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Abstract

Tutte proved that a matroid is binary if and only if it does not contain a U2;4-minor. This

provides a short proof for non-GF(2)-representability in that we can verify that a given minor

is isomorphic to U2;4 in just a few rank evaluations. Using excluded-minor characterizations,

short proofs can also be given of non-representablity over GF(3) and over GF(4). For GF(5),

it is not even known whether the set of excluded minors is finite. Nevertheless, we show here

that if a matroid is not representable over GF(5), then this can be verified by a short proof.

Here a ‘‘short proof’’ is a proof whose length is bounded by some polynomial in the number of

elements of the matroid. In contrast to these positive results, Seymour showed that we require

exponentially many rank evaluations to prove GF(2)-representability, and this is in fact the

case for any field.
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1. Introduction

The main purpose of this paper is to show that if a matroid is not GF(5)-
representable, then there is a short proof of this fact. To motivate the approach we
first consider binary matroids. Tutte [9] proved that a matroid is binary if and only if
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it does not contain a minor isomorphic to U2;4: It would require an exponential

amount of work to check each 4-element minor of a matroid, so Tutte’s
characterization is not a practical way to show that a matroid is binary. It does
however provide an extremely concise way to show that a matroid is not binary.
Suppose that M is a matroid and that N ¼ M\D=C is isomorphic to U2;4: To verify

that this is the case, we need to compute the rank of N and the rank of each pair of
elements of N: For XDEðNÞ; rNðXÞ ¼ rMðX,CÞ � rMðCÞ: Therefore, we can
check that N is isomorphic to U2;4 by checking the rank of only 8 sets in M; that is,
proving that a matroid is not binary requires only 8 rank evaluations.
Rota [7] conjectured that for any finite field F there are only finitely many minor-

minimal non-F-representable matroids. Like Tutte’s characterization for binary
matroids, Rota’s conjecture, if true, would provide a method for proving non-F-
representability that requires only a constant number of rank evaluations.
Unfortunately, Rota’s conjecture is only known to be true for fields of sizes 2, 3
and 4. We consider a weaker conjecture that, for any finite field F; there is a method
for proving non-F-representability such that the number of rank evaluations
required is bounded above by a polynomial in the number of elements of the
matroid.
Now consider a different approach toward characterizing binary matroids. Let M

be a matroid on the ground set E and let B be a basis of M: Construct a matrix A in

f0; 1gB�ðE�BÞ such that, for iAB and jAE � B; we have Aij ¼ 1 if and only if ðB �
figÞ,fjg is a basis of M: Now, M is binary if and only if ½I ;A	 is a representation of
M: Again, this does not provide a practical method for proving that M is binary
since we potentially require an exponential number of rank evaluations to prove that
½I ;A	 is a representation of M: However, it only takes one rank-function evaluation

to prove that ½I ;A	 is not a representation of M: Constructing A requires OðjEj2Þ
rank evaluations. Hence, this method for proving that a matroid is not binary

requires OðjEj2Þ rank evaluations.
We shall provide a method for proving non-GF(5)-representability that requires

only Oðn2Þ rank evaluations, where n denotes the number of elements of the matroid.
Like the method above, our approach is to generate all possible GF(5)-
representations of a matroid. This scheme hinges on the fact that 3-connected
matroids have at most six inequivalent representations over GF(5); see [6]. Suppose
that M is a non-GF(5)-representable matroid. Now, M has a non-GF(5)-
representable minor that is 3-connected, so we may assume that M is 3-connected.
We construct a sequence of (essentially) 3-connected matroids M1;y;Mk such that
M1 is small, Mk ¼ M; and Mi is a single-element extension or coextension of Mi�1
for each iX2: We inductively generate all representations of M1;y;Mk: Since M1 is
small, its representations can be generated exhaustively. Suppose that Miþ1 is an
extension of Mi: The crux of the problem is to determine the extensions of a given
representation of Mi that represent Miþ1: The difficulty is that there are
exponentially many columns to choose from when extending a representation.
Using techniques from [3], we overcome this problem with a more careful choice of
the sequence M1;y;Mk; see Corollary 3.5.
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Seymour [8] showed that it is considerably harder to prove representability than
non-representability. Let F be a field of characteristic p40: For each rXmaxf4; p þ
1g; define a matrix ½I ;Nr	 where I denotes the identity matrix whose columns are
indexed by fa1;y; arg and Nr is a square matrix with columns indexed by
fb1;y; brg that has zeros on the diagonal and ones elsewhere. Now, let Mr denote
the matroid that is represented by ½I ;Nr	 over F: Let ðA;BÞ be a partition of f1;y; rg
such that pjðjBj � 1Þ: It is an easy exercise to prove that fai : iAAg,fbi : iABg is a
circuit-hyperplane of Mr and that the matroid obtained by relaxing this circuit-
hyperplane is not F-representable. To distinguish Mr from each of these non-F-
representable matroids requires an exponential number of rank evaluations. Thus, to
prove F-representability we require exponentially many rank evaluations. A similar
construction works for fields of characteristic zero.

2. Totally free matroids

This section contains notation and definitions and also reviews the results
of [3]. Notation and terminology follow Oxley [5], with some exceptions. Here,
we denote the simplification of M by siðMÞ and the cosimplification of M

by coðMÞ:
Let M be a matroid with ground set E and let F be a field. Let A be a matrix over F

whose columns are indexed by E: We denote the column-matroid of A by MFðAÞ:
Thus A is an F-representation of M if M ¼ MFðAÞ: Let A1 and A2 be two matrices
over F with columns indexed by E: We call A1 and A2 strongly equivalent if one can
be obtained from the other by elementary row operations (adding one row to
another, adjoining or deleting a row of zeros, and scaling a row) and column-scaling.
(This extends the definition in [2] by allowing the removal or addition of a row of
zeros.) In particular, if A1 and A2 are strongly equivalent, then MFðA1Þ ¼ MFðA2Þ:
If F is a finite field with q elements, then we let nqðMÞ denote the number of

strongly inequivalent F-representations of M: It is well known that n2ðMÞp1 and
n3ðMÞp1 for any matroid M: However, nqðU2;4Þ ¼ q � 2X2 for all qX4:Moreover,

if M 0 is the direct sum or the 2-sum of M and N; then nqðM 0Þ ¼ nqðMÞnqðNÞ: Thus,
when qX4; we can obtain matroids with arbitrarily many inequivalent representa-
tions. Nevertheless, by restricting our attention to 3-connected matroids, we can
bound the number of representations for other small fields.

Theorem 2.1 (Kahn [4]). If M is a 3-connected matroid, then n4ðMÞp2:

Theorem 2.2 (Oxley, Vertigan and Whittle [6]). If M is a 3-connected matroid, then

n5ðMÞp6:

Our method for characterizing quinternary matroids hinges on Theorem 2.2;
Oxley, Vertigan and Whittle [6] showed that similar bounds cannot be obtained for
any larger fields. Therefore, in order to characterize matroids representable over
larger fields, we will require higher connectivity.

ARTICLE IN PRESS
J. Geelen et al. / Journal of Combinatorial Theory, Series B 91 (2004) 105–121 107



Let M be a matroid with ground set E: Elements e; fAE are clones if swapping the
labels of e and f is an automorphism of M: A clonal class of M is a maximal set of
elements of M every pair of which are clones. An element z of M is fixed in M if
there is no single-element extension of M by an element z0 in which z and z0 are
independent clones. Similarly, an element z of M is cofixed if it is fixed in M: We
note that if z already has a clone, say x; and fx; zg is independent, then z is not fixed
since we can add a new element z0 freely on the line through z and x:
Suppose that z is fixed in M; and consider two F-representations of M of the form

½A; x	 and ½A; x0	; where A represents M\z: Now ½A; x; x0	 represents a single-element
extension of M: Then, since z is fixed, fx; x0g is a parallel pair. Thus ½A; x	 and ½A; x0	
are strongly equivalent. This shows that, up to strong equivalence, any representation
of M\z extends to at most one representation of M: This proves the following result.

Proposition 2.3. Let z be a fixed element in a matroid M: Then nqðMÞpnqðM\zÞ for

any prime power q:

Then, in order to obtain a bound on the number of strongly inequivalent
representations, we can delete fixed elements and contract cofixed elements.
Unfortunately, deletion and contraction may increase the number of strongly
inequivalent representations. To avoid such problems, we try to maintain 3-
connectivity in such deletions and contractions. Suppose that M is 3-connected. If
we find a fixed element z such that coðM\zÞ is 3-connected, then we delete it and
cosimplify. Similarly, if we find a cofixed element z such that siðM=zÞ is 3-connected,
then we contract it and simplify. After a sequence of such deletions and contractions,
we obtain a ‘‘totally free’’ minor. Formally, a matroid M is totally free if M is 3-
connected and, for any element z;

(1) if z is fixed, then coðM\zÞ is not 3-connected, and
(2) if z is cofixed, then siðM=zÞ is not 3-connected.

We remark that, in [3], we also required that a totally free matroid should have at
least four elements. By checking the 3-connected matroids with at most three
elements, it is straightforward to see that the only new matroid admitted by omitting
this condition is the trivial matroid U0;0: As a simple consequence of these

definitions, we obtain the following result.

Proposition 2.4. If M is a 3-connected matroid, then M contains a totally free minor N

such that nqðMÞpnqðNÞ for any prime power q:

The main result of [3, Theorem 2.2] is that totally free matroids do not occur
sporadically, and can be found using an inductive search.

Theorem 2.5. If M is a totally free matroid with jEðMÞjX5; then either

* M has an element e such that M\e is totally free,
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* M has an element e such that M=e is totally free,
* M has elements e and f such that M\e=f is totally free.

More can be said in the case that there is no single element that can be removed to
obtain a totally free matroid; see [3, Corollary 8.13].

Theorem 2.6. Let M be a totally free matroid with jEðMÞjX5 such that, for each e in

EðMÞ; neither M\e nor M=e is totally free. Then each element z has a unique clone z0:
Moreover, M=z is 3-connected, z0 is fixed in M=z; and M=z\z0 is totally free.

A flat F of M is cyclic if, for each eAF ; there is a circuit C such that eACDF : It
follows easily from definitions that F is a cyclic flat of M if and only if EðMÞ � F is a
cyclic flat of M: The following result is also straightforward.

Proposition 2.7. Elements e and f of a matroid M are clones if and only if e and f are

contained in the same cyclic flats.

Let e; fAEðMÞ: We say that e is freer than f if every cyclic flat containing e also
contains f : Thus, e and f are clones if and only if e is freer than f and f is freer than
e: The freedom of an element e of EðMÞ is the maximum size of an independent
clonal class containing e among all extensions of M: This maximum does not exist if
and only if e is a coloop of M; in that case, the freedom of e is infinity. An element is
fixed if and only if it has freedom at most 1.
The notion of freedom of an element in a matroid was introduced by Duke [1]

although his definition was different from that given above. The next result shows
that our definition is equivalent to that of Duke.

Lemma 2.8. Let e be an element of a matroid M: Then the freedom of e in M is the

maximum over all extensions N of M of the rank of the flat of N that is the intersection

of all of the cyclic flats of N containing e:

Proof. If e has infinite freedom, then the lemma is easily checked. Thus assume that e

has freedom k: Let N be an extension of M in which the clonal class containing e is
X and rNðXÞ ¼ k: Then every cyclic flat containing e contains X : Thus, the
intersection of all cyclic flats of N containing e has rank at least k: Thus the freedom
of e is at most the maximum specified in the statement of the lemma.
Now let N be an extension of M that maximizes the rank k of the flat F that is the

intersection of all cyclic flats containing e: Extend N to N 0 by freely adding a set Z of
k � 1 elements to F : Then Z,feg is independent in N 0: We assert that Z,feg is a
set of clones in N 0: To see this, suppose zAZ: Then a cyclic flat G of N 0 that contains
z must also contain F and hence e: Thus z is freer than e: On the other hand, if H is a
cyclic flat of N 0 containing e; then H must meet Z: But, as the elements of Z are
freely added to F ; it follows that H must contain F and hence Z: Thus e is freer than
every element of Z; so Z,feg is indeed a set of clones in N 0: We conclude that the
freedom of e is at least the maximum specified in the statement of the lemma.
Therefore, the lemma holds. &
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The next lemma, which will be used frequently in the paper, is Theorem 6.2 of [1].
We include a proof here for completeness.

Lemma 2.9. Let a and b be elements of a matroid M such that a is freer than b: Then

the freedom of a is at least the freedom of b: Moreover, either a and b are clones or the

freedom of a is greater than the freedom of b:

Proof. Suppose that b has freedom k and that M 0 is an extension of M and B is a
k-element independent clonal class of M 0 that contains b: We may assume that
EðM 0Þ ¼ EðMÞ,B: We may assume that aeB since otherwise the result is clear.
Construct a matroid M 00 by adding k points fa1;y; akg as freely as possible in the

flat of M 0 spanned by B,fag: Now let M̂ be the restriction of M 00 to
EðMÞ,fa1;y; akg: It is straightforward to check that a is freer than each element

of B in M 0 so a is freer than each of fa1;y; akg in M̂: However, by construction,

each of a1;y; ak is freer than a in M 00 and hence also in M̂: Thus fa; a1;y; akg is

contained in a clonal class of M̂:Moreover, since B is independent in M 0; fa1;y; akg
is independent in M̂: Hence, a has freedom at least k in M: Now, suppose that a and
b are not clones, and hence that there is a cyclic flat F of M that contains b but not a:

Then B,fag is independent in M 0; and, hence, fa; a1;y; akg is independent in M̂:
Hence, a has freedom at least k þ 1 in M: &

For elements e and f of a matroid M; it is straightforward to show that the
freedom of f does not decrease when we delete e: Contraction has a slightly more
complicated effect on freedom.

Lemma 2.10. Let e and f be elements of a matroid M and let k be the freedom of f :
Then f has freedom at least k � 1 in M=e: Moreover, if f has freedom exactly k � 1 in

M=e; then f is freer than e in M:

Proof. Let M 0 be an extension of M that has a k-element independent set X of
clones that contains f : Now M 0=e is an extension of M=e; and X � feg is a clonal
class of M 0=e: Moreover, rM 0=eðX � fegÞXjX j � 1 ¼ k � 1: Thus f has freedom at

least k � 1: If f is not freer than e; then there is a cyclic flat F of M 0 that contains
f but not e: But then XDF and rM 0=eðXÞ ¼ rM 0 ðX Þ ¼ k: Thus, f has freedom k

in M=e: &

The cofreedom of an element e of M is the freedom of e in M: Note that, for
e; fAEðMÞ; e is freer than f in M if and only if f is freer than e in M: The following
lemma is a dual version of Lemma 2.10.

Lemma 2.11. Let e and f be elements of a matroid M and let k be the cofreedom of f :
Then f has cofreedom at least k � 1 in M\e: Moreover, if f has cofreedom exactly

k � 1 in M\e; then e is freer than f in M:
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Theorem 2.6 and Lemma 2.10 combine to prove the following result.

Corollary 2.12. Let M be a totally free matroid with jEðMÞjX5 such that, for each e

in EðMÞ; neither M\e nor M=e is totally free. Then EðMÞ can be partitioned into

2-element clonal classes and every element of M has freedom 2.

For representable matroids the following lemma is intuitively obvious. If two
clones are ‘‘fixed to a line’’ and we add a new point in a way that distinguishes the
two elements, then one of these elements becomes fixed.

Lemma 2.13. Let a; b; and e be elements of a matroid M such that a and b are clones

and have freedom 2 in M\e: If a and b are not clones in M; then either a or b is fixed

in M:

Proof. Suppose that a and b are not clones in M and that neither a nor b is fixed.
By possibly swapping a and b; we may assume that there is a cyclic flat F that
contains a but not b: Since a is not fixed in M; there is a single-element extension M 0

of M by an element a0 such that fa; a0g is an independent pair of clones. Then
the closure of F in M 0 is F,fa0g: Let N 0 be the matroid obtained by adding a
point b0 freely on the line between a0 and b: Then every cyclic flat of N 0 containing b0

must also contain fa0; bg: Let N ¼ N 0
\fe; a0g: Then b0 is freer than b in N: As F,fa0g

is a flat of M 0 that does not contain b; the set fa; a0; bg is independent
in M 0: Therefore, as fa0; b0; bg is a circuit of N 0; the set fa; b0; bg is independent
in N: Now a has freedom 2 in M\e; and N is an extension of M\e; so fa; b0; bg
cannot be contained in a clonal class of N: Therefore, either b or b0 is not a clone
of a in N:
Suppose that b is not a clone of a in N: Then N has a cyclic flat F1 that contains

exactly one of a and b: Since N\b0 ¼ M\e; it follows that a and b are clones in N\b0 so
b0AF1: As b0 is freer than b in N; we deduce that bAF1:Hence aeF1: Since F1 is cyclic,
b0 is in the closure of F1 � fb0g in N and hence also in N 0:However, a0 is in the closure
of fb; b0g in N 0: So, a0 is in the closure of F1 � fb0g in N 0 and hence also in M 0: This
contradicts the fact that a and a0 are clones in M 0: Thus a and b are clones in N:
We may now assume that a and b0 are not clones in N: Since b0 is freer than b in N;

any cyclic flat in N containing b0 also contains b; and, since a and b are clones of N;
these flats also contain a: Therefore, there must be some cyclic flat F2 of N that
contains a but not b0: Since a and b are clones of N; F2 contains b: However, since b0

is not in the closure of F2 in N; a0 is not in the closure of F2 in M 0: This contradicts
the fact that a and a0 are clones in M 0: &

3. Totally free matroids over small fields

The totally free matroids representable over fields with at most five elements were
determined in [3]. However, we require a slightly stronger result. Before stating the
result, we need to introduce some classes of totally free matroids. We begin by
looking at all small totally free matroids.
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The two smallest totally free matroids are U0;0 (the trivial matroid) and U2;4: Other
small totally free matroids can be found via Theorem 2.6. It is straightforward to
verify the following assertions.

* U2;5 and U3;5 are the only 5-element totally free matroids.
* U2;6; U3;6; U4;6; and P6 are the only 6-element totally free matroids. (See Fig. 1 for

a geometric representation of P6:)
* The 7-element totally free matroids are U2;7; U3;7; R1; R2; R3; and their duals. (See

Fig. 2 for geometric representations of R1; R2; and R3:)

Except for the trivial matroid, none of these small totally free matroids is binary
and U2;4 is the only one of these matroids that is ternary. Then, using Theorem 2.6

and Proposition 2.4, we can prove that n2ðMÞp1 and n3ðMÞp1 for any matroid M:
By results in [3], none of the 7-element totally free matroids is representable over

any field with five or fewer elements; we include a direct proof for the sake of
completeness.

Lemma 3.1. No 7-element totally free matroid is representable over a field with 5 or

fewer elements.

Proof. Let qAf2; 3; 4; 5g and let M be a 7-element totally free matroid. By duality we
may assume that M has rank at most 3. Moreover, since the 7-point line is not
GFðqÞ-representable, we may assume that M has rank 3. Thus, M is either U3;7; R1;
R2; or R3: In each case we suppose that M is GFðqÞ-representable and consider M as
a restriction of the projective geometry PGð2; qÞ:
First consider the case that M ¼ U3;7 and let EðMÞ ¼ fa; b; e1;y; e5g: Let L be

the points of PGð2; qÞ on the line spanned by a and b: Thus, jL � fa; bgjp4: There
are 10 distinct lines of PGð2; qÞ that are spanned by pairs of points in fe1;y; e5g;
and each of these lines contains one of the points in L � fa; bg: But then some point
in L � fa; bg is on at least three of these 10 lines. This is impossible, so U3;7 is not

GFðqÞ-representable. Similar arguments prove that neither R1 nor R2 is GFðqÞ-
representable.
Now consider the case that M ¼ R3 and let EðMÞ ¼ fa1; a2; a3; e1; e2; e3; e4g where

fa1; a2; a3g is the unique 3-point line in R3: Let L be the points of PGð2; qÞ on the line
spanned by fa1; a2; a3g and let L0 ¼ L � fa1; a2; a3g: Thus jL0jp3: Each of the six
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lines of PGð2; qÞ that is spanned by a pair of points in fe1; e2; e3; e4g intersects the line
L in a point in L0:Moreover, no point in L0 can be on more than two of these lines. It
follows that jL0j ¼ 3 and that each of these points is on exactly two of these lines.
Now, since L is a 6-point line in PGð2; qÞ; it must be the case that q ¼ 5: However,
there are seven 3-point lines in L0,fe1; e2; e3; e4g; so the restriction of PG(2,5) to
L0,fe1; e2; e3; e4g is isomorphic to F7; the Fano matroid. This contradiction
completes the proof. &

Let L3 ¼ U3;6: For rX4; we define a rank-r matroid Lr as follows. (Note that a

rank-r matroid is determined by its non-spanning circuits.) We let EðLrÞ ¼
fa1;y; arg,fb1;y; brg: For any two distinct i and j in f1;y; rg; the set
fai; bi; aj ; bjg is a circuit of Lr and these are the only non-spanning circuits. We

call Lr the rank-r free spike. (In [2,3], Lr was denoted by Fr but the current notation
seems more evocative.) Note that each pair fai; big is a clonal class of Lr; so Lr is
totally free. There is a natural way to represent Lr over the reals: take r copunctual
lines placed as freely as possible in rank r and put the elements ai and bi freely on the
ith line. The following result is proved in [3, Theorem 2.5].

Theorem 3.2. If M is a totally free quaternary matroid and jEðMÞjX6; then M is

a free spike.

We now define another family of totally free matroids. We let rX3 and let E ¼
fa1;y; arg,fb1;y; brg; the pairs ða1; b1Þ;y; ðar; brÞ are called the rods. We now
describe the matroid Dr with ground set E by giving a representation over the
reals. All subscripts are interpreted modulo r: Put points v1;y; vr freely in
rank r: For iAf1;y; rg; we place ai and bi as freely as possible on the line between
vi�1 and vi: We call Dr the rank-r free swirl. Clearly, Dr is a 3-connected rank-r
matroid and the elements of each rod are clones. Therefore, each free swirl is
totally free. Note that D3 ¼ U3;6: Moreover, for iAf1;y; rg; fai�1; ai; bi�1; big is a

circuit and, for r43; these are the only 4-element circuits. (In [3], we denoted the
free swirl by the less suggestive symbol Cr:) The following result is proved in
[3, Theorem 2.7].

Theorem 3.3. If M is a totally free quinternary matroid and jEðMÞjX7; then M is

a free swirl.
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The main result of this section is the following generalization of Theorems 2.1 and
2.2. We need to introduce another matroid. The Vámos matroid, V8; is obtained
from L4 by relaxing one of the 4-element circuit-hyperplanes. It is well known that
V8 is not representable over any field.

Theorem 3.4. Let M be a totally free matroid that does not contain a minor isomorphic

to any 7-element totally free matroid. If jEðMÞjX8; then either M is a free spike, M is

a free swirl, or M is isomorphic to V8:

The following result is an easy but crucial corollary.

Corollary 3.5. Let M be a 3-connected matroid that does not contain a minor

isomorphic to any 7-element totally free matroid. If jEðMÞjX7; then M has an element

e such that either e has freedom at most 2 and coðM\eÞ is 3-connected or e has

cofreedom at most 2 and siðM=eÞ is 3-connected.

For any n we let Tn denote the set of all n-element totally free matroids. If a
matroid M contains a minor isomorphic to some element of Tn; we say that M

contains a Tn-minor.

Lemma 3.6. Let M be a totally free matroid having an element e such that M\e is

isomorphic to either L4; D4; or V8: Then, M contains a T7-minor.

Proof. Note that the elements of M\e are partitioned into 2-element clonal classes
ðfa1; b1g;y; fa4; b4gÞ: Let Ni denote M=ai\bi: Note that, each Ni is a single-element
extension of U3;6: Since M\e is 3-connected and M is totally free, e is not fixed. Thus,

e is in at most one triangle of M: By possibly relabelling we may assume that e is not
in a triangle with a1 or b1: It is now straightforward to see that N1 is 3-connected.
Thus N1 is a 3-connected extension of U3;6:We may assume that N1 is not contained

in T7: In particular, N1 is not isomorphic to U3;7 or R3: Now, by considering

possible extensions of U3;6; we see that e is fixed in N1: Then e is also fixed in M=a1:
But e is not fixed in M; so, by Lemma 2.10, e has freedom 2 in M and e is freer than
a1: By the symmetry between a1 and b1; e is also freer than b1: Now, if a1 and b1 both
have freedom 2, then, by Lemma 2.9, fa1; b1; eg is an independent set of clones.
However, this contradicts the fact that a1 has freedom 2 in M\e: We conclude that
either a1 or b1 is fixed in M: However, M\a1 and M\b1 are both 3-connected. This
contradicts the fact that M is totally free. &

Lemma 3.7. Let M be a totally free matroid such that M\e is isomorphic to Lr or Dr

for some rX3: Then, M contains a T7-minor.

Proof. We prove the result by induction on r: When r ¼ 3; the result is trivial and,
when r ¼ 4; the result is implied by Lemma 3.6. Assume then that rX5 and that the
result holds for extensions of smaller free spikes and free swirls. We shall call the
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clonal classes ða1; b1Þ;y; ðar; brÞ of M\e rods. Let Ni denote M=ai\bi: Note that, for
any iAf1;y; rg; Ni\e is isomorphic to Lr�1 or Dr�1: Thus, by induction, we may
assume that Ni is not totally free for any i: Observe that Lr\ai; Lr\bi; Dr\ai; and Dr\bi

are 3-connected for each i: Therefore, M\ai and M\bi are 3-connected for each i:
However, M is totally free, so neither ai nor bi is fixed. Therefore, by Lemma 2.13, ai

and bi are clones in M and so have freedom at least 2 in M: But ai and bi have
freedom 2 in M\e; and therefore have freedom 2 in M:
Now M is totally free and M\e is 3-connected, so e is not fixed in M: By possibly

relabelling the rods, we may assume that fa1; b1; eg is independent. Thus, fa1; b1; eg
is not a set of clones of M otherwise a1 has freedom at least 3 in M; a contradiction.
Thus e and a1 are not clones in M: Therefore, by Lemma 2.9, either e is not freer
than a1; or e has freedom at least 3. In either case, by Lemma 2.10, e is not fixed in
M=a1: We deduce that e is not fixed in N1: However, N1 is not totally free and, for
each i41; the elements ai and bi are clones in N1:We conclude that e is cofixed in N1

and siðN1=eÞ is 3-connected. Now, e is clearly also cofixed in M\b1: Moreover, e is
not fixed, b1 has freedom 2, and b1 and e are not clones, so, by Lemma 2.9, b1 is not
freer than e in M: By Lemma 2.11, since e has cofreedom 1 in M\b1; it has cofreedom
at most 2 in M: But if equality holds in the last bound, b1 is freer than e in M: We
deduce that e is cofixed in M: Now M is totally free, so siðM=eÞ is not 3-connected.
Hence, there is a 2-separation ðA;BÞ of M=e such that A and B each have rank at
least 2 in M=e: Note that ðA;BÞ is a 3-separation of M\e; which is a free spike or a
free swirl. It is straightforward to check that each rod must be contained entirely in A

or entirely in B: By possibly swapping A and B; we may assume that a1; b1AA: Recall
that siðN1=eÞ is 3-connected, so it must be the case that rN1=eðA � fa1; b1gÞ ¼ 1:

Therefore, rMðA,eÞ ¼ 3: Thus, A ¼ fa1; b1; ai; big for some iAf2;y; rg: By
symmetry, we may assume that A ¼ fa1; b1; a2; b2g:
Now, for some j in f3;y; rg; the set faj; bj; eg is independent. Thus, what we have

proved for the rod fa1; b1g also holds for faj; bjg: Therefore, jBj ¼ 4 and r ¼ 4: This

contradicts the fact that rX5: &

We will use Theorem 2.5 to prove Theorem 3.4. Thus we must consider the
matroids obtained from free spikes, free swirls, and V8 by a single-element extension
or coextension, or a single-element extension followed by a single-element
coextension. Lemmas 3.6 and 3.7 consider the extension case. However, note that
free spikes, free swirls, and V8 are all self-dual. Thus, Lemmas 3.6 and 3.7 also cover
the coextension case. It remains to consider the case of a single-element extension
followed by a single-element coextension. Fortunately, when we are driven to this
case, we obtain additional structure by Theorem 2.6.

Lemma 3.8. If MAT8 and M does not contain a T7-minor, then M is isomorphic to

either D4; L4; or V8:

Proof. By Corollary 2.12, EðMÞ has a unique partition into clonal classes
ðfa1; b1g; fa2; b2g; fa3; b3g; fa4; b4gÞ and each element of M has freedom 2. By
duality we may assume that M has rank at most 4. It is straightforward to see that M
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must have rank 4. Moreover, the only possible non-spanning circuits of M have the
form fai; bi; aj; bjg for i; jAf1; 2; 3; 4g: Define a graph G with vertex set f1; 2; 3; 4g
such that ijAE if and only if fai; bi; aj; bjg is a circuit. Note that M is uniquely

determined by G:Now, by Lemma 2.9, since a1 is not a clone of any of a2; a3; and a4;
but a1; a2; a3; and a4 all have freedom 2, a1 is not freer than any of a2; a3; or a4: Thus,
there are at least two distinct 4-circuits containing a1: We conclude that each vertex
of G has degree at least 2. Up to isomorphism there are now just three choices for G:
a circuit, a clique, or a clique with one edge deleted. Thus, M is isomorphic to either
D4; L4; or V8: &

Lemma 3.9. If MAT10 and M does not contain a T7-minor, then M is isomorphic to

either D5 or L5:

Proof. We show first that EðMÞ has a partition ðfa1; b1g;y; fa5; b5gÞ into clonal
classes and each element of M has freedom 2. By Corollary 2.12, this holds unless M

has a T9-minor M1: Consider the exceptional case. As jEðM1Þj is odd, Corollary
2.12 implies that M1 has aT8-minor M2: By Lemma 3.8, since M has no T7-minor,
M2 is isomorphic to D4;L4; or V8: Applying Lemma 3.6 to M1 or its dual, we obtain
the contradiction that M1 has a T7-minor. We conclude that M has no T9-minor
and that EðMÞ does indeed have the specified partition into 2-element clonal classes.
We call these clonal classes rods. Since M has no T9-minor, by Theorem 2.6, M has
a T8-minor N of rank rðMÞ � 1: Since N has no T7-minor, Lemma 3.8 implies that
rðNÞ ¼ 4: Hence rðMÞ ¼ 5: Consider a non-spanning cyclic flat F : Note that, since
M is 3-connected, F is the union of 2 or 3 rods. If F is the union of 2 rods, then
clearly rMðFÞ ¼ 3:
Suppose that F ¼ fa1; b1; a2; b2; a3; b3g: Let N ¼ M=a5\b5: By Theorem 2.6, N is

3-connected. Now, it follows easily that F must have rank 4 in M:We assert that F is
the union of 2 cyclic flats of rank 3. Suppose otherwise. Then, by symmetry we may
assume that fa1; b1; a2; b2g and fa1; b1; a3; b3g are both independent in M: By
Theorem 2.6 and Lemma 3.8, N is isomorphic to L4; D4; or V8: Thus, since fa1; b1g is
a clonal class of N; the sets fa1; b1; a2; b2g and fa1; b1; a3; b3g cannot both be
independent in N: By symmetry, we assume that fa1; b1; a2; b2g is dependent in N:
Thus, fa1; b1; a2; b2; a5; b5g is a cyclic flat of M: The complement of a cyclic flat of M

is a cyclic flat of M: Thus fa4; b4; a5; b5g and fa3; b3; a4; b4g are cyclic flats of M:
But then fa3; b3; a4; b4; a5; b5g is a rank-4 cyclic flat of M; so fa1; b1; a2; b2g is a
cyclic flat of M; a contradiction. Therefore, we have proved that every rank-4 cyclic
flat of M is the union of rank-3 cyclic flats.
Let V ¼ f1; 2; 3; 4; 5g and construct a graph G1 with vertex set V such that

ijAEðG1Þ if and only if fai; bi; aj; bjg is a circuit. Note that M is uniquely determined

by G1: Since M is 3-connected and rðMÞ ¼ 5; each 4-circuit of M is also a flat. Define
G2 similarly with respect to M: Since each element of M has freedom 2 but
a1; a2; a3; a4; and a5 are in different clonal classes, it follows by Lemma 2.9 that, for
each iX2; there is a cyclic flat containing a1 and not ai: Thus, each vertex of G1 and,
similarly, each vertex of G2 has degree at least two. Now, for a graph G we define a
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simple graph Gþ on the same vertex set as G where ij is an edge of Gþ if G � fi; jg is
connected. It is easy to check that G2 ¼ Gþ

1 and G1 ¼ Gþ
2 :

If G1 is either a cycle or a clique, then M is isomorphic to either D5 or L5: Suppose
then that G1 is not a cycle or a clique. Now suppose that G1 contains a cycle of length
5: Since G1 is not itself a cycle, G1 contains the graph H1 (see Fig. 3) as a subgraph.

Now, Hþ
1 is a subgraph of G2; ðHþ

1 Þ
þ is a subgraph of G1; and so forth. However, the

sequence ðH1; Hþ
1 ; ðHþ

1 Þ
þ;yÞ converges to a clique so G1 is a clique. By this

contradiction we see that G1 does not contain a cycle of length 5. Similarly, G1 does
not contain H2 as a subgraph. Now H3 is the only 5-vertex graph that has minimum
degree at least 2 and that contains neither a cycle of length 5 nor H2 as a subgraph.

However, Hþ
3 is not connected, so G1aH3: This completes the proof. &

Proof of Theorem 3.4. Let M be a minor-minimal counter-example. By Theorem 2.6
and the previous lemmas, jEðMÞjX12 and EðMÞ is partitioned into clonal classes
ðfa1; b1g;y; far; brgÞ such that M=ai\bi is isomorphic to Lr�1 or Dr�1 for each i in
f1;y; rg:We call each of these clonal classes rods. Obviously M has rank r and rX6:
Let V ¼ f1;y; rg and, for XDV ; let RðXÞ denote fai : iAXg,fbi : iAXg: For each
k; let Nk denote M=ak\bk; and let Gk denote the graph with vertex set V � fkg and
edge set Ek where ijAEk if and only if Rðfi; jgÞ is a circuit of Nk: Thus, Gk is either a
clique or a circuit. Now let G be the graph with vertex set V and edge set E such that
ijAE if and only if Rðfi; jgÞ is a circuit of M: Note that G � fkg is a subgraph of Gk:
Moreover, if there is an edge ij of Gk that is not an edge of G � fkg; then it is
straightforward to prove that Rðfi; j; kgÞ is a cyclic flat of rank 4 in M:
Next we observe the following:
ðÞ If ij is an edge of both Gk and Gl where i; j; k; and l are distinct, then ij is an edge

of G.
Suppose that ijeEðGÞ; then Rðfi; jgÞ is an independent set of size 4. So Rðfi; j; kgÞ

and Rðfi; j; lgÞ cannot both be rank-4 flats. Hence, ij cannot be an edge of both Gk

and Gl :
Suppose that N1 is isomorphic to Dr�1; so G1 is a circuit. By possibly relabelling

the rods, we may assume that G1 is the circuit ð2; 3;y; r; 2Þ: Note that
Rðf3; 5gÞ,fa2g is independent in N1 and hence also in M: Thus, Rðf3; 5gÞ is
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independent in N2: Therefore, N2 cannot be a spike, so N2 is isomorphic to a free
swirl. Similarly, each of N1;y;Nr is isomorphic to Dr�1: Thus each of G1;y;Gr is a
circuit. Consider the graph G0 that is the union of G1;y;Gr; where each edge
receives a weight equal to the number of members of fG1;y;Grg that contain it. G is
a subgraph of G0: Since each vertex i of G0 has degree 2 in each Gj with jai; the sum

of the weights of the edges of G0 incident with i is 2ðr � 1Þ: Since no edge of G0 has
weight more than r � 1; it follows that at least two edges of G0 incident with i have
weight at least 2. By ðÞ; such edges are edges of G: Thus every vertex of G has degree
at least two. If G has a vertex of degree at least 3 or has a circuit with fewer than
r � 1 edges, then some G � fig and hence some Gi has the same property; a
contradiction. We conclude that every vertex of G has degree 2 and G is a circuit. We
show next that M is the free swirl Dr whose 4-circuits are the circuits Rðfi; jgÞ such
that ijAEðGÞ: Specifically, we show that the non-spanning circuits of M and Dr

coincide. The non-spanning circuits of Dr are all of the sets that can be formed by
taking k consecutive rods for some k with 2pkpr � 2 and choosing 2 elements from
the first and last rods and 1 element from each of the other chosen rods. In M; the
union of j consecutive rods has rank j þ 1 for all positive jpr � 1: Let D be a non-
spanning circuit of Dr meeting k rods and assume that D-fai; big is empty. Then
M=ai\bi has D as a circuit. Thus either D or D,faig is a circuit of M: In the latter
case, D spans k þ 1 rods of M so rMðDÞXk þ 2: But D is contained in k rods of M;
so rMðDÞpk þ 1: It follows from this contradiction that every non-spanning circuit
of Dr is a circuit of M: A similar argument shows that every non-spanning circuit of
M is a circuit of Dr: Thus M is a free swirl.
Now consider the case that each of N1;y;Nr is isomorphic to Lr�1: Then each of

G1;G2;y;Gr is a clique so, by ðÞ; G is a clique. To see that M is isomorphic to Lr;
let C be a non-spanning circuit of M that has more than 4 elements. We may assume
that, for some i; the circuit C contains ai but not bi: Then C is a non-spanning circuit
of M=ai\bi: Thus C ¼ Rðfj; kgÞ for some j and k distinct from i: Hence C,faig is a
circuit of M of rank 4. Now, for some l; this circuit does not span fal ; blg; so it is
a circuit of M=al\bl and it is non-spanning since M has rank at least 6. As M=al\bl is
a free spike, this is a contradiction. We conclude that the only non-spanning circuits
of M are the sets Rðfi; jgÞ; so M is a free spike. &

4. A short proof of non-GF(5)-representability

Let M be a matroid that is not representable over GF(5). In what follows, suppose
that we have a Claimant whose brief is to succinctly prove to an Adjudicator that M

is not GF(5)-representable. The Claimant knows everything about M but can only
reveal quadratically many rank-values to the Adjudicator. The Claimant can find
a minimal non-GF(5)-representable minor N ¼ M\D=C of M: Now, for any
XDEðNÞ; we have rNðX Þ ¼ rMðX,CÞ � rMðCÞ; thus, one rank evaluation for N

requires only two rank evaluations for M (and if we need to make multiple rank
evaluations for N; we only need to compute rMðCÞ once). The Adjudicator concedes
that it suffices to show that N is not GF(5)-representable. Henceforth, by replacing
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M with N; we may assume that each proper minor of M is GF(5)-representable.
Moreover, we may assume that jEðMÞjX8; since otherwise the Claimant could
reveal M exhaustively. By Lemma 3.1, M does not contain a T7-minor. Now, by
Corollary 3.5, the Claimant can find a sequence M1;y;Mt of matroids such that

* jEðM1Þj ¼ 6; Mt ¼ M;
* for each iAf1;y; tg; either siðMiÞ or coðMiÞ is 3-connected, and
* for each iAf2;y; tg; there exists eAEðMiÞ such that either e has freedom at most

2 in Mi and Mi\e ¼ Mi�1 or e has cofreedom at most 2 in Mi and Mi=e ¼ Mi�1:

(Note that, if e and f are parallel elements and siðMÞ is 3-connected, then e is fixed
and siðM\eÞ is 3-connected.)
For each i; let Ri be a complete set of inequivalent GF(5)-representations of Mi;

that is, any GF(5)-representation of Mi is strongly equivalent to some representation
in Ri; but no two representations in Ri are strongly equivalent. By Theorem 2.2, Ri

contains at most 6 representations for each i: Moreover, since M is not GF(5)-
representable, Rt is empty. The Claimant, who knows everything about M; can
determine ðR1;y;RtÞ: The Claimants proof will consist of the sets ðR1;y;RtÞ
along with a recursive argument that each representation of Mi is equivalent with
one in Ri: Since jEðM1Þj ¼ 6; the Claimant can reveal M1 to the Adjudicator who
then can verify the properties of the set R1 exhaustively.
Suppose that the Adjudicator is already satisfied that each GF(5)-representation

of Mk�1 is strongly equivalent to some representation in Rk�1: By duality we may
assume that Mk�1 ¼ Mk\e for some eAEðMkÞ: Let r be the rank of Mk: Consider
some representation RARk�1: We think of R as a restriction of PGðr � 1; 5Þ: Let K

be the set of points in PGðr � 1; 5Þ that when added to R give a representation of Mk:
The key point, to be proved in the theorem below, is that the rank of K is at most the
freedom of e in Mk (which is at most 2).
The Claimant knows K ; but the Adjudicator remains to be convinced. The

Claimant will generate a set of at most 6 points in PGðr � 1; 5Þ and prove to the
Adjudicator that these contain K : By considering each of the representations in
Rk�1; the Claimant will generate a list of at most 36 ‘‘configurations’’ (these are
restrictions of PGðr � 1; 5Þ) that provably contain all representations of Mk up to
strong equivalence. Any configuration in the list that is not a representation of Mk

can be exposed by the Claimant by revealing the rank of a single set. Thus, the
Claimant will convince the Adjudicator that each GF(5)-representation of Mk is
strongly equivalent to some representation in Rk:
It remains to generate a small set of points that provably contains K ; this is done

inductively. The Claimant constructs a sequence K0;y;Km of flats of PGðr � 1; 5Þ as
follows. Let K0 ¼ PGðr � 1; 5Þ: For the flat Ki either:

1. There is a set SiDEðMkÞ � feg and an element ai of Ki such that e is in the closure
of Si in Mk and ai is not spanned by Si in PGðr � 1; 5Þ: In this case, the Claimant
defines Kiþ1 to be the intersection of Ki with the flat of PGðr � 1; 5Þ spanned by Si:

2. For each flat F of Mk containing e such that e is not a coloop of MkjF ; the flat Ki

is contained in the flat of PGðr � 1; 5Þ that is spanned by F � feg: Then i ¼ m:
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Note that K is contained in each of K0;y;Km and mpr: The Claimant reveals
the sets ðS0;y;Sm�1Þ to the Adjudicator. Then, by revealing OðrÞ rank-values
the Claimant convinces the Adjudicator that e is in the closure of each of
S0;y;Sm�1: Given S0;y;Sm�1; the Adjudicator can then determine K0;y;Km

efficiently using routine linear algebra techniques. Now we are in one of the
following cases.

Case 1: There is a set SDEðMkÞ � feg such that e is not in the closure of S in Mk

but Km is contained in the flat spanned by S in PGðr � 1; 5Þ:
Case 2: For each flat F of Mk that does not contain e; the flat Km is not contained

in the flat of PGðr � 1; 5Þ that is spanned by F :
In Case 1, the Claimant can easily convince the Adjudicator that K is empty.

Indeed, two rank-values satisfy the Adjudicator that eAclMðSÞ and the Adjudicator
can check that Km is spanned by S; this proves that K is empty. Now consider the
second case. The following theorem shows that Km has rank at most 2. Lines in
PGðr � 1; 5Þ have 6 points, so there are at most 6 points in Km:
In summary, we need only OðrÞ rank evaluations to determine Rk from Rk�1:

Therefore, we require only OðjEj2Þ rank evaluations to prove that M is not
quinternary.

Theorem 4.1. Let e be an element of a rank-r matroid M: Suppose that R is a GFðqÞ-
representation of M\e considered as a restriction of PGðr � 1; qÞ: Now suppose that K

is a flat of PGðr � 1; qÞ such that, for each flat F of M in which e is not a coloop, eAF

if and only if the flat of PGðr � 1; qÞ that is spanned by F � feg contains K : Then the

rank of K is at most the freedom of e in M:

Proof. Let F be an infinite extension field of GFðqÞ and let P be the projective
space of rank r over F: Thus, P contains PGðr � 1; qÞ: Let K 0 be the flat of P
that is spanned by K : Therefore, for each flat F of M in which e is not a coloop, e is
in F if and only if the flat of P that is spanned by F � feg contains K 0: Let K

denote the set of points x of K 0 for which R,fxg is an F-representation of M: Note
that an element x of K 0 is in K if and only if, for each flat F of M not containing e;
the point x is not contained in the flat of P spanned by F : Now there is a finite
number of flats F of M that do not contain e: Therefore, by a simple comparison of
measures, K spans K 0: It is now straightforward to prove that K is spanned by
some independent set S such that S is a clonal class of the matroid M 0 that is
represented by R,S: Note that M 0 is an extension of M; so jSj is at most the
freedom of e in M: &
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