, by the mini-

mality of M , ε(M/e) � qr(M)−1−1
q−1 . By Theorem 3.1, each line of M containing e has at most q + 1 points.

Hence ε(M) � 1 + qε(M/e) � 1 + q(
qr(M)−1−1

q−1 ) = qr(M)−1
q−1 . This contradiction completes the proof. �

We can now prove our main result, Theorem 1.2, which we restate below.

Theorem 3.3. Let l � 2 be a positive integer and let q be the largest prime power less than or equal to l. If M is

a matroid with no U2,l+2-minor and with sufficiently large rank, then ε(M) � qr(M)−1
q−1 .

Proof of Theorem 1.2. When l is a prime-power, the result follows from Theorem 1.1. Therefore we
may assume that l � 6 and, hence, q � 5. Recall that n(q) is defined in Theorem 3.1 and α(l,q−1,n) is
defined in Theorem 2.1. Let n = n(q) and let k be an integer that is sufficiently large so that (

q
q−1 )k �

qα(l,q − 1,n). Thus, for any k′ � k, we get qk′−1
q−1 � qk′−1 � α(l,q − 1,n)(q − 1)k′

. Let M ∈ U (l) be a

matroid of rank at least 3k such that ε(M) >
qr(M)−1

q−1 . By Lemma 2.5, M has a round restriction N

such that we have r(N) � k and ε(N) >
qr(N)−1

q−1 � α(l,q − 1,n)(q − 1)r(N) . By Theorem 2.1, N has a
PG(n(q) − 1,q′)-minor for some q′ > q − 1. If q′ > q, then q′ + 1 � l + 2, so this projective geometry
has a U2,l+2-minor, contradicting our hypothesis. We may therefore conclude that q′ = q, so N has a
PG(n(q) − 1,q)-minor. Now we get a contradiction by Theorem 3.2. �
4. Extremal matroids

In this section, we prove that the extremal matroids of large rank for Theorem 1.2 are projective
geometries. We need the following result to recognize projective geometries; see Oxley [6, Theo-
rem 6.1.1].

Lemma 4.1. Let M be a simple matroid of rank n � 4 such that every line of M contains at least three points
and each pair of disjoint lines of M is skew. Then M is isomorphic to PG(n − 1,q) for some prime power q.

We can now prove our extremal characterization.

Corollary 4.2. Let l � 2 be a positive integer and let q be the largest prime power less than or equal to l. If M

is a simple matroid with no U2,l+2-minor, with ε(M) = qr(M)−1
q−1 , and with sufficiently large rank, then M is a

projective geometry over GF(q).

Proof. Kung [5] proved the result for the case that l is a prime-power. Therefore we may assume that
l � 6 and, hence, q � 5. By Theorem 1.2, there is an integer k1 such that, if M is a matroid with no

U2,l+2-minor and with r(M) � k1, then ε(M) � qr(M)−1
q−1 . Recall that n(q) is defined in Theorem 3.1 and

α(l,q,n) is defined in Theorem 2.1. Let k2 be large enough so that (
q

q−1 )k2 � qα(l,q − 1,n(q)+ 2), and
k = max(k1,k2).

Let M ∈ U (l) be a simple matroid of rank at least 3k such that ε(M) = qr(M)−1
q−1 . If M is not round,

then, by Lemma 2.5, M has a round restriction N such that r(N) � k and ε(N) >
qr(N)−1

q−1 , contrary to
Theorem 1.2. Hence M is round.

From the definition of k2, we get ε(M) � α(l,q − 1,n(q) + 2)(q − 1)r(M) , so by Theorem 2.1, M has
a PG(n(q) + 1,q)-minor. Therefore, by Theorem 3.1, each line in M has at most q + 1 points. Consider

any element e ∈ E(M). By Theorem 1.2, ε(M/e) � qr(M)−1−1
q−1 . Then
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ε(M) � 1 + qε(M/e)

� 1 + q

(
qr(M)−1 − 1

q − 1

)

= qr(M) − 1

q − 1
= ε(M).

The inequalities above must hold with equality. Therefore each line in M has exactly q + 1 points.
If M is not a projective geometry, then, by Lemma 4.1, there are two disjoint lines L1 and L2

in M such that �M(L1, L2) = 1. Let e ∈ L1. Then L2 spans a line with at least q + 2 points in M/e.
Since M has a PG(n(q) + 1,q)-minor, M/e contains a PG(n(q) − 1,q)-minor; see [2, Lemma 5.2]. This
contradicts Theorem 3.1. �
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