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Abstract

A jump system is a nonempty set of integral vectors that satisfy a certain exchange axiom.
This notion was introduced by Bouchet and Cunningham, and popularized by recent results
of Lovasz. A degree system of a graph (i is the set of degree sequences of all subgraphs of G.
Degree systems are the primary example of jump systems. Other examples come from matroids
and from two generalizations of matroids (polymatroids and delta-matroids). Discussion of
these special cases will be kept to a minimum, and will only be used to motivate certain
results.

The main result is a min—max formula of Lovasz for the distance of an integral point from
a jump system. This formula generalizes two of the more important min—max theorems in
combinatorial optimization; namely, Tutte’s f—factor—theorem, and Edmonds’ matroid inter-
section theorem. Other points of interest are the existence of a greedy algorithm for optimizing
linear functions, and a characterization of the convex hulls of jump systems. Even apart from
the possibility of obtaining very general theorems, jump systems are appealing due to their
simple definition and elegant structure.

1 Introduction

In this section we define jump systems, and summarize relevant information; for more detailed
expositions see Bouchet and Cunningham [3] (who introduced jump systems), and Lovész [12].
We begin with the basic definitions.

Throughout, we let V := {1,...,n}. For 2,y € Z" define

[2,y] := {2’ € Z" : min(z;, ;) < @) < max(2,,y,), Vi},



and d(z,y) = > (|e; —yi| : 7 € V). We call [2,y] a box. (More generally, a box is a cross product
of intervals in Z, where the intervals are possibly infinite.) A point 2’ € 7V is a step from z toy
(or an (z,y)-step) if 2’ € [x,y] and d(z,2’) = 1. Let .J be a nonempty subset of ZV, a point z € .J

is called a feasible point. J is a jump system if it satisfies the following axiom:

two—step axiom Given feasible points x,y and a step 2’ from z to y, then either 2’ is feasible,

or there exists a feasible step a2’ from z’ to y.

1.1 Preliminaries

Throughout J will denote a bounded jump system, unless otherwise specified. We will assume

that the reader is familiar with the following operations on jump systems:

Translation Given a € Z, we add a to each feasible point. Clearly this also gives a jump

system.

Reflection Given i € V, the reflection of J in coordinate i is the set obtained by negating x; in

each point z. This is again a jump system.

Projection Given X C V, the projection of J onto X is the set obtained by replacing each

feasible point with its restriction to X. This is again a jump system.

Intersection with a box Given a box B such that J N B is not empty, then J N B is a jump
system. This is a special case of a result of Lovasz that, for any box B, the closest points in

J to B form a jump system. (See Exercise 1.)

Sum Given jump systems Jq,.Jy on V, define J; + Jy = {a1 + 29 : 21 € Jy, 29 € Jo}. We will see,

in Theorem 1.1, that Jy + J; is again a jump system.

Product Given jump systems Jy,.Jo on Vi, V5 respectively, where V; and V5 are disjoint sets. We
define Jy x Jy = {(x1,22) : @1 € Jy, 29 € Jo}. It is straightforward to see that J; x J is a

jump system on V; U V5. Note that boxes are just the product of intervals.
We now introduce our main example.

Degree—sequences Let G = (V, F) be a graph. For a subgraph H of G, we define the degree—
sequence of H, to be the vector degy € Z" such that, for v € V, degy(v) is the degree of

vertex v in H. Alternatively, degyy = > (e; + €; : ij an edge of H), where ¢; € ZV is the



vector having one in position ¢ and zeros elsewhere. We define the degree—system of G' to be
Ja =3 ({0,e; +¢;} :ij € E). The degree—system of &, being the sum of elementary jump
systems, is also a jump system. Note that f € Jg if and only if f is the degree sequence of

a subgraph of G.

Determining whether or not a vector f € ZV belongs to Jg is a nontrivial and much-studied
problem, called the f-factor problem. (In the case that b = 1, the problem is to determine
whether G admits a perfect matching.) The f-factor problem demonstrates that testing
membership in a jump system cannot be assumed to be a straightforward operation, even
when the jump system is the sum of trivial jump systems. Much of the following discussion

is devoted to the problem of testing membership.
The following are important classes of jump systems.

Delta—matroids A delta—matroidis a collection of subsets of V whose characteristic vectors define
a jump-system. For convenience, we associate a delta—matroid with the set of characteristic
vectors of its sets. Thus, delta-matroids are exactly jump systems contained in {0,1}V.
Delta—matroids, which pre—date jump systems, were introduced by Bouchet [1,2]. Similar
structures were defined by a number of authors, see Dunstan and Welsh [6], Dress and
Havel [5], and Chandrasekaran and Kabadi [4]. Recently Kabadi [10] observed that all
bounded jump systems can be constructed from delta-matroids using a ”homomorphism”
operation. This construction can be used to generalize many results on delta—matroids to
jump systems. We favour direct proofs of such results, since we do not assume familiarity

with delta—matroids.

Constant sum A jump system J is constant sum if there exists o sush that > x; = « for all

x e J.

Constant parity A jump system .J is odd (respectively even) if 3 z; is odd (resp. even). Col-

lectively, we refer to odd and even jump systems as constant parity jump systems.

Matroids The set of characteristic vectors of bases of a matroid is a jump system. For conve-
nience, we identify a matroid by the set of characteristic vectors of its bases. Thus matroids
are exactly constant—parity delta-matroids (those readers who are not familiar with matroids

may take this as a definition).



1.2 Key results

The following theorem is due to Bouchet and Cunningham [3]. The proof is essentially taken from

the same paper, where it is attributed to Sebé.
Theorem 1.1 Let Jy,Jy be jump systems on V. Then Jy + Jo is a jump system.

Proof let z,y € J; + Ja, and let 2’ be an (z,y)-step. (We are required to prove that either
' € Jy + Jy or there exists an (z/,y)-step 2” € Jy + J3.) Note that y = y1 + y2 for some
y1 € Ji and y3 € J3. Now choose 21 € Jy and z9 € Jo minimizing d(y1, 21) + d(y2, 22) subject to
d(2',z1 + z2) = 1. (Note that such zq, 22 exist since d(2/,z) = 1.)

Since d(a', z14+22) = 1, then either 2’ € [z1+ 22, y] or 21422 € [2/,y]. In the latter case, we have
that z1+ 2z is a feasible (2, y)-step, so we are done. We assume otherwise, thus 2’ € [z1+22,y]. Let
s =a'—(z1+22). Since 21+ 23+ € [21+ 22, y1 + 2], then either 21+ € [z1,y1] or 22+ 5 € [22, 2.
By symmetry, we assume that zy + s € [z1,31]. If 21 + s € Jq, then, since 2’ = (21 + s) + 22,
2’ is feasible, so we are done. We assume otherwise, then, by the two—step axiom, there exists a
(z1+s,y1)-step 24 € Jy. But then, d(2’, 21 +22) = L and d(z], y1) +d(22, y2) < d(z1, 1) +d(22,92).
Hence the pair 2], 23 is a contradiction to our choice of zy, 2. a

For a box B, we define Jg := {2 € J : d(2,B) = d(J,B)}. (Here, as usual, d(J, B) :=
min(d(z,y) : « € J,y € B).) The following exercise is a result of Lovasz [12]. (This exercise is not

elementary.)
Exercise 1 For a box B, prove that Jg is a jump system.

The following characterization of jump systems, due to Lovéasz [12], is the key to many subse-

quent results.
Theorem 1.2 For J C ZY, the following are equivalent.
(1) J is a jump system.

(2) Given boxes Bt C ... C B", JgaN...NJgr #0.

Proof Suppose J satisfies (2), and we have feasible points z,y and an (z,y)-step 2’. By (2), there
exists & € Jpry N 1. The box [27,y] contains a feasible point (y), so 2” € [2/,y]. Furthermore
d(a’,2) = 1,80 d(2',2") < 1. Therefore, .J satisfies the two-—step axiom, as required.

We prove the converse by induction on r. The result is trivial with » = 1. We assume that

r > 1 and that the result holds for lesser cases. Now, let y € Jgr and choose z € Jgi N...NJgr-1



minimizing d(z,y). We assume that = ¢ Jpr, since otherwise we are done. Since d(y, B") <
d(z, B"), there exists an (z,y)-step 2’ such that d(z’, B") < d(z, B"). Since the boxes are nested
d(z', BY) < d(z, B") for each i. Thus 2’ is not feasible, so, by the two—step axiom, there exists an
(z',y)-step " € J. Since d(2/, B") < d(x, B') and d(2',2") = 1, we have d(2",B*) < d(z, BY).
However, for i = 1,...,7 — 1, € Jgi. Hence, 2" € Jgi N ... N Jgr—1. Furthermore, d(z",y) <

d(z,y), which contradicts our choice of z. O

1.3 Greedy Algorithm

Considering the problem of maximizing a linear weight function over a bounded jump system.

Ty. By

More precisely, given w € RY, we wish to find a feasible point z that maximizes w
reflection, we may assume that w > 0. We also assume that the coordinates are sorted so that
Wy > .. > W > Why1 = ... = wy = 0. Figure 1 defines a greedy algorithm for this problem. We

will see that J* is a set of optimal points; we refer to J* as a greedy face of J.

Begin
JO —J
fori—1,...,k
a; — max(z; 1z € J1)
Jo—{xcJ 12, =a;}
End.

Figure 1: Greedy Algorithm

T

Theorem 1.3 Fach point x € J* mazimizes w'x over J.

We require the following notation and lemma. For j = 1,...,k we define ¢/ = ey +... + €.
Lemma 1.4 Fach point x € J* simultaneously mazimizes (¢/)Tz over J.

Proof Since J is bounded, there exists u € ZY such that v > y forall y € J. For j =0,...,k we
define

B] = [uhoo) X oo X [UJ7OO) X (_Oo7oo)n_j'

Therefore, for each z € J, we have

d(z, B7) :Z(UZ —xiti=1,...,7) = () Tu— ().



Hence  maximizes (¢/)T@ over J if and only if z € Jg;.
We now prove by induction that J¥ = Jgi N...NJgx. Since B' D ... D B% JgiN...NJgk is
not empty. Inductively we suppose that J7=' = JgiN...NJgi—1. Consider some 2 € JgiN...NJg;.

In particular z € J7~1, so

xj:(cj)Tw—Z(ai:é:l,...,j—l).

Since x € Jg;, = maximizes (¢/)Tz over J, and hence z maximizes x; over Ji=1. Therefore,
JI = Jg N ...N Jg;. So inductively we see that J* = Jgi N ... N Jgi. Hence each 2 € J*

T

simultaneously maximizes (/)72 over J for j = 1,... k, as required. a

Proof of theorem. Define w) = wy, and, for i = 1,...,k — 1, let w! = w; — w;41. Note that
)T

w= Z(w;cj :j=1,...,k). By the lemma, each 2 € J* simultaneously maximizes (¢/)Tx over J

T4 is also maximized

for j =1,..., k. Then, since w is a positive linear combination of these ¢/, w
by such =z. a

The convex hull of J has many nice properties. Bouchet and Cunningham [3] proved that
the convex hull is a “bisubmodular polyhedron”. These bisubmodular polyhedra were studied by
Fujishige [9], who presents results analogous to those of Lovasz [12].

We conclude this section by considering some weaker results. As usual, we denote by conv(.J)

the convex hull of J.

T

Theorem 1.5 The convex hull of J is described by inequalities of the form w'z < w where

w e {0,£1}Y.

Proof Let w2 < w be a valid inequality for conv(.J). By reflection, we suppose that w > 0. We

also assume that the coordinates are sorted so that

Wy 22 W D> Wy = ... = w, = 0.

T

We now apply the greedy algorithm to maximize w' x over .J.

By Lemma 1.4, each x € J* simultaneously maximizes (¢/)7z over J for j = 1,... k. Then,
since w is a positive linear combination of these ¢/, the inequality wlz < w is implied by the
inequalities (¢/)Tz < max((¢))Tx : 2 € J). 0

Our last result states that the feasible points on any nonempty face of a jump system is again
a jump system. It suffices to prove this for facets, and, by the previous theorem, the facet defining

inequalities have the form w2z < w where w € {0,41}". In the proof of Lemma 1.4, we saw that



the feasible points on such a facet are the closest points to some box. Hence, by Exercise 1, these

points define a jump system. Thus we have the following theorem.

Theorem 1.6 Let the inequality w'z < w define a nonempty face of conv(J). Then {z € J :

T

whe =w} is a jump system. a

2 The membership problem

Given z € ZV, we are interested in the the problem of determining whether 2 € .J. (By translation
we usually assume that 2 = 0.) Obviously the membership problem would be trivial if we were
given J explicitly as a set. How then are we given a jump system? We do not have a satisfactory
answer to this question. However, one might imagine that our jump system is given to us as the

sum of “easy” jump systems, as is the case in the following examples.

f—factor problem Let J; be the degree-system of graph G = (V, F), and let f € Z"V. The
membership problem for f is exactly the f-factor problem; that is, determine whether &G
has a spanning subgraph whose degree—sequence is f. The main result in these notes is a
generalization of Tutte’s f-factor theorem [14]. Recall that Jg = > ({0,¢; + ¢;} : ij € F).
Thus, the membership problem can be quite complicated, even when the jump system is the

sum of elementary jump systems.

Matroid intersection problem ILet .Ji,.J; be jump systems on V. We refer to the problem of
deciding whether J; and J, as the intersection problem. The intersection problem can be
posed as a membership problem, since J; N.Jy # () if and only if 0 € J; — J5. The intersection
problem is “well-solved” for matroids; see Edmonds’ [7] and [8]. The main result in this

section implies the matroid intersection polyhedron theorem of Edmonds [8].

Matroid parity problem The last two examples describe membership problems for which there
exist efficient algorithms; now we shall see that the general situation is not so nice. Let
G = (V, FE) be the graph where F := {(1,2),(3,4),...,(n — 1,n)}, and let J be a matroid
on the set V. The intersection problem for J and Jg is called the matroid parity problem.
That is, we want a vector 2 € J suct that, for each ij € F, 2; = x;. Lovasz [11] showed that
there is no “efficient” algorithm to solve this problem. Of course, it depends upon how the
matroid J is given to us. The result assumes that J is given as an efficiently computable

function d(J, B) where B is any box.



2.1 Closest points to a box

It turns out to be useful to consider a more general problem than deciding membership, namely:
Given a box B, determine d(J,B). While studying the distance from J to a box seems more
general than considering a single point, the distinction is artificial since d(0, B—J) = d(J, B). Let
B = [a,b] be a box, where a < b. The following sets seem fundamental in the study of this more

general problem.

VE(J) = {i €V :3z € Jp such that z; > b;}

Vg (J) = {ieV:3z € Jpsuch that z; < a;}.
Usually, we denote Vi (.J) (respectively V5 (J)) by V3 (resp. Vg).

We now define a box B = [a, b], where
B a;, 1€ Vg _ by, 1€ Vg
a; = b; =
—00, otherwise oo, otherwise.

Note that, for i € V3, d(J,[a,b+e;]) < d(J, B). Similarly, fori € Vg5, d(J,[a—e;,b]) < d(J, B). So,
if B’ is a box containing B such that d(B’,.J) = d(B,J), then B’ C B. We prove that d(B,J) =
d(B,J). Therefore B is the unique maximal box containing B such that d(J, B) = d(J, B); we
call B the closure of B.

Lemma 2.1 d(B,J) =d(B,J).

Proof Since B D B, there exists € Jg N Jg. By reflection we may assume that 2 > a. For i €
Vg, i)z = b;, s0 d(xi, [fLi, i)z]) = d(xi, [(Li, bz]) For: € V\V};I_, x; < b;, 80 d(aci, [fLi, i)z]) = d(aci, [(Li, bz])
Therefore d(z,[a,b]) = d(z,[a,b]). ]

From this lemma, we deduce the following lemmas.

Lemma 2.2 Let B = [a,b] be a box, where a < b, and let i € V4 \ V5. Then, for each z € Jg,

x; > b;.

Proof Since Jg C Jg, we may assume that B = B, so ¢; = —00. Let B’ = [a,b — ¢;]. Now,
suppose there exists € Jp such that z; < b;. Then, d(z,B") = d(x,B), so d(J,B’") = d(J, B).
Furthermore, Jg = {& € Jg : #; < b;}. Thus, V5, C V5 and V3, C V4 \ {i}. Therefore, B’
strictly contains B. This is a contradiction since B is the largest box containing B such that

d(B,J) =d(B,J). m

Lemma 2.3 Let B = [a,b] be a boz, and let i € V§ N'Vg . Then, a; = b.



Proof Suppose that a; < b;, and let B’ = [a,b — ¢;]. Since ¢ € Vg, there exists 2 € Jp such
that 2; < a;. Then, d(z,B’") = d(z, B), so d(J,B’) = d(J, B). Furthermore, Jg: = {2 € Jp :
x; < b;}. Thus, Vg, C Vg and V];', C VF \ {i}. Therefore, B’ strictly contains B, which yields a

contradiction. O

2.2 A min—max theorem

We now derive a min—max theorem for the case that V];' and Vg are disjoint. In this special
case d(J, B) is the distance from conv(J) to conv(B). While this says little about the interesting
problem of determining what happens inside the convex hull, it does generalize Edmonds’ matroid

intersection theorem.

For a box B, we define wB ¢ Z"V by

—-1, ieVF\Vg
wP =401, ievy\ Vg
0, otherwise.

Theorem 2.4 Let B be a box, and w € {0,+1}V. Then,
d(J,B) > min(w’z : 2 € B) — max(w’y : y € J). (1)
Furthermore, if VE NVg =0 and w = wB, then equality is attained in (1).
Proof Proving (1) is straightforward, we have
d(J,B) = min(d(x,y):2 € B,y € J)
> min(wl(z —y):2 € B,y eJ)

T

= min(wTz:2 € B) — max(wly :y € J).

Now suppose V];' N Vg = 0. By reflection, we may assume that V5 = (), and, by translation and

V\VS

closure, we may assume that B = (—oo,O)VJ;r X (—00,00) . For any z € J, we define 2/ € ZV

such that
x;, x¢<0andi€V§'

0, otherwise.
Since B 4 2’ C B, there exists y € Jg N Jpy. By Lemma 2.2, y; > 0 for all i € Vg. Thus
d(J,B+2") = d(y,B+2')

= d(y,B) — Z(wg i eV)
= d(J,B) = (wi:i€VF 2 <0). (2)



Furthermore, d(z, B 4+ 2') = Y (z; : i € V&, 2; > 0). However, d(z, B + 2') > d(J, B + 2'), so,
by (2), d(J,B) < S (z; : i € V&) = —(wPB)Ta. Therefore, since min((w?)Tz : 2 € B) =0,
d(J,B) < min((wP)Tz : 2 € B) — max((wP)Ty : y € J), which proves that (1) holds with
equality. a

We get the following easy corollary.

Corollary 2.5 Let B = [a,b] be a box with a < b. Then J N B is empty if and only if conv(J)N B

15 empty.

Proof If J and B are not disjoint, then B is not disjoint from conv(.J). Suppose that J and B
are disjoint. By Lemma 2.3, V];' NVg = 0. Then, by Theorem 2.4, there exists w € 7" such that
max(w’y :y € J) < min(w”z : € B). Thus there is a hyperplane separating conv(.J) from B.O

Another case when the intersection problem can be solved by separation, is when J is convex;
that is, J = conv(J)N ZV . The following result shows that constant sum jump systems are convex:

this was originally conjectured by Tamir.

Corollary 2.6 All constant sum jump systems are convex.

Proof Iet J be a constant sum jump system, and consider € conv(.J). By translation, we
assume that z = 0. Let B =[0,1]V. Then BNconv(J) is not empty. Therefore, by Corollary 2.5,
there exists a common element y of B and J. Clearly y = 0. a

While the sum of convex jump systems is not necessarily convex (consider degree-systems), the
sum of constant parity jump systems is a constant parity jump system, and hence convex. This
observation yields the following remarkable corollary, which for matroids is Edmonds’ matroid
intersection polyhedron theorem [8]. The more familiar matroid intersection theorem of Edmonds

can also be obtained in this framework, see [12].

Corollary 2.7 Let Jy,Jy be constant sum jump systems. Then,
conv(Jy N Jz) = conv(Jy) N conv(Jz).

Proof Since J; and J; are convex, it suffices to prove that conv(.Jy) Nconv(.J;) is integral (that is,
each nonempty face F' of conv(Jy)Nconv(.Jy) contains an integral point.) Let F' be a nonempty face
of conv(J1) Nconv(Jy). Then F = Fy N Fy, where F; is a face of conv(.J;), i = 1,2. Furthermore,

by Theorem 1.6, the points of J; that lie on F; define a jump system. Thus we may assume that

10



J; C F;. All that remains to be proved is that conv(.Jy) Nconv(.J3) is either empty or contains an
integral point.
We recall that
JiNJy#£0 < 0€ J, — Jo.

However J; — J; is constant sum, and hence convex. Thus,
0€J;—J; < 0¢€conv(Jy — Jy) =conv(Jy) — conv(Jy).

Finally, we have

0 € conv(Jy) — conv(Jy) <= conv(Jy) Nconv(Jy) # 0.

Therefore, if conv(.Jy) N conv(Jy) # 0, then J; N J3 is nonempty, and hence conv(.Jy) N conv(.Jz)

contains an integral point. a

3 Holes in jump systems

For 2 € ZV, if 2 is not in the convex hull of .J, then the membership problem becomes a matter
of separating x from conv(.J); which is somewhat routine. The more interesting case is when
x € conv(J). A hole of J is an integral point in conv(J) \ J. In this section we consider the
structure of feasible points around holes. By translation we usually shift the hole to the origin,
and for convenience we denote by V* and V= the sets Vd" and V'. The following result shows

that the closest points to the origin exhibit reflective symmetry in the coordinates V* NV .

Theorem 3.1 (Lovasz [12]) If j e VT NV ™, and x € Jgy, then xz; € {0,£1}, and there exists
y € Jo such that
—Zj, i=7

Yi =
x;, otherwise.

Proof By reflection, we may assume that z > 0. Furthermore, we suppose that z; > 0, since
otherwise the result is immediate. Define B! = [—¢;,0] and B? = [—e;,z]. Thus {0} C B! C B?,
and hence there exists y € Jo N Jg1 N Jg2. Since j € V5 we have d(J, B') < d(J,0). Therefore
d(y, B') < d(y,0), and hence y; < 0. Now, since € By, we have y € By. So y; = —1, and, for
i# 7,0 <y <uz; However, d(z,0) =d(y,0),s0 z; =1 and, for i # j, 2; = y,. O

Lemma 3.2 (Sebd [13]) If 0 € conv(J), then there exists @ € Jg such that x; = 0 for all
igvtnv-.

11



Proof By reflection, we may assume that V= C V*. Let
B = (—00,0]V"\V" x (=00, 00) VNVFAVT),

Now 0 € BNconv(J), and V§ NV5 =0, then, by Theorem 2.4, BN .J # 0.

Since 0 € B, there exists ¢ € JgNJp. By the definitions of V* and V=, z; =0 for i in V\ VT,
Furthermore, by Lemma 2.2, z; > 0 for i € V* \ V~. However, since z € B, we have z; < 0 for
i€ VT\V~. Thus 2; =0 for all i ¢ V. 0

If # € conv(J), then, by definition, = is the convex combination of some feasible points. The
following result of Sebd [13] states that holes can be expressed as the convex combination of only

two feasible points.

Theorem 3.3 If x € conv(J) be an integral point, then there exists y', y* € Jizy such that x =

Ly +y?).

Proof By translating, we may assume that 2 = 0. By Lemma 3.2, there exists y! € J such that
yl =0forall i ¢ VT NV~. Then, by Theorem 3.1, —y' € Jg. Thus we choose y? = —y'. ]
As an immediate corollary we note that @ € conv(J) if and only if = € conv(J,).
A polyhedron P is called half-integral if for every nonempty face F' of P there exists z € F
such that 2z is integral. The following result is due to Cunningham (unpublished). The original

proof was quite involved; this easy proof is due to Sebé [13].
Corollary 3.4 Let Jy,Jy be jump systems on V.. Then conv(Jy) N conv(Jz) is half-integral.

Proof ILet F' be a nonempty face of conv(Jy) N conv(Jy). Then F' = F; N Fy, where F; is a
face of conv(J;), i = 1,2. Furthermore, by Theorem 1.6, the points of .J; that lie on F; define
a jump system. Thus we may assume that J; C F;. All that remains to be proved is that, if

conv(.J1) Nconv(Jy) is nonempty, then conv(.Jy) N conv(.Jy) contains a half-integral point.

conv(Jy) Neconv(Jy) #¢ — 0 € conv(Jy) — conv(Jy) = conv(Jy — Jz)

1
— ' y' € Jya?y? € Jy such that 0 = 5((901 —2?) + (51 — 9?))
Hence 1 (2! + y') = 1(22 4 y?) € conv(Jy) Nconv(Jy). O

3.1 Intermission

The following two exercises characterize jump systems in two—dimensions.

12



Exercise 2 Let J C Z% be a jump system. Prove the following properties.

i. conv(J) is defined by inequalities of the form w'z < w where w € {0,£1}2. (This is proved

in Theorem 1.5, though we rather a direct proof.)

ii. No hole of J lies on a face of the form w'x < w where w € {+1}2. (This is implied by

Theorem 1.6 and Corollary 2.6, though we rather a direct proof.)

iti. If x,y are holes of J such that d(x,y) =1, then no feasible point of J is on the line spanned

by x,y.

Exercise 3 Let J C Z* satisfy the properties (i), (ii), and (iii) above. Prove that J is a jump

system.

3.2 Critical jump systems

A jump system .J is called criticalif Vt = V= = V. These critical jump systems have a particularly
nice structure. If .J is critical, and z € Jg, then, by Lemma 3.1, x € {0, £1}V, and every (0,41)—
vector having the same support as 2 is also in Jg. (By the support of a vector 2, we refer to the set
{i € V r2; # 0}.) Thatis, Jg exhibits reflective-symmetry in every coordinate hyperplane. While
critical jump systems seem very special, we will see that they lie at the heart of the membership
problem.

Let M = JgN[0,1]V. We call M the local matroid of J. (Note that M is constant sum, so it
is indeed a matroid.) The following exercise shows that any loopless matroid is the local matroid

of some critical jump system.

Exercise 4 Let M C {0,1}V be a matroid, and define J = {y € {0,£1}V : (ly1] ..., |ya]) € M}.

Prove that J is a jump system.

Not only does the local matroid completely define the set of closest feasible points to the origin,

but it also says much about the rest of the jump system. For S C V| we let BS = [0,1]5 x {0}V\5,
Lemma 3.5 For S CV, let B = (—o00,00)% x {0}V\5. Then, d(B%, M) = d(B, J).

Proof Since 0 € B® C B, thereexists x € JgNJgsNJg. Lety = (|z1],...,|z,]). By Lemma 3.1,
y € J. Thus, by construction, y € JgN JgsN Jg. Since y € Jg and y > 0, y € [0, 1]V. Therefore
d(y, B) = d(y, B®), and so d(B,J) = d(B®,J). Furthermore, y € M, so d(B,J) = d(B°,M). O
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For the following lemma we introduce some basic matroid terminology. Let S C V. We define
r(S) =d(0,M) — d(B5, M); r(S) is the rank of S. Note that, by the last lemma, we may replace
M by J in the the definition of r(S). We call S a flat of M if r(S") > r(S) for all S” D S.
Equivalently, by the previous lemma, S is a flat if and only if (=00, 00)" x {O}V\S is a closed box

with respect to J. For us, this latter definition will be more convenient.

Lemma 3.6 Let M be the local matroid of a critical jump system J, let S be a flat of M, and let
J' be the projection of J onto V'\'S. Then J' is critical.

Proof Let C' = (—o0,00)” x {O}V\S. Note that J6 is the projection of Jo onto V'\ S. However,
since S is a flat of M, C' is a closed box, and hence J' is critical. a

For those with some knowledge of matroids it is clear that the rank—one flats define a partition.
We include a proof, since this partition into rank—one flats plays an important role in the f—factor

problem.

Lemma 3.7 Let M be the local matroid of a critical jump system J. Then the rank-one flats of
M partition J.

Proof Leti € V. Since J is critical, d([0,¢;],.J) = d(0,.J) — 1. Let B be the closure of [0, ¢;] with
respect to J. By Lemma 3.5, B = (—o0,0)® x {O}V\S for some S C V. Thus, i is in a rank—one
flat of M. Furthermore, since a box has a unique closure, ¢ is in exactly one rank—one flat. Hence

the rank—one flats define a partition. a

4 Reduction to critical jump systems

Theorem 2.4 gave a weak lower bound on the distance from a jump system to a box. In this
section we strengthen this to a min—max formula. Unfortunately this min-max formula is not a
“good” characterization, but it does provide a reduction to the case of critical jump systems. For
certain applications, like f—factors of graphs, these critical cases have a very simple structure, and

can be solved by simple parity arguments. The main result is the following.

Theorem 4.1 Let B = [a,b] be a box, w € {0,£1}V, and S CV such that w; =0 fori € S. Let

F be a greedy face optimizing wT z over J, and let Fg, Bg be the projections of F, B onto S. Then,
d(J, B) > d(Fs, Bs) +min(wlz : 2 € B) — max(w’z : 2 € J). (3)
Furthermore, if w = w? and S = VJ;'OVB_, then equality is attained in (3) and Fs— Bg is critical.
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It is straightforward to see that d(.J, B) = d(J — B,0), Va4 (J) = Vd"(J — B), and V5 (J) =
Vg (J — B). Thus the previous theorem can be easily obtained by applying the following lemma

to the jump system J — B.

Lemma 4.2 Let w € {0,£1}V, and S C V such that w; = 0 fori € S. Let F be a greedy face

optimizing w' x over J, and let Fg be the projection of F' onto S. Then,
d(J,0) > d(Fs,0) — max(wlz : 2 € J). (4)
Furthermore, if w = w0 and S = Vd" nvy then equality is attained in (3) and Fs is critical.

Proof By reflection, and by permuting coordinates, we may assume that w =3 (e; 11 =1,...,p).
We now apply the greedy algorithm to maximize w”z over J. We let J° = J, and then, for
i=1,...,p, we let a; = max(z; : @ € J7'), and J' = {z € J""' : 2; = a;}. Note that F = JP,

T

and each = € JP maximizes w’z over J; thus max(w’z : 2 € J) = Y (a; : i =1,...,p). Now let

of = max{a;,0}, X =V \ S\ {1,...,p}, and
A=Tlof,00) x ... x[at,00) x {0}7F,
B =[ay,00) % ... X [o,,00) x {0}° x Z¥,
C = [ay,00) X ... X [y, 00) x 79X

For each y € J we have

d(y, A)

IN

Sllyi—atidi=1,...,p)+> (lyil:i € SUX)
Z(|y2| :iEV)—i—Z(oz;»" ci=1,...,p)
= d(y,O)—l—Z(a;":@':l,...,p). (5)

IN

In particular, considering y € Jg, we have

d(J,0) = d(y,0) Zd(y,A)—Z(aj’:@':l,...,p) > d(J, A) —Z(a?’:@':l,...,p).

Since A C B C C, there exists « € J that is simultaneously optimal with respect to 4, B and C.
Note that FF = Jo = JNC, thus z; = a; for t = 1,...,p. Thus, we have,

d(J.0) > d(J,A) = (af ri=1,....p)
= d@,A) = (af ri=1,....p)
= d(2,B) =Y (aizi=1,...,p)
= d(F,B) - max(uwTz : 2 € J). (6)
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However, since z € F'N Jp, we have d(J, B) = d(F, B) = d(Fs,0). Which proves (4).

Now consider the case that w = wP, and S = Vd" NVgy - By reflection and sorting coordinates
we have assumed that w = 3"(e; :i = 1,...,p). Then, by the definition of w”, we have Vd" Vs
and V= \V+ = {1,...,p}. Hence 0 = [0,00)" " \V* x {0}° x Z¥ is the closure of {0}. If y € Jo
then, by Lemma 2.2, y; < 0 for i = 1,...,p. Therefore, (5) holds with equality for each y € Jo-
Note that A C 0. Considering some y € .J that is simultaneously optimal with respect to A and

0 we get

d(J,0) = d(y,0) = d(y, A) = > (af :i=1,....p) =d(J,A) = (af :i=1,...,p).

Hence (6) holds with equality. However, since there exists 2 € F'N.Jp, we have d(J, B) = d(F, B) =
d(Fs,0). Which proves that we have equality in (4).

Finally we shall prove that Fg is critical. For ¢ € S, i € Vd", so d(J,0) > d(J,[0,e;]) =
d(J —10,¢;],0). We now apply (4) to bound d(J — [0, ¢€;],0), which yields

v

d(J —[0,¢;],0) d((F —10,¢])5,0) — max(w’z : 2 € J)
= d(Fs—[0,¢],0) — max(w’z : z € J)

= d(Fs,[0,¢;]) — max(w’z : 2 € J).

Thus
d(Fs,[0,¢;])) < d(J,]0,¢;]) + max(wlz : 2 € J) < d(J,0) + max(w’z : 2 € J).

However, since (4) is satisfied with equality by J, we get d(Fs,[0,¢;]) < d(Fs,0). Hence i €
V&'(FS). Similarly i € V' (Fs), so Fs is indeed critical. 0

4.1 The f—factor problem

Given a graph G = (V, E) and f € Z", we want to determine d(Jg, f). In particular, we want to
know if there is a subgraph of G whose degree sequence is f. As we have mentioned previously,
this is the f—factor problem for graphs. As an application of Theorem 4.1 we will derive Tutte’s
f—factor theorem.
In order to state the theorem concisely, we need some notation. For subsets X,Y of V we
define
EX,)Y)y={ije F:ie X,j €Y}

We denote by E(X) the set F(X,X), and we denote by G/(X) the graph with vertices X and
edges F(X). For any vector y € ZV, we define y(X) = Y(y; : i € X). A graph (& is said to be odd
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with respect to f if f(V) is odd. We denote by odd(G, f) the number of connected components
of G which are odd with respect to f.

Theorem 4.3 (Tutte [14]) Let G be a graph and f € ZV. For disjoint subsets A, B of V, we
let f'=f—Y(e;:ij € E,ieV\(AUB),j € B). Then

d(Ja, ) > [(B) = f(A) = (IE(B,V \ (AU B))| + 2|E(B)]) + 0dd(G(V'\ (AU B)), f'). ~ (7)
Furthermore, there exist A, B that attain equality.

First let us see why the inequality (7) is valid. Consider the graph G(V \ A). The nodes in B
demand a total degree of f(B). The edges in G(V \ A) can meet at most |E(B,V \ (AU B))| +
2|E(B)| of the demand at B. Now consider a connected component G(X) of G(V '\ (AU B))
such that f/(X) is odd. We have f'(X) = f(X) — |E(X,B)|. This means that if we use all
of the edges in F(X, B) in order to satisfy the demand at B, then the remaining demand on
X is odd, and hence cannot be satisfied using only edges in F(X). Thus we demand at least
F(B)=(|E(B,V\ (AU B))|+2|E(B)|)+odd(G(V\ (AUB)), f') edges from the cut E(A,V'\ A).
However A can only meet f(A) units of this demand. Inequality (7) is exactly the shortfall.

To prove that equality is attained by the appropriate choice of A, B, we require some more

lemmas.
Lemma 4.4 Let J =J' +[0,¢;] be a jump system. Then J is not critical.

Proof It is straightforward to check that V&'(J) =vt 0](J’) and Vg (J) = V__ q:(J'). Fur-

[_617 [—61‘,0]

thermore, by Lemma 2.3, i ¢ V[‘i_'6 0](J’) N V[:e 0](J’). Hence J is not critical. O

Lemma 4.5 Suppose G = (V,F) is a graph and f € 7V such that Jo — f is critical. Then,
d(J6, f) = odd(G, f).

Proof Let J = Jg — f, and let Xy,..., X} be the rank—one flats of the local matroid of J. Let
J' be the projection of J onto V'\ X1, and let f’ be the restriction of f to V'\ X;. By Lemma 3.6,

J1 is critical. Note that
J'="({0,ei+ ¢} sij € E(V\ X1))+ > _({0,e;} :ij € E(X1,V\ X1),j € X1) — f".

However, .J1 is critical, so, by Lemma 4.4, the cut F/(Xy,V \ X1) is empty. Hence the graph G'(X7)

is the union of some components of G.
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Since X7 is rank-one, there exists z € Ji such that |2(Xy) — f(X1)| = 1. Since no edges leave
the set X7, 2(X1) is even, so f is odd on exactly one odd connected component of G(X;). Hence
odd(G, f) = k. Furthermore, for each optimal 2’ € J, we must have |2'(X1) — f(X1)| = 1. Hence
d(Ja, f) =k, as required. a

We shall now apply Theorem 4.1, to determine d(Jg, f). Let S = Vf'" nVe, w= wl, A=
Vf+ \ Vi,and B=V, \ Vf+. We begin by recalling the expansion of Jg,

Ja = Z({O,ei +e;tij e E).

T

Now we construct a greedy face F of Jg that maximizes w' z; we order the vertices such that

the elements of A precede the elements of B. Note that the greedy face can be determined by

considering each edge independently.
F=Y"({0,ei+e;}ij e EV\(AUB)))+ (ei+e; :ij € B(B,V\ A)).
The projection of F' onto S is
Fg = Z:({O7 ei+e;}ij € E(S))+ Z({O,ei} tij € (S, VN (AUBUS)),i € 5)+

Z(ei 1ij € E(S,B),i € S).
By Theorem 4.1, Fis — f is critical, so, by Lemma 4.4, the cut F/(S,V \ (SU AU B)) is empty. Let
h =3 (e :ij € E(S,B),i € 5). Therefore

Fs = JG(S) + h.

Note that d(Fs, f) = d(Jgs), [ — h), and furthermore Js)y — (f — h) is critical. Hence, by
Lemma 4.5, d(Jg(s), [ — k) = odd(G(S), f — k). Since the cut E(S,V'\ (SU AU B)) is empty, we

have

d(Fs, f) = 0dd(G(S), f — h) < odd(G(V \ (AU B)), ).
Furthermore, we have

w’ f = f(B) = f(A), and

max(wlz : 2 € Jg) = |E(B,V \ (AU B))| + 2| E(B)]|.

Thus, by Theorem 4.1,
d(Ja, ) = d(Fs, [)+w"f —max(wz 2 € J)
< odd(G(V\ (AUB)), f') + f(B) = f(A) = (IE(B,V \ (AU B))| + 2|E(B)]).

This proves that equality is attained in (7).
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