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Let M be a minor-closed class of matroids that does not contain
arbitrarily long lines. The growth rate function, h : N → N of M is
given by

h(n) = max
{|M|: M ∈ M is simple, and r(M)� n

}
.

The Growth Rate Theorem shows that there is an integer c such
that either: h(n) � cn, or

(n+1
2

) � h(n) � cn2, or there is a prime-

power q such that qn−1
q−1 � h(n) � cqn; this separates classes into

those of linear density, quadratic density, and base-q exponential
density. For classes of base-q exponential density that contain no
(q2 + 1)-point line, we prove that h(n) = qn−1

q−1 for all sufficiently
large n. We also prove that, for classes of base-q exponential
density that contain no (q2 + q + 1)-point line, there exists k ∈ N

such that h(n) = qn+k−1
q−1 − q q2k−1

q2−1
for all sufficiently large n.

© 2012 Published by Elsevier Inc.

1. Introduction

We prove a refinement of the Growth Rate Theorem for certain exponentially dense classes.
We call a class of matroids minor-closed if it is closed under both minors and isomorphism. The
growth rate function, hM :N→ N∪ {∞} for a class M of matroids is defined by

hM(n) = max
{|M|: M ∈ M is simple, and r(M)� n

}
.
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The following striking theorem summarizes the results of several papers, [1,2,4].

Theorem 1.1 (Growth Rate Theorem). Let M be a minor-closed class of matroids, not containing all simple
rank-2 matroids. Then there is an integer c such that either:

(1) hM(n) � cn for all n � 0, or

(2)
(n+1

2

)
� hM(n) � cn2 for all n � 0, and M contains all graphic matroids, or

(3) there is a prime power q such that qn−1
q−1 � hM(n) � cqn for all n � 0, and M contains all GF(q)-

representable matroids.

In particular, the theorem implies that hM(n) is finite for all n if and only if M does not contain
all simple rank-2 matroids. If M is a minor-closed class satisfying (3), then we say that M is base-q
exponentially dense. Our main theorems precisely determine, for many such classes, the eventual value
of the growth rate function:

Theorem 1.2. Let q be a prime power. If M is a base-q exponentially dense minor-closed class of matroids
such that U2,q2+1 /∈M, then

hM(n) = qn − 1

q − 1

for all sufficiently large n.

Consider, for example, the class M of matroids with no U2,�+2-minor, where � � 2 is an integer.
By the Growth Rate Theorem, this class is base-q exponentially dense, where q is the largest prime-
power not exceeding �. Clearly q2 > �, so, by Theorem 1.2, hM(n) = qn−1

q−1 for all large n. This special
case is the main result of [3], which essentially also contains a proof of Theorem 1.2.

Theorem 1.3. Let q be a prime power. If M is a base-q exponentially dense minor-closed class of matroids
such that U2,q2+q+1 /∈M, then there is an integer k � 0 such that

hM(n) = qn+k − 1

q − 1
− q

q2k − 1

q2 − 1

for all sufficiently large n.

Consider, for example, any proper minor-closed subclass M of the GF(q2)-representable matroids
that contains all GF(q)-representable matroids. Such classes are all base-q exponentially dense and do
not contain U2,q2+2, so Theorem 1.3 applies; this special case is the main result of [8].

If the hypothesis of Theorem 1.3 is weakened to allow U2,q2+q+1 ∈ M, then the conclusion no
longer holds. Consider the class M1 defined to be the set of truncations of all GF(q)-representable

matroids; note that U2,q2+q+2 /∈M1 and hM1 (n) = qn+1−1
q−1 for all n � 2.

More generally, for each k � 0, if Mk is the set of matroids obtained from GF(q)-representable

matroids by applying k truncations, then hMk (n) = qn+k−1
q−1 for all n � 2. This expression differs from

that in Theorem 1.3 by only the constant q q2k−1
q2−1

. It is conjectured [8,9] that, for each k, these are the

extremes in a small spectrum of possible growth rate functions:

Conjecture 1.4. Let q be a prime power, and M be a base-q exponentially dense minor-closed class of ma-

troids. There exist integers k and d with k � 0 and 0 � d � q2k−1
q2−1

, such that hM(n) = qn+k−1
q−1 − qd for all

sufficiently large n.
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We conjecture further that, for every allowable q, k and d, there exists a minor-closed class with
the above as its eventual growth rate function.

There is a stronger conjecture [9] regarding the exact structure of the extremal matroids. For a
non-negative integer k, a k-element projection of a matroid M is a matroid of the form N/C , where
N\C = M , and C is a k-element set of N .

Conjecture 1.5. Let q be a prime power, and M be a base-q exponentially dense minor-closed class of ma-
troids. There exists an integer k � 0 such that, if M ∈ M is a simple matroid of sufficiently large rank with
|M| = hM(r(M)), then M is the simplification of a k-element projection of a projective geometry over GF(q).

We will show, as was observed in [9], that this conjecture implies the previous one; see Lemma 3.1.

2. Preliminaries

A matroid M is called (q,k)-full if

ε(M) � qr(M)+k − 1

q − 1
− q

q2k − 1

q2 − 1
;

moreover, if strict inequality holds, M is (q,k)-overfull.
Our proof of Theorem 1.3 follows a strategy similar to that in [8]; we show that, for any in-

teger n > 0, every (q,k)-overfull matroid in EX(U2,q2+q+1), with sufficiently large rank, contains a
(q,k + 1)-full rank-n minor. The Growth Rate Theorem tells us that a given base-q exponentially
dense minor-closed class cannot contain (q,k)-full matroids for arbitrarily large k, so this gives the
result. Theorem 1.2 is easier and will follow along the way.

We follow the notation of Oxley [10]; flats of rank 1, 2 and 3 are respectively points, lines and
planes of a matroid. If M is a matroid, and X, Y ⊆ E(M), then

�
M(X, Y ) = rM(X)+ rM(Y )− rM(X ∪ Y )

is the local connectivity between X and Y . If
�

M(X, Y ) = 0, then X and Y are skew in M , and if X is a
collection of sets in M such that each X ∈X is skew to the union of the sets in X − {X}, then X is a
mutually skew collection of sets. A pair (F1, F2) of flats in M is modular if

�
M(F1, F2) = rM(F1 ∩ F2),

and a flat F of M is modular if, for each flat F ′ of M , the pair (F , F ′) is modular. In a projective
geometry each pair of flats is modular and, hence, each flat is modular.

For a matroid M , we write |M| for |E(M)|, and ε(M) for | si(M)|, the number of points in M . Thus,
hM(n) = max(ε(M): M ∈ M, r(M) � n). Two matroids are equal up to simplification if their simpli-
fications are isomorphic. We let EX(M) denote the set of matroids with no M-minor; Theorems 1.2
and 1.3 apply to subclasses of EX(U2,q2+1) and EX(U2,q2+q+1) respectively. The following theorem of
Kung [6] bounds the density of a matroid in EX(U2,�+2):

Theorem 2.1. Let �� 2 be an integer. If M ∈ EX(U2,�+2), then ε(M) � �r(M)−1
�−1 .

The next result is an easy application of the Growth Rate Theorem.

Lemma 2.2. There is a real-valued function α2.2(n, β, �) so that, for any integers n � 1 and � � 2, and
real number β > 1, if M ∈ EX(U2,�+2) is a matroid such that ε(M) � α2.2(n, β, �)βr(M) , then M has a
PG(n − 1,q)-minor for some q > β .

The following lemma was proved in [8]:

Lemma 2.3. Let λ,μ be real numbers with λ > 0 and μ > 1, let t � 0 and � � 2 be integers, and let A and B
be disjoint sets of elements in a matroid M ∈ EX(U2,�+2) with rM(B) � t < r(M) and ε(M|A) > λμrM (A) .

Then there is a set A′ ⊆ A that is skew to B and satisfies ε(M|A′) > λ(
μ−1

�
)tμrM (A′) .
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3. Projections

Recall that a k-element projection of a matroid M is a matroid of the form N/C , where C is a
k-element set of a matroid N satisfying N\C = M .

In this section we are concerned with projections of projective geometries. Consider a k-element
set C in a matroid N such that N\C = PG(n + k − 1,q) and let M = N/C . Thus M is a k-element
projection of PG(n + k − 1,q). Below are easy observations that we use freely.

• If C is not independent, then M is a (k − 1)-element projection of PG(n + k − 1,q).
• If C is not coindependent, then M is a (k − 1)-element projection of PG(n + k − 1,q).
• If C is not closed in N , then M is, up to simplification, a (k − 1)-element projection of PG(n +

k − 2,q).
• M has a PG(r(M) − 1,q)-restriction.

Our next result gives the density of projections of projective geometries; given such a projection M ,
this density is determined to within a small range by the minimum k for which M is a k-element
projection. As mentioned earlier, this lemma also tells us that Conjecture 1.5 implies Conjecture 1.4.

Lemma 3.1. Let q be a prime power, and k � 0 be an integer. If N is a matroid, and C is a rank-k flat of N such

that N\C ∼= PG(r(N) − 1,q), then ε(N/C) = ε(N\C) − qd for some d ∈ {0,1, . . . ,
q2k−1
q2−1

}.

Proof. Each point P of N/C is a flat of the projective geometry N\C , so |P | = qrN (P )−1
q−1 = 1 +

q qrN (P )−1−1
q−1 . Therefore ε(N\C) − ε(N/C) is a multiple of q.

Let P denote the set of all points in N/C that contain more than one element, and let F be the
flat of N\C spanned by the union of these points. Choose a minimal set P0 ⊆P of points spanning F
in N/C (so |P0| = rN/C (F )); if possible choose P0 so that it contains a set in P ∈ P with rN (P ) > 2.
Note that: (1) the points in P0 are mutually skew in N/C , (2) each pair of flats of N\C is modular,
and (3) C is a flat of N . It follows that P0 is a mutually skew collection of flats in N\C . Now, for each
P ∈ P0, rN(P ) > rN/C (P ). Therefore, since r(N) − r(N/C) = k, we have rN/C (F ) = |P0| � k. Moreover,
if rN/C (F ) = k, then each set in P0 is a line of N\C , and, hence, by our choice of P0, each set in P is
a line in N\C .

If rN/C (F ) = k, then we have |F | = q2k−1
q−1 and |P| � |F |

q+1 . This gives ε(N\C) − ε(N/C) � q |F |
q+1 =

q q2k−1
q2−1

, as required.

If rN/C (F ) < k, then ε(N\C) − ε(N/C) � |F |� q2k−1−1
q−1 . It is routine to verify that q2k−1−1

q−1 < q q2k−1
q2−1

,

which proves the result. �
The next two lemmas consider single-element projections, highlighting the importance of U2,q2+1

and U2,q2+q+1 in Theorems 1.2 and 1.3.

Lemma 3.2. Let q be a prime power and let e be an element of a matroid M such that M\e ∼= PG(r(M)− 1,q).
Then there is a unique minimal flat F of M\e that spans e. Moreover, if r(M) � 3 and rM(F ) � 2, then M/e
contains a U2,q2+1-minor, and if rM(F ) � 3, then M/e contains a U2,q2+q+1-minor.

Proof. If F1 and F2 are two flats of M\e that span e, then, since rM(F1 ∩ F2)+ rM(F1 ∪ F2) = rM(F1)+
rM(F2), it follows that F1 ∩ F2 also spans e. Therefore there is a unique minimal flat F of M\e that
spans e. The uniqueness of F implies that e is freely placed in F .

Suppose that rM(F ) � 3. Thus (M/e)|F is the truncation of a projective geometry of rank � 3. So
M/e contains a truncation of PG(2,q) as a minor; therefore M/e has a U2,q2+q+1-minor.

Now suppose that r(M) � 3 and that rM(F ) = 2. If F ′ is a rank-3 flat of M\e containing F , then
ε((M/e)|F ′) = q2 + 1, so M/e has a U2,q2+1-minor. �
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An important consequence is that, if M is a simple matroid with a PG(r(M) − 1,q)-restriction R
and no U2,q2+q+1-minor, then every e ∈ E(M)− E(R) is spanned by a unique line of R . The next result
describes the structure of the projections in EX(U2,q2+q+1).

Lemma 3.3. Let q be a prime power, and M ∈ EX(U2,q2+q+1) be a simple matroid, and e ∈ E(M) be such that
M\e ∼= PG(r(M) − 1,q). If L is the unique line of M\e that spans e, then L is a point of M/e, and each line of
M/e containing L has q2 + 1 points and is modular.

Proof. Let L′ be a line of M/e containing L. Then L′ is a plane of M\e, so, by Lemma 3.2, L′ has q2 +1
points in M/e.

Note that e is freely placed on the line L ∪{e} in M . It follows that M is GF(q2)-representable. Now
L′ is a (q2 + 1)-point line in the GF(q2)-representable matroid M/e; hence, L′ is modular in M/e. �
4. Dealing with long lines

This section contains two lemmas that construct a U2,q2+q+1-minor of a matroid M with a
PG(r(M) − 1,q)-restriction R and some additional structure.

Lemma 4.1. Let q be a prime power, and M be a simple matroid of rank at least 7 such that

• M has a PG(r(M) − 1,q)-restriction R, and
• M has a line L containing at least q2 + 2 points, and
• E(M) �= E(R) ∪ L,

then M has a U2,q2+q+1-minor.

Proof. We may assume that E(M) = E(R) ∪ L ∪ {z}, where z /∈ L ∪ E(R). Let F be a minimal flat of R
that spans L∪{z}. It follows easily from Lemma 3.2, that either M has a U2,q2+q+1-minor or rM(F ) � 6.
To simplify the proof we will prove the lemma with the weaker hypothesis that r(M) � 1 + rM(F ),
in place of the hypothesis that r(M) � 7, and we will suppose that (M, R, L) forms a minimum rank
counterexample under these weakened hypotheses.

Let Lz denote the line of R that spans z in M . Since z /∈ L, we have rM(L ∪ Lz) � 3. We may
assume that rM(L ∪ Lz) = 3, since otherwise we could contract a point in F − (L ∪ Lz) to obtain a
smaller counterexample. Similarly, we may assume that rM(F ) = 3 and r(M) = 4, as otherwise we
could contract an element of F − clM(L ∪ Lz) or E(M) − clM(F ).

By Lemma 3.3, Lz is a point of (M/z)|R and each line of (M/z)|R is modular and has q2 + 1
points. One of these lines is F , and, since F spans L, F spans a line with q2 + 2 points in M/z. Let
e ∈ clM/z(F ) be an element that is not in parallel with any element of F . Since F is a modular line in
(M/z)|R , the point e is freely placed on the line F ∪ {e} in (M/z)|(R ∪ {e}). Therefore ε(M/{e, z}) �
ε((M/{z})|R) − q2 = 1 + q2(q + 1) − q2 = q3 + 1, contradicting the fact that M ∈ EX(U2,q2+q+1). �
Lemma 4.2. Let q be a prime power, and k � 3 be an integer. If M is a matroid of rank at least k + 7, with

a PG(r(M) − 1,q)-restriction, and a set X ⊆ E(M) with rM(X) � k and ε(M|X) >
q2k−1
q2−1

, then M has a

U2,q2+q+1-minor.

Proof. Let M0 be a matroid satisfying the hypotheses, with a PG(r(M0)− 1,q)-restriction R0. We may
assume that M0 ∈ EX(U2,q2+q+1), and by choosing a rank-k set containing X , we may also assume that
rM0 (X) = k. By Lemma 3.2, R0 has a flat F0 of rank at most 2k such that X ⊆ clM0 (F0). By contracting
at most k points in F0 − clM0 (X), we obtain a minor M of M0, of rank at least 7, such that rM(X) = k,
and M has a PG(r(M) − 1,q)-restriction R , and there is a rank-k flat F of R such that X ⊆ clM(F ).
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We may assume that M is simple and that X is a flat of M , so F ⊆ X . Let n = |F | = qk−1
q−1 . By

Lemma 3.2, each point of X is spanned in M by a line of R|F . There are
(n

2

)
/
(q+1

2

)
such lines, each

containing q + 1 points of F . If each of these lines spans at most (q2 − q) points of X − F , then

|X | = |F | + |X − F | � qk − 1

q − 1
+ (q2 − q)

(n
2

)
(q+1

2

) = q2k − 1

q2 − 1
,

contradicting the definition of X . Therefore, some line L of M|X contains at least q2 + 2 points.

We also have |L|� q2 + q, so a calculation gives |X − L| > q2k−1
q2−1

− (q2 + q) � qk−1
q−1 = |F |, so X �= F ∪ L.

Applying Lemma 4.1 to M|(E(R) ∪ X) gives the result. �
5. Matchings and unstable sets

For an integer k � 0, a k-matching of a matroid M is a mutually skew k-set of lines of M . Our first
theorem was proved in [8], and also follows routinely from the much more general linear matroid
matching theorem of Lovász [7]:

Theorem 5.1. There is an integer-valued function f5.1(q,k) so that, for any prime power q and integers n � 1
and k � 0, if L is a set of lines in a matroid M ∼= PG(n − 1,q), then either

(i) L contains a (k + 1)-matching of M, or
(ii) there is a flat F of M with rM(F ) � k, and a set L0 ⊆L with |L0|� f5.1(q,k), such that every line L ∈L

either intersects F , or is in L0 . Moreover, if rM(F ) = k, then L0 = ∅.

We now define a property in terms of a matching in a spanning projective geometry. Let q be
a prime power, M ∈ EX(U2,q2+q+1) be a simple matroid with a PG(r(M) − 1,q)-restriction R , and
X ⊆ E(M\R) be a set such that M|(E(R) ∪ X) is simple. Recall that, by Lemma 3.2, each x ∈ X lies in
the closure of exactly one line Lx of R . We say that X is R-unstable in M if the lines {Lx: x ∈ X} are
a matching of size |X | in R .

Lemma 5.2. There is an integer-valued function f5.2(q,k) so that, for any prime power q and integer k � 0, if
M ∈ EX(U2,q2+q+1) is a matroid of rank at least 3 with a PG(r(M) − 1,q)-restriction R, then either

(i) there is an R-unstable set of size k + 1 in M, or
(ii) R has a flat F with rank at most k such that ε(M/F ) � ε(R/F ) + f5.2(q,k).

Proof. Let q be a prime power, and k � 0 be an integer. Set f5.2(q,k) = (q2 + q) f5.1(q,k). Let M be
a matroid with a PG(r(M) − 1,q)-restriction R . We may assume that M is simple, and that the first
outcome does not hold. Let L be the set of lines L of R such that | clM(L)| > | clR(L)|. If L contains a
(k+1)-matching of R , then choosing a point from clM(L)−clR(L) for each line L in the matching gives
an R-unstable set of size k + 1. We may therefore assume that L contains no such matching. Thus, let
F and L0 be the sets defined in the second outcome of Theorem 5.1. Let D = ⋃

L∈L0
clM(L). We have

|D| � (q2 + q)|L0| � f5.2(q,k). By Lemma 3.2, each element of M\D either lies the closure of a line
in L or in a point of R , so is parallel in M/F to an element of R . Therefore, ε(M/F ) � ε(R/F ) + |D|;
the result now follows. �

We use an unstable set to construct a dense minor. Recall that (q,k)-full and (q,k)-overfull were
defined at the start of Section 2.

Lemma 5.3. Let q be a prime power, and k � 1 and n > k be integers. If M ∈ EX(U2,q2+q+1) is a matroid of
rank at least n + k with a PG(r(M) − 1,q)-restriction R, and X is an R-unstable set of size k in M, then M has
a rank-n (q,k)-full minor N with a U2,q2+1-restriction.
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Proof. We may assume by taking a restriction if necessary that r(M) = n + k, and E(M) = E(R) ∪ X ;
we show that N = M/X has the required properties. For each x ∈ X , let Lx denote the line of R
that spans X ; thus {Lx: x ∈ X} is a matching. By the definition of instability, it is clear that X is
independent, so r(N) = n. Let x ∈ X , and P be a plane of R that contains Lx and is skew to X −{x}. By
Lemma 3.3, (M/x)|P has a U2,q2+1-restriction. Since X − {x} is skew to P , M/X also has a U2,q2+1-
restriction.

To complete the proof it is enough, by Lemma 3.1, to show that clM(X) is disjoint from R . This
is trivial if X is empty, so consider x ∈ X and let R ′ = si(R/Lx). Note that R ′ ∼= PG(n + k − 3,q) is a
spanning restriction of M/Lx and X − {x} is R ′-unstable. Inductively, we may assume that clM/Lx (X −
{x}) is disjoint from R/Lx , but this implies that clM(X) is disjoint from R , as required. �
6. The spanning case

In this section we consider matroids that are spanned by a projective geometry.

Lemma 6.1. There is an integer-valued function f6.1(n,q,k) such that, for any prime power q and integers
k � 0 and n > k + 1, if M ∈ EX(U2,q2+q+1) is a matroid of rank at least f6.1(n,q,k) such that

• M has a PG(r(M) − 1,q)-restriction R, and
• M is (q,k)-overfull,

then M has a rank-n (q,k + 1)-full minor N with a U2,q2+1-restriction.

Proof. Let k � 0 and n > k + 1 be integers, and q be a prime power. Let m > max(k + 7,n + k + 1) be
an integer such that

qr+k − 1

q − 1
− q

q2k − 1

q2 − 1
>

qr+ j − 1

q − 1
+ max

(
q2 + q,

(
q2 − q

)
f5.1(q,k)

)

for all r � m and 0 � j < k. We set f6.1(n,q,k) = m.
Let M ∈ EX(U2,q2+q+1) be a (q,k)-overfull matroid of rank at least m, and let R be a PG(r(M) − 1,

q)-restriction of M . We will show that M has the required minor N; we may assume that M is simple.

6.1.1. If k � 1, then no line of M contains more than q2 + 1 points.

Proof of the claim. Let L be a line of M containing at least q2 + 2 points. We have |L| � q2 + q, so

|E(R) ∪ L| � qr(M)−1
q−1 + q2 + q < |M| by the definition of m. Therefore, there is a point of M in neither

R nor L. By Lemma 4.1, M has a U2,q2+q+1-minor, a contradiction. �
Let L be the set of lines of R , and L+ be the set of lines of R that are not lines of M; note that

each L ∈ L+ contains exactly q + 1 points of R , and spans an extra point in M . By Lemma 3.2, every
point of M\E(R) is spanned by a line in L+ .

6.1.2. L+ contains a (k + 1)-matching of R.

Proof of the claim. If k = 0, then since |M| > |R|, we must have L+ �= ∅, so the claim is trivial.
Thus, assume that k � 1 and that there is no such matching. Let F ⊆ E(R) and L0 ⊆ L be the sets
defined in Theorem 5.1. Let j = rM(F ); we know that 0 � j � k, and that L0 is empty if j = k. Let
LF = {L ∈L: |L ∩ F | = 1}. By definition, every point of M\R is in the closure of F , or the closure of a
line in LF ∪L0.

Every point of R\F lies on exactly |F | lines in LF , and each such line contains exactly q points
of R\F , so
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|LF | = |F ||R\F |
q

= (q j − 1)(qr(M) − q j)

q(q − 1)2
.

Furthermore, each line in L contains q + 1 points of R , and its closure in M contains at most q2 − q

points of M\R by the first claim. We argue that | clM(F )| � q2 j−1
q2−1

; if j � 2, then this follows from the

first claim, and otherwise, we have r(M) � m � k + 7, so the bound follows by applying Lemma 4.2 to
M and clM(F ). We now estimate |M|:

|M| = |R| + ∣∣M\E(R)
∣∣

� |R| +
∑

L∈LF ∪L0

∣∣clM(L) − E(R)
∣∣ + ∣∣clM(F ) − F

∣∣

� qr(M) − 1

q − 1
+ (

q2 − q
)(|LF | + |L0|

) +
(

q2 j − 1

q2 − 1
− q j − 1

q − 1

)
.

Now, a calculation and our value for LF obtained earlier together give |M| � qr(M)+ j−1
q−1 − q q2 j−1

q2−1
+

(q2 − q)|L0|. If j < k, then, since r(M) � m and |L0| � f5.1(q,k), we have |M| � qr(M)+k−1
q−1 − q q2k−1

q2−1
by

definition of m. If j = k, then |L0| = 0, so the same inequality holds. In either case, we contradict the
fact that M is (q,k)-overfull. �

Now, L+ has a matching of size k + 1, so by construction of L+ , there is an R-unstable set X of
size k + 1 in M . Since r(M) � m > n + k + 1, the required minor N is given by Lemma 5.3. �
7. Connectivity

A matroid M is weakly round if there is no pair of sets A, B with union E(M), such that rM(A) �
r(M) − 2 and rM(B) � r(M) − 1. Any matroid of rank at most 2 is clearly weakly round. This is a
variation on roundness, a notion equivalent to infinite vertical connectivity introduced by Kung [5]
under the name of ‘non-splitting’. Weak roundness is preserved by contraction; the following lemma
is easily proved, and we use it freely.

Lemma 7.1. If M is a weakly round matroid, and e ∈ E(M), then M/e is weakly round.

The first step in our proof of the main theorems will be to reduce to the weakly round case; the
next two lemmas give this reduction.

Lemma 7.2. If M is a matroid, then M has a weakly round restriction N such that ε(N) � ϕr(N)−r(M)ε(M),
where ϕ = 1

2 (1 + √
5 ).

Proof. We may assume that M is not weakly round, so r(M) > 2, and there are sets A, B of M
such that rM(A) = r(M) − 2, rM(B) = r(M) − 1, and E(M) = A ∪ B . Now, since ϕ−1 + ϕ−2 = 1, either
ε(M|A) � ϕ−2ε(M) or ε(M|B) � ϕ−1ε(M); in the first case, by induction M|A has a weakly round
restriction N with ε(N) � ϕr(N)−r(M|A)ε(M|A) � ϕr(N)−r(M)+2ϕ−2ε(M) = ϕr(N)−r(M)ε(M), giving the
result. The second case is similar. �
Lemma 7.3. Let q be a prime-power, and k � 0 be an integer. If M is a base-q exponentially dense minor-
closed class of matroids that contains (q,k)-overfull matroids of arbitrarily large rank, thenM contains weakly
round, (q,k)-overfull matroids of arbitrarily large rank.
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Proof. Note that ϕ < 2 � q; by the Growth Rate Theorem, there is an integer t > 0 such that

ε(M) �
(

q

ϕ

)t qr(M)+k − 1

q − 1
− q

q2k − 1

q2 − 1
,

for all M ∈M.
For any integer n > 0, consider a (q,k)-overfull matroid M ∈ M with rank at least n + t . By

Lemma 7.2, M has a weakly round restriction N such that ε(N) � ϕ−sε(M), where s = r(M) − r(N).
We have

ε(N) � ϕ−sε(M)

> ϕ−s
(

qr(M)+k − 1

q − 1
− q

q2k − 1

q − 1

)

>

(
q

ϕ

)s qr(N)+k − 1

q − 1
− q

q2k − 1

q2 − 1
.

Thus N is (q,k)-overfull. Moreover, by the definition of t , we have s < t and, hence, r(N) > n. �
8. Exploiting connectivity

We now exploit weak roundness by showing that any interesting low-rank restriction can be con-
tracted into the span of a projective geometry.

Lemma 8.1. There is an integer-valued function f8.1(n,q, t, �) so that, for any prime power q, and integers
n � 1, �� 2 and t � 0, if M ∈ EX(U2,�+2) is a weakly round matroid with a PG( f8.1(n,q, t, �) − 1,q)-minor,
and T is a restriction of M of rank at most t, then there is a minor N of M of rank at least n, such that T is a
restriction of N, and N has a PG(r(N) − 1,q)-restriction.

Proof. Let n � 1, � � 2 and t � 0 be integers. Let n′ = max(n, t + 1), and set f8.1(n,q, t, �) to be an
integer m such that m � 2t , and

qm − 1

q − 1
� α2.2

(
n′,q − 1

2
, �

)(
�(q − 1

2 )

q − 3
2

)t(
q − 1

2

)m

.

Let M ∈ EX(U2,�+2) be a weakly round matroid with a PG(m − 1,q)-minor S = M/C\D , where
r(S) = r(M) − rM(C). Let T be a restriction of M of rank at most t; we show that the required minor
exists.

8.1.1. There is a weakly round minor M1 of M, such that T is a restriction of M1 , and M1 has a PG(n′ − 1,q)-
restriction R1 .

Proof of the claim. Let C ′ ⊆ C be maximal such that T is a restriction of M/C ′ , and let M ′ = M/C ′ .
Maximality implies that C − C ′ ⊆ clM′ (E(T )), so rM′ (C − C ′)� t . Now, rM′ (E(S)) = r(S)+ rM′ (C − C ′) �
m + t . Therefore,

εM ′
(

E(S)
) = qm − 1

q − 1
� α2.2

(
n′,q − 1

2
, �

)
�t

(
q − 3

2

)−t(
q − 1

2

)m+t

� α2.2

(
n′,q − 1

2
, �

)(
�

(
q − 3

2

)−1)t(
q − 1

2

)rM′ (E(S))

.
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By Lemma 2.3 applied to E(S) and E(T ), with μ = q − 1
2 , there is a set A ⊆ E(S), skew to E(T )

in M ′ , such that

ε
(
M ′∣∣A

)
� α2.2

(
n′,q − 1

2
, �

)(
q − 1

2

)r(M ′|A)

.

Therefore, Lemma 2.2 implies that M ′|A has a PG(n′ − 1,q′)-minor R1 = (M ′|A)/C1\D1, for some
q′ > q − 1

2 . Let M1 = M ′/C1. The set A is skew to E(T ) in M ′ , and therefore also skew to C − C ′ , so
M ′|A = (M ′/(C − C ′))|A = S|A, so M ′|A is GF(q)-representable, and so is its minor R1. Thus, q′ = q,
and R1 is a PG(n′ − 1,q)-restriction of M1. Moreover, C1 ⊆ A, so C1 is skew to E(T ) in M ′ , and
therefore M1 has T as a restriction. The matroid M1 is a contraction-minor of M , so is weakly round,
and thus satisfies the claim. �

Let M2 be a minor-minimal matroid such that:

• M2 is a weakly round minor of M1, and
• T and R1 are both restrictions of M2.

If r(R1) = r(M2), then N = M2 is the required minor of M . We may therefore assume that
r(M2) > r(R1) = n′ . We have r(T ) � t � n′ − 1 � r(M2) − 2, so by weak roundness of M2, there is
some e ∈ E(M2) spanned by neither E(T ) nor E(R1), contradicting minimality of M2. �
9. Critical elements

An element e in a (q,k)-overfull matroid M is called (q,k)-critical if M/e is not (q,k)-overfull.

Lemma 9.1. Let q be a prime power and k � 0 be an integer. If e is a (q,k)-critical element in a (q,k)-overfull
matroid M, then either

(i) e is contained in a line with at least q2 + 2 points, or

(ii) e is contained in q2k−1
q2−1

+ 1 lines, each with at least q + 2 points.

Proof. Suppose otherwise. Let L be the set of all lines of M containing e, and let L1 be the set of

the min(|L|, q2k−1
q2−1

) longest lines in L. Every line in L − L1 has at most q + 1 points and every line

in L1 has at most q2 + 1 points, so

ε(M) � 1 + q|L| + (
q2 − q

)|L1|

� 1 + qε(M/e) + (
q2 − q

)q2k − 1

q2 − 1

� 1 + q

(
qr(M)+k−1 − 1

q − 1
− q

q2k − 1

q2 − 1

)
+ (

q2 − q
)q2k − 1

q2 − 1

= qr(M)+k − 1

q − 1
+ q

q2k − 1

q2 − 1
,

contradicting the fact that M is (q,k)-overfull. �
The following result shows that a large number of (q,k)-critical elements gives a denser minor.
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Lemma 9.2. There is an integer-valued function f9.2(n,q,k) so that, for any prime power q, and integers k � 0,
n > k + 1, if m � f9.2(n,q,k) is an integer, and M ∈ EX(U2,q2+q+1) is a (q,k)-overfull, weakly round matroid
such that

• M has a PG(m − 1,q)-minor, and
• M has a rank-m set of (q,k)-critical elements,

then M has a rank-n, (q,k + 1)-full minor with a U2,q2+1-restriction.

Proof. Let q be a prime power, and k � 0 and n � 2 be integers. Let n′ = max(k + 8,n +k + 1), let d =
f5.2(q,k), let t = d(d + 1)+k + 6, let s = q2k−1

q2−1
+ 1, and set f9.2(n,q,k) = f8.1(n′,q, t(s + 1),q2 +q − 1).

Let m � f9.2(n,q,k) be an integer, and let M ∈ EX(U2,q2+q+1) be a (q,k)-overfull, weakly round
matroid with a PG(m − 1,q)-minor and a t-element independent set I of (q,k)-critical elements (note
that t � m). We will show that M has the required minor.

By Lemma 9.1, for each element e ∈ I , there is a set Le of lines containing e such that either

|Le| = 1 and the single line in Le has q2 + 2 points, or |Le| = q2k−1
q2−1

+ 1 and each line in Le has

at least q + 2 points. There is a restriction K of M with rank at most t(s + 1) that contains all the
lines (Le: e ∈ I). By Lemma 8.1, M has a minor M1 of rank at least n′ that has a PG(r(M1) − 1,q)-
restriction R1, and has K as a restriction. By Lemma 4.1, M1 has at most one line containing q2 + 2
points.

9.2.1. There is a (t − 5)-element subset I1 of I such that, for each e ∈ I1 , we have rK (
⋃

Le) � k + 2.

Proof of the claim. Note that |I| = t � 5. If k = 0, then every e ∈ I satisfies the required condition, so
an arbitrary (t − 5)-subset of I will do; we may thus assume that k � 1. Since K contains at most
one line with at least q2 + 2 points, there are at most two elements e ∈ I with |Le| = 1. If the claim

fails, there is therefore an 4-element subset I2 of I such that |Le| = q2k−1
q2−1

+ 1 and rK (
⋃

Le) � k + 1

for all e ∈ I2.

For each e ∈ I2, let Fe = clK (
⋃

Le). Then (K |Fe)/e has rank at most k and has more than q2k−1
q2−1

points. Since k � 1, this matroid has rank at least 2. Moreover, M1/e has rank at least n′ − 1 � k + 7
and has a PG(r(M1/e) − 1,q)-restriction, so, by Lemma 4.2, r((K |Fe)/e) = 2. Hence, k � 2, Fe is a
rank-3 set containing at least q2 + 2 lines through e, each with at least q + 2 points, and (K |Fe)/e is
a rank-2 set containing at least q2 + 2 points.

Let a ∈ I2; since rM1 (I2) = 4 > rM1 (Fa), there is some b ∈ I2 − Fa . Now, M1/b has a line L =
clM1/b(Fb − {b}) containing at least q2 + 2 points, and (M1/b)|Fa is a rank-3 matroid with at least
1 + (q + 1)(q2 + 2) points, and therefore at least 1 + (q + 1)(q2 + 2) − (q2 + q) > q2 + q + 1 points
outside L. However, M1/b has rank at least k + 7, and has a PG(r(M1/b) − 1,q)-restriction containing
at most q2 + q + 1 points in Fa − L, so we obtain a contradiction to Lemma 4.1. �
9.2.2. M1 has an R1-unstable set of size k + 1.

Proof of the claim. Suppose otherwise. By Lemma 5.2, there is a flat F of R1 with rank at most
k such that ε(M1/F ) � ε(R1/F ) + f5.2(q,k) = ε(R1/F ) + d. Let M2 = M1/F ; the matroid M2 has a
PG(r(M2) − 1,q)-restriction R2, and satisfies E(M2) = E(R2) ∪ D , where |D| � d.

Let I2 ⊆ I1 be a set of size of size |I1| − k that is independent in M2; note that |I2| � d(d + 1) + 1.
For each e ∈ I2, we have rM2 (

⋃
Le) � (k + 2)− k = 2, so e is contained in a line Le with at least q + 2

points in M2.
Let L = {Le: e ∈ I2}. Each Le contains e, and at most one other point in I2, so |L| � 1

2 |I2| >
(d+1

2

)
.

Each line in L contains q + 2 points, so must contain a point of M2\E(R2). However, |M2\E(R2)| � d,
so there are at most

(d
2

)
lines of M2 containing two points of M2\E(R2), and by Lemma 3.2, we may
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assume that there are at most d lines of M2 containing q + 2 points, but just one point of M2\E(R2).
This gives |L|� d + (d

2

) = (d+1
2

)
, a contradiction. �

Since r(M1) � n′ � n + k + 1, we get the required minor N from the above claim and Lem-
ma 5.3. �
10. The main theorems

The following result implies Theorems 1.2 and 1.3:

Theorem 10.1. Let q be a prime power, and let M ⊆ EX(U2,q2+q+1) be a base-q exponentially dense minor-
closed class of matroids. There is an integer k � 0 such that

hM(n) = qn+k − 1

q − 1
− q

q2k − 1

q2 − 1

for all sufficiently large n. Moreover, if M⊆ EX(U2,q2+1), then k = 0.

Proof. By the Growth Rate Theorem, M contains all projective geometries over GF(q) and, hence,
M contains (q,0)-full matroids of every rank. We may assume that there are (q,0)-overfull matroids
of arbitrarily large rank, since otherwise the theorem holds. By the Growth Rate Theorem, there is a
maximum integer k � 0 such that M contains (q,k)-overfull matroids of arbitrarily large rank, and
there is an integer s � 0 such that PG(s − 1,q′) /∈M for all q′ > q.

To prove the result, it suffices to show that, for all n > k +1, there is a rank-n matroid M ∈M that
is (q,k + 1)-full and has a U2,q2+1-restriction. Suppose for a contradiction that n > k + 1 is an integer
for which this M does not exist.

Let m = f9.2(n,q,k), and m4 = max(m + 1, s, f6.1(n,q,k)). Let m3 be an integer such that

qm3 − 1

q − 1
> α2.2

(
m4,q − 1

2
,q2 + q − 1

)(
q2 + q − 1

q − 3
2

)m(
q − 1

2

)m3+m−1

.

Let m2 = max(s,m3m), and choose an integer m1 > s such that

α2.2

(
m2,q − 1

2
,q2 + q − 1

)(
q − 1

2

)r

� qr+k − 1

q − 1
− q

q2k − 1

q2 − 1

for all r � m1. By Lemma 7.3, M contains weakly round, (q,k)-overfull matroids of arbitrarily large
rank; let M1 ∈ M be a weakly round, (q,k)-overfull matroid with rank at least m1. By Lemma 2.2,
M1 has a PG(m2 − 1,q′) minor N1 for some q′ > q − 1

2 ; since m2 � s, we have q′ = q. Let I1 be an
independent set of M1 such that N1 is a spanning restriction of M1/I1, and choose J1 ⊆ I1 maximal
such that M1/ J1 is (q,k)-overfull.

Let M2 = M1/ J1 and let I2 = I1 − J1. By our choice of J1, each element in I2 is (q,k)-critical in M2.
Since m2 � m, Lemma 9.2 gives |I2| < m. Choose a collection (F1, . . . , Fm) of mutually skew rank-m3

flats in the projective geometry N1; each Fi satisfies r(M2|Fi) � m3 + m − 1 and ε(M2|Fi) = qm3 −1
q−1 .

By our choice of m3, and by Lemma 2.3 with μ = q − 1
2 for each i ∈ {1, . . . ,m}, there is a flat F ′

i ⊆ Fi

of M2 that is skew to I2 in M2, and satisfies ε(M2|F ′
i )� α2.2(m4,q − 1

2 ,q2 + q − 1)(q − 1
2 )rM2 (F ′

i ) . Note
that, since the sets (F ′

1, . . . , F ′
m) are mutually skew in M2/I2 and each of these sets is skew to I2

in M2, the flats (F ′
1, . . . , F ′

m) are mutually skew in M2.
By Lemma 2.2, M2|F ′

i has a PG(m4 − 1,q′) minor Pi for some q′ > q − 1
2 ; since m4 � s, we have

q′ = q. Let Xi be an independent set of M2|F ′
2 such that Pi is a spanning restriction of M2/Xi . Now

choose Z ⊆ X1 ∪ · · · ∪ Xm maximal such that M2/Z is (q,k)-overfull. Let M3 = M2/Z . Each element
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of X1 ∪ · · · ∪ Xs − Z is (q,k)-critical in M3, and Pi is a minor of M3 for each i. The Xi are mutually
skew in M3 and hence pairwise disjoint; thus, by Lemma 9.2, there exists i0 ∈ {1, . . . ,m} such that
Xi0 − Z = ∅ and, hence, Pi0 is a restriction of M3; let R = Pi0 .

Choose a minor M4 of M3 that is minimal such that:

• M4 is weakly round, and (q,k)-overfull,
• M4 has R as a restriction.

By Lemma 6.1, r(M4) > r(R). Every element of E(M4) − clM4 (E(R)) is (q,k)-critical and, since M4
is weakly round, r(M4\ clM4 (E(R))) � r(M4) − 2 � m4 − 1 � m. We now get a contradiction from
Lemma 9.2. �
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