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Abstract

We show that if a very large grid is embedded in a surface, then a large subgrid is embedded
in a dsc in the surface. This readily implies that: (a) a minor-minimal graph that does not embed
in a given surce has no very large grid; and (b) a minor-minirkakepresentatie embeding in
the surkce has no very large grid. Similar arguments show (c) th@tig minimal with respect to
crossing number, the@ has no very large grid. This work is a refinement of Thomassen (J. Combin.
Theory Ser. B 70 (1997) 306).
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

As part of their “Graph Minors” project, Robertson and Seymoag][proved the
following result.

Theorem 1. For any surface¥’, there are only finitely many graphs that do not embed in
X and that are minor-minimal with this property.

The proof by Robertson and Seymour is long and difficult. However, there is now a
remarkably accessible proof based on theigioal ideas. This proof is summarized in the
following three results.

(1) Let b bean integer and let G, Go, ... be an infinite sequence of graphs each with
branch-width at most brhen there exist k j such hat G is a minor of G;.

(2) For any postive integer k there is an integer (k) such hat if G is a graph with
branch-width at least ¢k), then G @ntains the k by k grid as a minor
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(3) For any surfaceX there exists an integer k sudhét, if G is a graph that has a k by
k grid as aminor, and G does not embed I, then there exists an edge e of G such
that G — edoes not embed i¥.

A graphhas small branch-idth (or, similarly, tree-width) if it can be decomposed
across noncrossing separations into smaites. (As we do not need these notions here we
shallnot give precise definitions.) THeby k gridis the graph ork? verticesvi j, 1 <1,

J <k, such hatv; j is adjacent twi+1, j andvi j+1, whenever the subscripts are between
1 andk.

Robertson and Seymour’s proof of (1), ihl], was stéed in terms of tee-width and
relied on a result of Thomad4p]. These results have simpler proofs for branch-width; see
Geelen et al. 3]. A marvellously elementary proof of (2) is given by Diestel et 4l.
(Actually, their proof is for tree-width, ra#ir than branch-width. These two statements
are equivalent, and their proof becomes slightly easier in the branch-width version.)
Thomassen14] gives an elegant short proof of (3), the final link in the chain, and we
provide another short proof in this paper. The main distinctions betw&gnahd the
current work are: (a) we highlight more dutly the embeddings of grids in surfaces; and
(b) we demonstrate that essentially the same arguments work for crossing number rather
than geaus.

A slightly different gpproach is given by Moha#] (see also,9]).

For this work, a surfaceis a cmompact connected 2-manifold without boundary. The
Euler characteristic of a surfacg is denoted x (') and theEuler genuss(X) of X' is
2— x(X). Wenote that if)’ is obtained from the sphere by the additiorkafrosscaps and
h handles, ther(X) = k + 2h. Thus for example, the torus and Klein bottle both have
Euler genus 2.

The main purpose of this paper is to prove that, when a large grid is embedded on a
fixed surface, most of the grid is embedded in a plannar way.

Lemmal. Let G be a grid emhaided in a surface.’. Then, the number of noncontractible
4-cycles in the grid is at mo$k (X).

(We believe that the correct upper bound is actuadly’? + 8, which is the most we
have been able to achieve.)

Consider a very large grid embedded on a fixed surfac8y Lemma 1 most d the
4-cycles in the grid are contractible. Contractible cycles bound discs, a¥idhiase small
discs are glued together along the edges of the grid. Thus, we see that much of the grid
is emba&ded in a planar way ofy'. In particular, some large subgrid is embedded in a
disc. These observations lead to an easy proof of (3). Moreover, we can also deduce that
a minor-minmal r -representative embedding in a surface has only bounded sized grid
minors.

This paper is an amalgamation of joint research of the first two authors with independent
work of the third author. The methods Bection 2are those of the first two authors; the
third author proved analogues bEmmas 4and5 with different techniques. The material
on crossing numbers is essentially due to the third author; in partididagrem 4and the
“bounded path-width” conjecture are originally due to him.
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2. Gridsin surfaces

In this secton, we proveLemma 1 The main topological result we require is the
following. (Here, and for the rest of work, { is a set of sets, then we us€ to denote

UyeCV-)

Lemma2. Let X' be a surface and lef€ be a set of pairwise djgint simple closed
noncontractible curves itk suchthat some component éf\ (UC) has all the curves i@
in its boundary. ThenC| < e(X).

This result, perhaps with a different bound, also follows frah (see als p. 107
of [9]).

Proof. Let I" be a component of'\ (UC) such that all the curves of are contained in
the boundary ofl". Suppose tha€ contains a separating cur@ and letX; and 2> be
the coomponents ofV\C, where is contained inX;. SinceC is noncontractible X is
not a disc, and, hence, contains a nonseparating closed€uriRephcingC with C’ in C
reduces the number of separating curveS.ithus, we may assume thatcontains only
nonseparating curves.

Letn be the number of componentsBf, (UC), leth be the number of 2-sided curves in
C, and letk be the number of 1-sided curvesinSince eery curve is incident with” and
every 1-si@d curve is incident only witti’, some ollection ofh— (n—1) 2-sided curvesin
C does not separat8. Each such curve contributes a handlegtoSincethe 1-sided curves
are pairwise disjoint, each contributes a cross-cap.tdhus,e(X) > 2(h— (n — 1)) + k.

If n =1, thene(X) > 2h + k > h+ k = |C|, as rguired. Thus, we may assume that
n> 1

As C does not contain a separating curve, every componem\@t)C) other thanl
has at least two curves in its boundary. Each curve in the boundary of such a component is
2-sided and ha$ on the dher side, st > 2(n — 1). Therdore,s(X) > 2(h—(n—1)) +
k>h+k=1C|, as rguired. O

We obtainLemma las a consequence of our next result. A subgrdpbf a graphG
separates Gif there exist proper subgrapl&y, G, of G suchthatG = G1 U G, and
H = G1 N Gy. Thepointis, if H is anonseparating subgraph @GfandG is embelded in
a sufaceX, then, relative to the induced embeddingldfin X, the rest of G is contained
in (the cbsure of) one face dfi .

Lemma 3. Let G be a onnected graph embedded in a surfaceand letC be a set of
pairwise disjoint cycles in G such thatC does not separate G. If every cyclednis
noncontractible inX, then|C| < ¢(X).

Proof. Let H = UC. SinceH does not separat®, there is one component df\H in
which therest of G is embelded. Sincé is connected, each cycle h is in the boundary
of this component. Byemma 2 |C| < e(X). O

We are now eady for the proof oEemma 1

Proof of Lemma 1. Let G be ak by k grid embedded in a surface. We give thed-cycles
coordinatesi, j), where 1< i, j < k—1, in the natural way. Considering the coordinates
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modulo 3 partitions the 4-cycles &finto nine sets. N@ that he union of cycles in any one
of these sets is nonseparating@n Therdore, byLemma 3 each of these sets contains at
moste (X') noncontractible cycles. Hence, there are at me6E9 noncontractible 4-cycles
inG. O

We now derie two easy consequences bémma 3 The firstshows that, if a very
large grid is embedded in a surface, then a large subgrid is embedded in a disc, while the
second says that if a very large grid is embedded in a surface, then some ring of 4-cycles
surounding the centre of the grid is embedded in a cylinder. (These results follow slightly
more easily fromLemma 1 butLemma 3gives sharper bounds.)

Theboundary cyclef ak by k grid is the cycle that bounds the infinite face in the usual
planar embedding of the grid (that is, consists of the subgraph induced by;teachthat

{i, j}N{L Kk} # 9).

Lemma4. Lett, k, n be postive integers such that = t(k + 1) and let G be an n by n
grid. If G is embedded in a surfac® of Euler genus at mostt— 1, then ®me k by k
subgrid of G is embedded in a closed disc)insuch that the boundary cycle of the k by k
grid is the boundary of the disc.

Proof. Clearly G containst? pairwise disjointk by k subgrids such that no two vertices

from distinct subgrids are adjacent in the grid. Bymma 3 not all of these subgrids can

have noncontractible 4-cycles, so one has only contractible 4-cycles. Each of these bounds
a closed &sc and the union of these closed discs is the required closed disc.

(It is straightforward to embed thi by tk grid in an orientable surface of genus at
mostt? — 1 so that nd by k subgrid is embedded in a closed disemma 4shows his is
not true of thet (k + 1) by t(k + 1) grid.)

For the seond use, leG be ak by k grid. Let 1 <t < (k/2) — 1 be a givenrteger.

A t-collar is a aubgraph ofG induced by, for some positive integex k/2 —t + 1, the
vertices ofG at distance at least— 1 and at most + t — 1 from the boundary cycle of
the grid. Theexterior cycleandinterior cycleof this t-collar arethe cyclesmduced by the
vertices at distancie— 1 anddistancé +t — 1, respectively. We note that the exterior cycle
is the boundary cycle of &k — 2i + 2) by (k — 2i + 2) subgrid.

We will only use 2-collars.

Lemmab. Let X be a surface of Euler genus and let t be a positive integer. Let
k > 2+ 1)t +1). Let G be ak by k gd embelded inX'. Then G ontains a t-collar
embedded in a cylinder ifv.

Proof. Foreach =1,2,..., |k/2] —t+1, letC; be thet-collar conssting of the vertices
at distance at least— 1 and at mosit +t — 1 form the boundary cycle ds.

By Lemma 3one ofthee+1 cdlarsC;j,i € {1, 1+(t+1), 1+2(t+1), ..., 1+ e(t+1)},
contains only contractible 4-cycled.gmma 3does not apply immediately, sin€g and
Ci+t might have vertices that are adjacentGn However, vhen we applyLemma 3on
same set of 4-cycles that have adjacent vertices, we can delete the connecting edges and
then applyLemma 3) For one in which all 4-cycles are contractible, the 4-cycles bound
discs and the union of these discs is a cylindér
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3. Applications

Our first application is to prove the following form of (3).

Theorem 2. Let Y be a surface of Euler genus Let n> [v/e + 3] (6 + 8) and let G
be a graph containing an n by n grid as a minor. If, for every &(G), G — e embeds in
X, then G erbeds inX.

In the proof, we shall need the concept of a bridge. Gabe a graph and leil be a
subgraph ofG. A bridgeof H is either an edge dB, not in H, together vith its ends, if
both ends are i, or acomponentof—V (H), together with any edge @ incident with
a vertex in that component, and the ends frélvof such edges. We note that a subgraph
H of G is separating if andnly if it has at least two bridges.

An edgee of ak by k grid is centralif either (1)k = 2m — 1 is odd ande is incident
with vmm or (2)k = 2m s even anc is in the 4-cycle induced bym m, vm m+1, Vm+1.m,
andvm+1,m+1.

Proof. Let e be any edge 06. An embelding of G — e in X' can be used to obtain an
embedding of5 in X, obtained from¥’ by adding a handle. Lé#l be a minimal subgraph
of G that contracts to the by n grid Gy,.

Sinces(Y') = ¢(X) + 2 = ¢ + 2, Lemma 4implies that somé&6e + 7) by (6¢ + 7)
subgrid G’ of G, is embelded in a disc in2’. Let K be a minimal subgraph d¥l that
contracts tdG’. By theminimadity of K, the e@lges ofK that are contracted do not contain
a cycle; in gepral, if the contraction of a graph by an acyclic set is contained in a disc,
then so is the oginal graph. ThuK is also enbedded in a disc.

Lete be an edge oK that, after contraction of oth@dges, becomes a central edge of
G’. Let K’ be a minimal subgraph df — e that contracts to &¢ + 6) by (6 + 6) grid.
EmbedG —ein X. By Lemma 5there is a Zdlar J of K’ that is entbedded in a cylinder.
Let | be the interior cycle ofl, let E be the exterior cycle o, and letC be the gclein
J—V({ UE).

Let Bg be the bridge ofC in G that containgE, let B; be the bridge ofC in G that
containsl, and letB denote the set of all other bridges©f We clam that we can arrange
the embedings of G in X" andG — ein X so that ifB € B, thenB is in the cylinder
bounded byC U | either in both embeddings or in neither embedding.

Let B’ denote the subset & consisting of those bridges that are in the cylinder bounded
by C U I in one embedding but not the other. l@tdenote the “overlap diagram” for the
bridges inB’: its vertices arehte bridges in3’ and two bridges are adjacent@ if they
cannot be simultaneously embedded on the same siGe of

Since everybridge in 5 must be embedded in the cylinder boundedbw |, O
is bipartite. One side of the bipartition cogponds to those bridges that are inside the
cylinder bounded byC U | in one embedding and the other side of the bipartition
corresponds to the bridges that are outside in the same embedding. Because we are in
the cylinder, we can simply switcthe enbbeddings of the bridges ii’ in one of the two
embeddings, so that each one is eithdvath cylinders or in neither cylinder.

Thus, the subgraphs @ that are contained in the cylinders bounded®y | are the
same inboth embeddings.
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In order to obtain an embedding@fin X, let A1 be the dsc in X" bounded byC and let
A be a small closed disc id1, digoint from G. Let I" be the cylinder in¥’ obtained by
delding the interior ofA, from Aj. Itisbounded byC and some other simple closed curve.

We obtain an embedding db in X' as follows. From the embedding & — e in Y,
we use he embedding oBg U C, together with everything embedded in the cylinde&in
bounded byC U E. Conplete the embedding & by replacing the cylinder it that is
bounded byC U | with the cylinderI", so that he two copies o€ are identified. O

An embelding of a graplG in a surfaceY is r-repreentativeif every noncontractible
closed curve in¥ intersects the graph at leastimes. The erhedding isminor-minimal
r-repreentativeif it is r-representative and the deleti@r contraction (in the surface)
of any edge produces an embedding which is mo¢presentative. (An introduction to
representatity is given by Robertson and VitrayL P].) We note the following result.

Theorem 3. Let G be a mior-minimal r-representative embedding in a surfateof
Euler genug. Letn> [Ve 4+ 1](r + 2). Then Ghas no n by n grid minor.

Proof. If G has ann by n grid as a minor, then bizemma 4G has a subgrapM that
contracts to an+1 byr +1 grid such thaM is embedded in a disc with the outer boundary
of M being the boundary of the disc. Delete any central edafesuch a subgraph. Suppose
there is a noncontractible curyehaving fewer tham intersections withc — e. Theny
must irtersecte and, therefore, must come inémd leave the disc containing. But then

y must cross the remainirigby r grid at least times, a conmadiction. [

We note that (using (1) and (2)Jheorem 2implies Theorem 1 It is not clear that
Theorem 3mplies thenumber of minor-minimat -representative embeddings in a fixed
surface is finite (up to a homeomorphism of the surface to itself). The problem is that it
is possble that the grapl& can be a minor of the grapH and both have minor-minimal
r-representative embeddings. This is because the same graph can have two embeddings in
the same surface so that the eeddings have different representatives. That the number of
minor-minimal r -representative embeddings isifinis proved by other means ig,[5, 7].
(Alternatively, one could trundle out the machinery for the bounded branch-width result
(1) and apply it in the surface, but it is a different theorem.)

In a slightly different direction, let ofG) denote the crossing number &, i.e. the
minimum number of pairwise crossings of edges in a drawing@ of the plane.

Theorem 4. Let k> 1 be an integer. Let G be a graph such tleatG) < k and, for every
edge e of G¢r(G —e) < k. Letn> [v/2k + 1](12k — 5). If G contains an n by n grid as
a minor, thencr(G) < k.

This result is proved in much the same mannefragsorem 2 We start byfinding a
large grid with no crossings at all, delete a central eglgiraw G — e with fewer thank
crossings and then use a collar of the large grid that has no crossings in the second drawing.
This allows us to dravc with fewer thank crossings. Alternatively, one could adapt the
methods of14].

There is obviously a version of this last result that also applies to the crossing number of
a gaph drawn on some surface, not just thenglarhis does not seeto be of independent
interest at the moment.
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Theorem 4does not imply a useful finiteness result, since the property of having
crossing numbek k is not closed under contraction of an edge. Evenlkfoe 2, the
number of graphs that have crossing number 2 and all proper subgraphs have crossing
number at most 1 is infinite.

One example of an infinite abs is obtained by taking three paths with common ends,
but otherwise disjoint, each of length at léds doubling their edges and adding a new
vertex adjacent to exactly one internal vettof each of the paths. It is easy to see that
this graph has crossj number 2 and that the deletion of any edge reduces the crossing
number to at most 1. One of these graphs gives another as a minor by deleting one of two
parallel edges (reducing the crossing numbet)tand ontracting the second of the two
parallel edges (raising the crossing number back to 2). As all known examples of infinite
crossing-critical families have some “repetitive structure”, we put forward the following.

Conjecturel. Letk be a positive integer. Then there is an integék) fsuch hat if G is a
graph for whichcr(G) = k andcr(G — e) < k forall edges e of G, then the path-width of
G is at most k).

This conjecture has recently been provéd [
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