
ON INTEGER PROGRAMMING AND THE
BRANCH-WIDTH OF THE CONSTRAINT MATRIX

WILLIAM H. CUNNINGHAM AND JIM GEELEN

Abstract. Consider an integer program max(ctx : Ax = b, x ≥
0, x ∈ Z

n) where A ∈ Z
m×n, b ∈ Z

m, and c ∈ Z
n. We show

that the integer program can be solved in pseudo-polynomial time
when A is non-negative and the column-matroid of A has constant
branch-width.

1. Introduction

For positive integers m and n, let A ∈ Z
m×n, b ∈ Z

m, and c ∈ Z
n.

Consider the following integer programming problems:

(IPF) Find x ∈ Z
n satisfying (Ax = b, x ≥ 0).

(IP) Find x ∈ Z
n maximizing ctx subject to (Ax = b, x ≥ 0).

Let M(A) denote the column-matroid of A. We are interested in
properties of M(A) which lead to polynomial-time solvability for (IPF)
and (IP). Note that, even when A (or, equivalently, M(A)) has rank
one, the problems (IPF) and (IP) are NP-hard. Papadimitriou [9]
considered these problems for instances where A has constant rank.

Theorem 1.1 (Papadimitriou). There is a pseudopolynomial-time al-
gorithm for solving (IP) on instances where the rank of A is constant.

Robertson and Seymour [10] introduced the parameter “branch-
width” for graphs and also, implicitly, for matroids. We postpone the
definition until Section 2. Our main theorem is the following; a more
precise result is given in Theorem 4.3.

Theorem 1.2. There is a pseudopolynomial-time algorithm for solving
(IP) on instances where A is non-negative and the branch-width of
M(A) is constant.

Date: November 15, 2006.
1991 Mathematics Subject Classification. 05B35.
Key words and phrases. integer programming, branch-width, matroids, dynamic

programming, knapsack problem.
This research was partially supported by grants from the Natural Sciences and

Engineering Research Council of Canada.
1

2 CUNNINGHAM AND GEELEN

The branch-width of a matroid M is at most r(M)+1. Theorem 1.2
does not imply Papadimitriou’s theorem, since we require that A is non-
negative. In Section 6 we show that the non-negativity can be dropped
when we have bounds on the variables. However, the following result
shows that we cannot just relax the non-negativity.

Theorem 1.3. (IPF) is NP-hard even for instances where M(A) has
branch-width ≤ 3 and the entries of A are in {0,±1}.

We also prove the following negative result.

Theorem 1.4. (IPF) is NP-hard even for instances where the entries
of A and b are in {0,±1} and M(A) is the cycle matroid of a graph.

We find Theorem 1.4 somewhat surprising considering the fact that
graphic matroids are regular. Note that, if A is a (0,±1)-matrix and
M([I, A]) is regular, then A is a totally unimodular matix and, hence,
we can solve (IP) efficiently. It seems artificial to append the identity
to the constraint matrix here, but for inequality systems it is more
natural.

Recall that M(A) is regular if and only if it has no U2,4-minor (see
Tutte [13] or Oxley [8, Section 6.6]). Moreover, Seymour [12] found a
structural characterization of the class of regular matroids. We suspect
that the class of R-representable matroids with no U2,l- or U∗

2,l-minor
is also “highly structured” for all l ≥ 0 (by which we mean that there
is likely to be a reasonable analogue to the graph minors structure the-
orem; see [11]). Should such results ever be proved, one could imagine
using the structure to solve the following problem.

Problem 1.5. Given a non-negative integer l ≥ 0, is there a
polynomial-time algorithm for solving max(ctx : Ax ≤ b, x ≥ 0, x ∈
Z

n) on instances where A is a (0,±1)-matrix and M([I, A]) has no
U2,l- or U∗

2,l-minor?

2. Branch-width

For a matroid M and X ⊆ E(M), we let λM(X) = rM(X) +
rM(E(M) − X) − r(M) + 1; we call λM the connectivity function
of M . Note that the connectivity function is symmetric (that is,
λM(X) = λM(E(M)−X) for all X ⊆ E(M)) and submodular (that is,
λM(X) + λM(Y) ≥ λM(X ∩ Y) + λM(X ∪ Y) for all X, Y ⊆ E(M)).

Let A ∈ R
m×n and let E = {1, . . . , n}. For X ⊆ E, we let

S(A, X) := span(A|X) ∩ span(A|(E − X)),

INTEGER PROGRAMMING AND BRANCH-WIDTH 3

where span(A) denotes the subspace of R
m spanned by the columns of

A and A|X denotes the restriction of A to the columns indexed by X.
By the modularity of subspaces,

dim S(A, X) = λM(A)(X) − 1.

A tree is cubic if its internal vertices all have degree 3. A branch-
decomposition of M is a cubic tree T whose leaves are labelled by
elements of E(M) such that each element in E(M) labels some leaf of
T and each leaf of T receives at most one label from E(M). The width
of an edge e of T is defined to be λM(X) where X ⊆ E(M) is the set
of labels of one of the components of T −{e}. (Since λM is symmetric,
it does not matter which component we choose.) The width of T is the
maximum among the widths of its edges. The branch-width of M is
the minimum among the widths of all branch-decompositions of M .

Branch-width can be defined more generally for any real-valued sym-
metric set-function. For graphs, the branch-width is defined using the
function λG(X); here, for each X ⊆ E(G), λG(X) denotes the number
of vertices incident with both an edge in X and an edge in E(G)−X.
The branch-width of a graph is within a constant factor of its tree-
width. Tree-width is widely studied in theoretical computer science,
since many NP-hard problems on graphs can be efficiently solved on
graphs of constant tree-width (or, equivalently, branch-width). The
most striking results in this direction were obtained by Courcelle [1].
These results have been extended to matroids representable over a fi-
nite field by Hliněný [4]. They do not extend to all matroids or even
to matroids represented over the reals.

Finding near-optimal branch-decompositions. For any integer
constant k, Oum and Seymour [7] can test, in polynomial time, whether
or not a matroid M has branch-width k (assuming that the matroid
is given by its rank-oracle). Moreover their algorithm finds an op-
timal branch-decomposition in the case that the branch-width is at
most k. The algorithm is not practical; the complexity is O(n8k+13).
Fortunately, there is a more practical algorithm for finding a near-
optimal branch-decomposition. For an integer constant k, Oum and
Seymour [6] provide an O(n3.5) algorithm that, for a matroid M with
branch-width at most k, finds a branch-decomposition of width at
most 3k − 1. The branch decomposition is obtained by solving O(n)
matroid intersection problems. When M is represented by a matrix
A ∈ Z

m×n, each of these matroid intersection problems can be solved
in O(m2n log m) time; see [2]. Hence we can find a near-optimal branch-
decomposition for M(A) in O(m2n2 log m) time.

4 CUNNINGHAM AND GEELEN

3. Linear algebla and branch-width

In this section we discuss how to use branch decompositions to per-
form certain matrix operations more efficiently. This is of relatively
minor significance, but it does improve the efficiency of our algorithms.

Let A ∈ Z
m×n and let E = {1, . . . , n}. Recall that, for X ⊆ E,

S(A, X) = span(A|X) ∩ span(A|(E − X)) and that dim S(A, X) =
λM(A)(X)−1. Now let T be a branch-decomposition of M(A) of width
k, let e be an edge of T , and let X be the label-set of one of the two
components of T − e. We let Se(A) := S(A, X). The aim of this
section is to find bases for each of the subspaces (Se(A) : e ∈ E(T))
in O(km2n) time.

Converting to standard form. Let B ⊆ E be a basis of M(A).
Now let AB = A|B and A′ = (AB)−1A. Therefore M(A) = M(A′)
and Se(A) = {ABv : v ∈ Se(A

′)}. Note that we can find B and A′

in O(m2n) time. Given a basis for Se(A
′), we can determine a basis

for Se(A) in O(km2) time. Since T has O(n) edges, if we are given
bases for each of (Se(A

′) : e ∈ E(T)) we can find bases for each of
(Se(A) : e ∈ E(T)) in O(km2n) time.

Matrices in standard form. Henceforth we suppose that A is al-
ready in standard form; that is A|B = I for some basis B of M(A).
We will now show the stronger result that we can find a basis for each
of the subspaces (Se(A) : e ∈ E(T)) in O(k2mn) time (note that
k ≤ m + 1).

We label the columns of A by the elements of B so that the identity
A|B is labelled symmetrically. For X ⊆ B and Y ⊆ E, we let A[X, Y]
denote the submatrix of A with rows indexed by X and columns in-
dexed by Y .

Claim. For any partition (X, Y) of E,

λM(A)(X) = rank A[X ∩ B, X − B] + rank A[Y ∩ B, Y − B] + 1.

Moreover S(A, X) is the column-span of the matrix

(

X − B Y − B

X ∩ B A[X ∩ B, X − B] 0
Y ∩ B 0 A[Y ∩ B, Y − B]

)

.

Proof. The formula for λM(A)(X) is straightforward and well known.
It follows that S(A, X) has the same dimension as the column-space
of the given matrix. Finally, it is straightforward to check that each
column of the given matrix is spanned by both A|X and A|(E−X). �

INTEGER PROGRAMMING AND BRANCH-WIDTH 5

Let (X, Y) be a partition of E. Note that B ∩X can be extended to
a maximal independent subset BX of X and B ∩Y can be extended to
a maximal independent subset BY of Y . Now S(A, X) = S(A|(BX ∪
By), BX). Then, by the claim above, given BX and BY we can trivially
find a basis for S(A, X).

Finding bases. A set X ⊆ E is called T -branched if there exists an
edge e of T such that X is the label-set for one of the components of T−
e. For each T -branched set X we want to find a maximal independent
subset B(X) of X containing X ∩ B. The number of T -branched sets
is O(n), and we will consider them in order of non-decreasing size. If
|X| = 1, then we can find B(X) in O(m) time. Suppose then that
|X| ≥ 2. Then there is a partition (X1, X2) of X into two smaller
T -branched sets. We have already found B(X1) and B(X2). Note that
X is spanned by B(X1)∪B(X2). Moreover, for any T -branched set Y ,
we have rM(A)(Y)− |Y ∩B| ≤ rM(A)(Y) + rM(A)(E − Y)− r(M(A)) =
λM(A)(Y)−1. Therefore |(B(X1)∪B(X2))−(B∩X)| ≤ 2(k−1). Recall
that A|B = I. Then in O(k2m) time (O(k) pivots on an m×k-matrix)
we can extend B ∩X to a basis B(X) ⊆ B(X1)∪B(X2). Thus we can
find all of the required bases in O(k2mn) time.

4. The main result

In this section we prove Theorem 1.2. We begin by considering the
feasibility version.

IPF(k).
Instance: Positive integers m and n, a non-negative matrix A ∈
Z

m×n, a non-negative vector b ∈ Z
m, and a branch-decomposition T of

M(A) of width k.
Problem: Does there exist x ∈ Z

n satisfying (Ax = b, x ≥ 0)?

Theorem 4.1. IPF(k) can be solved in O((d + 1)2kmn + m2n) time,
where d = max(b1, . . . , bm).

Note that for many combinatorial problems (like the set partition
problem), we have d = 1. For such problems the algorithm requires
only O(m2n) time (considering k as a constant). Recall that S(A, X)
denotes the subspace span(A|X) ∩ span(A|(E − X)), where E is the
set of column-indices of A.

The following lemma is the key.

Lemma 4.2. Let A ∈ {0, . . . , d}m×n and let X ⊆ {1, . . . , n} such
that λM(A)(X) = k. Then there are at most (d + 1)k−1 vectors in
S(A, X) ∩ {0, . . . , d}m.

6 CUNNINGHAM AND GEELEN

Proof. Since λM(A)(X) ≤ k, S(A, X) has dimension k − 1; let
a1, . . . , ak−1 ∈ R

m span S(A, X). There is a (k − 1)-element set
Z ⊆ {1, . . . , n} such that the matrix (a1|Z, . . . , ak−1|Z) is non-singular.
Now any vector x ∈ R that is spanned by (a1, . . . , ak−1) is uniquely de-
termined by x|Z. So there are at most (d+1)k−1 vectors in {0, . . . , d}m

that are spanned by (a1, . . . , ak−1). �

Proof of Theorem 4.1. Let A′ = [A, b], E = {1, . . . , n}, and E ′ =
{1, . . . , n + 1}. Now, let T be a branch-decomposition of M(A) of
width k and let T ′ be a branch-decomposition of M(A′) obtained from
T by subdividing an edge and adding a new leaf-vertex, labelled by
n + 1, adjacent to the degree 2 node. Note that T ′ has width ≤ k + 1.
Recall that a set X ⊆ E is T -branched if there is an edge e of T such
that X is the label-set of one of the components of T − e. By the
results in the previous section, in O(m2n) time we can find bases for
each subspace S(A′, X) where X ⊆ E is T ′-branched.

For X ⊆ E, we let B(X) denote the set of all vectors b′ ∈ Z
m such

that

(1) 0 ≤ b′ ≤ b,
(2) there exists z ∈ Z

X with z ≥ 0 such that (A|X)z = b′, and
(3) b′ ∈ span(A′|(E ′ − X)).

Note that, if b′ ∈ B(X), then, by (2) and (3), b′ ∈ S(A′, X). If
λM(A′)(X) ≤ k + 1, then, by Lemma 4.2, |B(X)| ≤ (d + 1)k. Moreover,
we have a solution to the problem (IPF) if and only b ∈ B(E).

We will compute B(X) for all T ′-branched sets X ⊆ E using dynamic
programming. The number of T ′-branched subsets of E is O(n), and
we will consider them in order of non-decreasing size. If |X| = 1, then
we can easily find B(X) in O(dm) time. Suppose then that |X| ≥ 2.
Then there is a partition (X1, X2) of X into two smaller T ′-branched
sets. We have already found B(X1) and B(X2). Note that b′ ∈ B(X)
if and only if

(a) there exist b′1 ∈ B(X1) and b′2 ∈ B(X2) such that b′ = b′1 + b′2,
(b) b′ ≤ b, and
(c) b′ ∈ S(A′, X).

The number of choices for b′ generated by (a) is O((d + 1)2k). For
each such b′ we need to check that b′ ≤ b and b′ ∈ S(A′, X). Since we
have a basis for S(A′, X) and since S(A′, X) has dimension ≤ k, we
can check whether or not b′ ∈ S(A′, X) in O(m) time (considering k

as a constant). Therefore we can find B(E) in O((d + 1)2kmn + m2n)
time. �

We now return to the optimization version.

INTEGER PROGRAMMING AND BRANCH-WIDTH 7

IP(k).
Instance: Positive integers m and n, a non-negative matrix A ∈
Z

m×n, a non-negative vector b ∈ Z
m, a vector c ∈ Z

n, and a branch-
decomposition T of M(A) of width k.
Problem: Find x ∈ Z

n maximizing ctx subject to (Ax = b, x ≥ 0).

Theorem 4.3. IP(k) can be solved in O((d + 1)2kmn + m2n) time,
where d = max(b1, . . . , bm).

Proof. The proof is essentially the same as the proof of Theorem 4.1,
except that for each b′ ∈ B(X) we keep a vector x ∈ Z

X maximizing
∑

(cixi : i ∈ X) subject to ((A|Xe)x = b′, x ≥ 0). The details are
easy and left to the reader. �

Theorem 4.3 implies Theorem 1.2.

5. Hardness results

In this section we prove Theorems 1.3 and 1.4. We begin with Theo-
rem 1.3. The reduction is from the following problem, which is known
to be NP-hard; see Lueker [5].

Single constraint integer programming feasibility (SCIPF).
Instance: A non-negative vector a ∈ Z

n and an integer b.
Problem: Does there exist x ∈ Z

n satisfying (atx = b, x ≥ 0)?

Proof of Theorem 1.3. Consider an instance (a, b) of (SCIP). Choose an
integer k as small as possible subject to 2k+1 > max(a1, . . . , an). For
each i ∈ {1, . . . , n}, let (αi,k, αi,k−1, . . . , αi,0) be the binary expansion
of ai. Now consider the following system of equations and inequalities:

(1)

n
∑

i=1

k
∑

j=0

αijyij = b.

(2) yij − xi −
∑i−1

l=0 yi,l = 0, for i ∈ {1, . . . , n} and j ∈ {0, . . . , k}.
(3) xi ≥ 0 for each i ∈ {1, . . . , n}.

If (yij :∈ {1, . . . , n}, j ∈ {0, . . . , k}) and (x1, . . . , xn) satisfy (2), then
yij = 2jxi, and (1) simplifies to

∑

(aixi : i ∈ {1, . . . , n}) = b. There-
fore there is an integer solution to (1), (2), and (3) if and only if there
is an integer solution to (atx = b, x ≥ 0).

8 CUNNINGHAM AND GEELEN

The constraint matrix B for system (2) is block diagonal, where each
block is a copy of the matrix:

C =

1 2 3 . . . k + 1 k + 2

1 1 −1 −1 · · · −1 −1
2 0 1 −1 −1 −1
...

. . .
. . .

k + 1 0 0 0 · · · 1 −1

.

It is straightforward to verify that M(C) is a circuit and, hence, M(C)
has branch-width 2. Now M(B) is the direct sum of copies of M(C)
and, hence, M(B) has branch-width 2. Appending a single row to B

can increase the branch-width by at most one. �

Now we turn to Theorem 1.4. Our proof is by a reduction from 3D
Matching which is known to be NP-complete; see Garey and John-
son [3, pp. 46].

3D Matching.
Instance: Three disjoint sets X, Y , and Z with |X| = |Y | = |Z| and
a collection F of triples {x, y, z} where x ∈ X, y ∈ Y , and z ∈ Z.
Problem: Does there exist a partition of X ∪Y ∪Z into triples, each
of which is contained in F?

Proof of Theorem 1.4. Consider an instance (X, Y, Z,F) of 3D Match-
ing. For each triple t ∈ F we define elements ut and vt. Now construct
a graph G = (V, E) with

V = X ∪ Y ∪ Z ∪ {ut : t ∈ F} ∪ {vt : t ∈ F}, and

E =
⋃

t={x,y,z}∈F

{(ut, x), (ut, y), (ut, vt), (vt, z)}.

Note that G is bipartite with bipartition (X∪Y ∪{vt : t ∈ F}, Z∪{ut :
t ∈ F}).

Now we define b ∈ Z
V such that but

= 2 for each t ∈ F and bw = 1 for
all other vertices w of G. Finally, we define a matrix A = (ave) ∈ Z

V ×E

such that ave = 0 whenever v is not incident with e, ave = 2 whenever
v = ut and e = (ut, vt) for some t ∈ F , and ave = 1 otherwise; see
Figure 1.

It is straightforward to verify that (X, Y, Z,F) is a yes-instance of
the 3D Matching problem if and only if there exists x ∈ Z

E satisfying
(Ax = b, x ≥ 0). Now A and b are not (0,±1)-valued, but if, for each
t ∈ F , we subtract the vt-row from the ut-row, then the entries in the
resulting system A′x = b′ are in {0,±1}.

INTEGER PROGRAMMING AND BRANCH-WIDTH 9

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

yx

vt

Z

Y

t

X

u

z

1

1

1

1

1

1

2
111 1 1

2

Figure 1. The reduction

It remains to verify that M(A) is graphic. It is straightforward to
verify that A is equivalent, up to row and column scaling, to a {0, 1}-
matrix A′′. Since G is bipartite, we can scale some of the rows of
A′′ by −1 to obtain a matrix B with a 1 and a −1 in each column.
Now M(B) = M(A) is the cycle-matroid of G and, hence, M(A) is
graphic. �

6. Bounded variables

In this section we consider integer programs with bounds on the
variables.

Integer programming with variable bounds (BIP)
Instance: Positive integers m and n, a matrix A ∈ Z

m×n, a vector
b ∈ Z

m, and vectors c, d ∈ Z
n.

Problem: Find x ∈ Z
n maximizing ctx subject to (Ax = b, 0 ≤ x ≤

d).

We can rewrite the problem as: Find y ∈ Z
2n maximizing ĉty subject

to (Ây = b̂, y ≥ 0), where

Â =

[

A 0
I I

]

, b̂ =

[

b

d

]

, and ĉ =

[

c

0

]

.

Note that, for i ∈ {1, . . . , n}, the elements i and i + n are in series

in M(Â), and, hence, M(Â) is obtained from M(A) by a sequence of

10 CUNNINGHAM AND GEELEN

series-coextensions. Then it is easy to see that, if the branch-width of
M(A) is k, then the branch-width of M(Â) is at most max(k, 2).

Now note that the all-ones vector is in the row-space of Â. Therefore,
by taking appropriate combinations of the equations Ây = b̂, we can
make an equivalent system Ãy = b̃ where Ã is non-negative. Therefore,
we obtain the following corollary to Theorem 1.2.

Corollary 6.1. There is a pseudopolynomial-time algorithm for solving
(BIP) on instances where the branch-width of M(A) is constant.

Acknowledgement

We thank Bert Gerards and Geoff Whittle for helpful discussions
regarding the formulation of Problem 1.5 and the proof of Theorem 1.4.

References

[1] B. Courcelle, “Graph rewriting: An algebraic and logical ap-
proach”, in: Handbook of Theoretical Computer Science, vol. B,
J. van Leeuwnen, ed., North Holland (1990), Chapter 5.

[2] W.H. Cunningham, Improved bounds for matroid partition and
intersection algorithms, SIAM J. Comput. 15 (1986), 948-957.

[3] M.R. Garey and D.S. Johnson, Computers and Intractability. A
guide to the theory of NP-completeness, A series of books in the
mathematical sciences, W.H. Freeman and Co., San Francisco,
California, 1979.

[4] P. Hliněný, Branch-width, parse trees and monadic second-order
logic for matroids, manuscript, 2002.

[5] G.S. Lueker, Two NP-complete problems in non-negative integer
programming, Report No. 178, Department of Computer Science,
Princeton University, Princeton, N.J., (1975).

[6] S. Oum and P. D. Seymour, Approximating clique-width and
branch-width, J. Combin. Theory, Ser. B 96 (2006), 514-528.

[7] S. Oum and P. D. Seymour, Testing branch-width, to appear in
J. Combin. Theory, Ser. B.

[8] J. G. Oxley, Matroid Theory, Oxford University Press, New York,
1992.

[9] C.H. Papadimitriou, On the complexity of integer programming,
J. Assoc. Comput. Mach. 28 (1981), 765-768.

[10] N. Robertson and P. D. Seymour, Graph Minors. X. Obstructions
to tree-decomposition, J. Combin. Theory, Ser. B 52 (1991), 153–
190.

[11] N. Robertson and P. D. Seymour, Graph Minors. XVI. Excluding
a non-planar graph, J. Combin. Theory, Ser. B 89 (2003), 43-76.

INTEGER PROGRAMMING AND BRANCH-WIDTH 11

[12] P. D. Seymour, Decomposition of regular matroids, J. Combin.
Theory, Ser. B 28 (1980), 305–359.

[13] W. T. Tutte, A homotopy theorem for matroids, I, II, Trans.
Amer. Math. Soc. 88 (1958), 144–174.

Department of Combinatorics and Optimization, University of Wa-

terloo, Waterloo, Canada N2L 3G1

