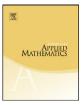


Contents lists available at SciVerse ScienceDirect

Advances in Applied Mathematics



www.elsevier.com/locate/yaama

On minor-closed classes of matroids with exponential growth rate $\stackrel{\scriptscriptstyle \, \bigstar}{\sim}$

Jim Geelen, Peter Nelson*

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

ARTICLE INFO

Article history: Available online 19 September 2012

Dedicated to Geoff Whittle on the occasion of his sixtieth birthday

MSC: 05B35

Keywords: Matroids Growth rates

ABSTRACT

Let \mathcal{M} be a minor-closed class of matroids that does not contain arbitrarily long lines. The growth rate function, $h : \mathbb{N} \to \mathbb{N}$ of \mathcal{M} is given by

 $h(n) = \max\{|M|: M \in \mathcal{M} \text{ is simple, and } r(M) \leq n\}.$

The Growth Rate Theorem shows that there is an integer *c* such that either: $h(n) \leq cn$, or $\binom{n+1}{2} \leq h(n) \leq cn^2$, or there is a prime-power *q* such that $\frac{q^n-1}{q-1} \leq h(n) \leq cq^n$; this separates classes into those of linear density, quadratic density, and base-*q* exponential density. For classes of base-*q* exponential density that contain no $(q^2 + 1)$ -point line, we prove that $h(n) = \frac{q^n-1}{q-1}$ for all sufficiently large *n*. We also prove that, for classes of base-*q* exponential density that contain no $(q^2 + q + 1)$ -point line, there exists $k \in \mathbb{N}$ such that $h(n) = \frac{q^{n+k}-1}{q-1} - q \frac{q^{2k}-1}{q^{2}-1}$ for all sufficiently large *n*.

1. Introduction

We prove a refinement of the Growth Rate Theorem for certain exponentially dense classes. We call a class of matroids *minor-closed* if it is closed under both minors and isomorphism. The growth rate function, $h_{\mathcal{M}} : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ for a class \mathcal{M} of matroids is defined by

 $h_{\mathcal{M}}(n) = \max\{|M|: M \in \mathcal{M} \text{ is simple, and } r(M) \leq n\}.$

* Corresponding author.

 $^{^{}st}$ This research was partially supported by a grant from the Office of Naval Research [N00014-10-1-0851].

E-mail address: apnelson@math.uwaterloo.ca (P. Nelson).

^{0196-8858/\$ –} see front matter $\hfill \ensuremath{\mathbb{C}}$ 2012 Published by Elsevier Inc. http://dx.doi.org/10.1016/j.aam.2012.03.004

The following striking theorem summarizes the results of several papers, [1,2,4].

Theorem 1.1 (Growth Rate Theorem). Let \mathcal{M} be a minor-closed class of matroids, not containing all simple rank-2 matroids. Then there is an integer c such that either:

- (1) $h_{\mathcal{M}}(n) \leq cn$ for all $n \geq 0$, or
- (2) $\binom{n+1}{2} \leq h_{\mathcal{M}}(n) \leq cn^2$ for all $n \geq 0$, and \mathcal{M} contains all graphic matroids, or
- (3) there is a prime power q such that $\frac{q^n-1}{q-1} \leq h_{\mathcal{M}}(n) \leq cq^n$ for all $n \geq 0$, and \mathcal{M} contains all GF(q)-representable matroids.

In particular, the theorem implies that $h_{\mathcal{M}}(n)$ is finite for all n if and only if \mathcal{M} does not contain all simple rank-2 matroids. If \mathcal{M} is a minor-closed class satisfying (3), then we say that \mathcal{M} is *base-q* exponentially dense. Our main theorems precisely determine, for many such classes, the eventual value of the growth rate function:

Theorem 1.2. Let q be a prime power. If \mathcal{M} is a base-q exponentially dense minor-closed class of matroids such that $U_{2,a^2+1} \notin \mathcal{M}$, then

$$h_{\mathcal{M}}(n) = \frac{q^n - 1}{q - 1}$$

for all sufficiently large n.

Consider, for example, the class \mathcal{M} of matroids with no $U_{2,\ell+2}$ -minor, where $\ell \ge 2$ is an integer. By the Growth Rate Theorem, this class is base-q exponentially dense, where q is the largest primepower not exceeding ℓ . Clearly $q^2 > \ell$, so, by Theorem 1.2, $h_{\mathcal{M}}(n) = \frac{q^n - 1}{q - 1}$ for all large n. This special case is the main result of [3], which essentially also contains a proof of Theorem 1.2.

Theorem 1.3. Let *q* be a prime power. If \mathcal{M} is a base-*q* exponentially dense minor-closed class of matroids such that $U_{2,q^2+q+1} \notin \mathcal{M}$, then there is an integer $k \ge 0$ such that

$$h_{\mathcal{M}}(n) = \frac{q^{n+k} - 1}{q - 1} - q\frac{q^{2k} - 1}{q^2 - 1}$$

for all sufficiently large n.

Consider, for example, any proper minor-closed subclass \mathcal{M} of the GF(q^2)-representable matroids that contains all GF(q)-representable matroids. Such classes are all base-q exponentially dense and do not contain U_{2,q^2+2} , so Theorem 1.3 applies; this special case is the main result of [8].

If the hypothesis of Theorem 1.3 is weakened to allow $U_{2,q^2+q+1} \in \mathcal{M}$, then the conclusion no longer holds. Consider the class \mathcal{M}_1 defined to be the set of truncations of all GF(q)-representable matroids; note that $U_{2,q^2+q+2} \notin \mathcal{M}_1$ and $h_{\mathcal{M}_1}(n) = \frac{q^{n+1}-1}{q-1}$ for all $n \ge 2$. More generally, for each $k \ge 0$, if \mathcal{M}_k is the set of matroids obtained from GF(q)-representable

More generally, for each $k \ge 0$, if \mathcal{M}_k is the set of matroids obtained from GF(q)-representable matroids by applying k truncations, then $h_{\mathcal{M}_k}(n) = \frac{q^{n+k}-1}{q-1}$ for all $n \ge 2$. This expression differs from that in Theorem 1.3 by only the constant $q \frac{q^{2k}-1}{q^2-1}$. It is conjectured [8,9] that, for each k, these are the extremes in a small spectrum of possible growth rate functions:

Conjecture 1.4. Let q be a prime power, and \mathcal{M} be a base-q exponentially dense minor-closed class of matroids. There exist integers k and d with $k \ge 0$ and $0 \le d \le \frac{q^{2k}-1}{q^2-1}$, such that $h_{\mathcal{M}}(n) = \frac{q^{n+k}-1}{q-1} - qd$ for all sufficiently large n.

We conjecture further that, for every allowable q, k and d, there exists a minor-closed class with the above as its eventual growth rate function.

There is a stronger conjecture [9] regarding the exact structure of the extremal matroids. For a non-negative integer k, a k-element projection of a matroid M is a matroid of the form N/C, where $N \setminus C = M$, and C is a k-element set of N.

Conjecture 1.5. Let *q* be a prime power, and \mathcal{M} be a base-*q* exponentially dense minor-closed class of matroids. There exists an integer $k \ge 0$ such that, if $M \in \mathcal{M}$ is a simple matroid of sufficiently large rank with $|M| = h_{\mathcal{M}}(r(M))$, then *M* is the simplification of a *k*-element projection of a projective geometry over GF(*q*).

We will show, as was observed in [9], that this conjecture implies the previous one; see Lemma 3.1.

2. Preliminaries

A matroid *M* is called (q, k)-full if

$$\varepsilon(M) \geqslant \frac{q^{r(M)+k}-1}{q-1} - q\frac{q^{2k}-1}{q^2-1};$$

moreover, if strict inequality holds, M is (q, k)-overfull.

Our proof of Theorem 1.3 follows a strategy similar to that in [8]; we show that, for any integer n > 0, every (q, k)-overfull matroid in $\text{EX}(U_{2,q^2+q+1})$, with sufficiently large rank, contains a (q, k + 1)-full rank-n minor. The Growth Rate Theorem tells us that a given base-q exponentially dense minor-closed class cannot contain (q, k)-full matroids for arbitrarily large k, so this gives the result. Theorem 1.2 is easier and will follow along the way.

We follow the notation of Oxley [10]; flats of rank 1, 2 and 3 are respectively *points, lines* and *planes* of a matroid. If *M* is a matroid, and *X*, $Y \subseteq E(M)$, then $\prod_M(X, Y) = r_M(X) + r_M(Y) - r_M(X \cup Y)$ is the *local connectivity* between *X* and *Y*. If $\prod_M(X, Y) = 0$, then *X* and *Y* are *skew* in *M*, and if \mathcal{X} is a collection of sets in *M* such that each $X \in \mathcal{X}$ is skew to the union of the sets in $\mathcal{X} - \{X\}$, then \mathcal{X} is a *mutually skew* collection of sets. A pair (F_1, F_2) of flats in *M* is *modular* if $\prod_M(F_1, F_2) = r_M(F_1 \cap F_2)$, and a flat *F* of *M* is *modular* if, for each flat *F'* of *M*, the pair (F, F') is modular. In a projective geometry each pair of flats is modular and, hence, each flat is modular.

For a matroid *M*, we write |M| for |E(M)|, and $\varepsilon(M)$ for |si(M)|, the number of points in *M*. Thus, $h_{\mathcal{M}}(n) = \max(\varepsilon(M): M \in \mathcal{M}, r(M) \leq n)$. Two matroids are equal *up* to simplification if their simplifications are isomorphic. We let EX(*M*) denote the set of matroids with no *M*-minor; Theorems 1.2 and 1.3 apply to subclasses of EX(U_{2,q^2+1}) and EX(U_{2,q^2+q+1}) respectively. The following theorem of Kung [6] bounds the density of a matroid in EX($U_{2,\ell+2}$):

Theorem 2.1. Let $\ell \ge 2$ be an integer. If $M \in \text{EX}(U_{2,\ell+2})$, then $\varepsilon(M) \leqslant \frac{\ell^{r(M)}-1}{\ell-1}$.

The next result is an easy application of the Growth Rate Theorem.

Lemma 2.2. There is a real-valued function $\alpha_{2,2}(n, \beta, \ell)$ so that, for any integers $n \ge 1$ and $\ell \ge 2$, and real number $\beta > 1$, if $M \in \text{EX}(U_{2,\ell+2})$ is a matroid such that $\varepsilon(M) \ge \alpha_{2,2}(n, \beta, \ell)\beta^{r(M)}$, then M has a PG(n-1, q)-minor for some $q > \beta$.

The following lemma was proved in [8]:

Lemma 2.3. Let λ , μ be real numbers with $\lambda > 0$ and $\mu > 1$, let $t \ge 0$ and $\ell \ge 2$ be integers, and let A and B be disjoint sets of elements in a matroid $M \in \text{EX}(U_{2,\ell+2})$ with $r_M(B) \le t < r(M)$ and $\varepsilon(M|A) > \lambda \mu^{r_M(A)}$. Then there is a set $A' \subseteq A$ that is skew to B and satisfies $\varepsilon(M|A') > \lambda(\frac{\mu-1}{\ell})^t \mu^{r_M(A')}$.

3. Projections

Recall that a *k*-element projection of a matroid *M* is a matroid of the form N/C, where *C* is a *k*-element set of a matroid *N* satisfying $N \setminus C = M$.

In this section we are concerned with projections of projective geometries. Consider a *k*-element set *C* in a matroid *N* such that $N \setminus C = PG(n + k - 1, q)$ and let M = N/C. Thus *M* is a *k*-element projection of PG(n + k - 1, q). Below are easy observations that we use freely.

- If C is not independent, then M is a (k-1)-element projection of PG(n+k-1,q).
- If *C* is not coindependent, then *M* is a (k-1)-element projection of PG(n+k-1,q).
- If C is not closed in N, then M is, up to simplification, a (k 1)-element projection of PG(n + k 2, q).
- *M* has a PG(r(M) 1, q)-restriction.

Our next result gives the density of projections of projective geometries; given such a projection M, this density is determined to within a small range by the minimum k for which M is a k-element projection. As mentioned earlier, this lemma also tells us that Conjecture 1.5 implies Conjecture 1.4.

Lemma 3.1. Let *q* be a prime power, and $k \ge 0$ be an integer. If *N* is a matroid, and *C* is a rank-*k* flat of *N* such that $N \setminus C \cong PG(r(N) - 1, q)$, then $\varepsilon(N/C) = \varepsilon(N \setminus C) - qd$ for some $d \in \{0, 1, \dots, \frac{q^{2k}-1}{a^2-1}\}$.

Proof. Each point *P* of *N*/*C* is a flat of the projective geometry $N \setminus C$, so $|P| = \frac{q^{r_N(P)}-1}{q-1} = 1 + q \frac{q^{r_N(P)}-1-1}{q-1}$. Therefore $\varepsilon(N \setminus C) - \varepsilon(N \setminus C)$ is a multiple of *q*.

Let \mathcal{P} denote the set of all points in N/C that contain more than one element, and let F be the flat of $N\setminus C$ spanned by the union of these points. Choose a minimal set $\mathcal{P}_0 \subseteq \mathcal{P}$ of points spanning F in N/C (so $|\mathcal{P}_0| = r_{N/C}(F)$); if possible choose \mathcal{P}_0 so that it contains a set in $P \in \mathcal{P}$ with $r_N(P) > 2$. Note that: (1) the points in \mathcal{P}_0 are mutually skew in N/C, (2) each pair of flats of $N\setminus C$ is modular, and (3) C is a flat of N. It follows that \mathcal{P}_0 is a mutually skew collection of flats in $N\setminus C$. Now, for each $P \in \mathcal{P}_0$, $r_N(P) > r_{N/C}(P)$. Therefore, since r(N) - r(N/C) = k, we have $r_{N/C}(F) = |\mathcal{P}_0| \leq k$. Moreover, if $r_{N/C}(F) = k$, then each set in \mathcal{P}_0 is a line of $N\setminus C$, and, hence, by our choice of \mathcal{P}_0 , each set in \mathcal{P} is a line in $N\setminus C$.

If $r_{N/C}(F) = k$, then we have $|F| = \frac{q^{2k}-1}{q-1}$ and $|\mathcal{P}| \leq \frac{|F|}{q+1}$. This gives $\varepsilon(N \setminus C) - \varepsilon(N/C) \leq q \frac{|F|}{q+1} = q \frac{q^{2k}-1}{q^2-1}$, as required.

If $r_{N/C}(F) < k$, then $\varepsilon(N \setminus C) - \varepsilon(N/C) \le |F| \le \frac{q^{2k-1}-1}{q-1}$. It is routine to verify that $\frac{q^{2k-1}-1}{q-1} < q\frac{q^{2k}-1}{q^{2}-1}$, which proves the result. \Box

The next two lemmas consider single-element projections, highlighting the importance of U_{2,q^2+1} and U_{2,q^2+q+1} in Theorems 1.2 and 1.3.

Lemma 3.2. Let *q* be a prime power and let *e* be an element of a matroid *M* such that $M \setminus e \cong PG(r(M) - 1, q)$. Then there is a unique minimal flat *F* of $M \setminus e$ that spans *e*. Moreover, if $r(M) \ge 3$ and $r_M(F) \ge 2$, then M/e contains a U_{2,a^2+1} -minor, and if $r_M(F) \ge 3$, then M/e contains a U_{2,a^2+q+1} -minor.

Proof. If F_1 and F_2 are two flats of $M \setminus e$ that span e, then, since $r_M(F_1 \cap F_2) + r_M(F_1 \cup F_2) = r_M(F_1) + r_M(F_2)$, it follows that $F_1 \cap F_2$ also spans e. Therefore there is a unique minimal flat F of $M \setminus e$ that spans e. The uniqueness of F implies that e is freely placed in F.

Suppose that $r_M(F) \ge 3$. Thus (M/e)|F is the truncation of a projective geometry of rank ≥ 3 . So M/e contains a truncation of PG(2, q) as a minor; therefore M/e has a U_{2,q^2+q+1} -minor.

Now suppose that $r(M) \ge 3$ and that $r_M(F) = 2$. If F' is a rank-3 flat of $M \setminus e$ containing F, then $\varepsilon((M/e)|F') = q^2 + 1$, so M/e has a U_{2,q^2+1} -minor. \Box

An important consequence is that, if *M* is a simple matroid with a PG(r(M) - 1, q)-restriction *R* and no U_{2,q^2+q+1} -minor, then every $e \in E(M) - E(R)$ is spanned by a unique line of *R*. The next result describes the structure of the projections in $EX(U_{2,q^2+q+1})$.

Lemma 3.3. Let q be a prime power, and $M \in EX(U_{2,q^2+q+1})$ be a simple matroid, and $e \in E(M)$ be such that $M \setminus e \cong PG(r(M) - 1, q)$. If L is the unique line of $M \setminus e$ that spans e, then L is a point of M/e, and each line of M/e containing L has $q^2 + 1$ points and is modular.

Proof. Let L' be a line of M/e containing L. Then L' is a plane of $M \setminus e$, so, by Lemma 3.2, L' has $q^2 + 1$ points in M/e.

Note that *e* is freely placed on the line $L \cup \{e\}$ in *M*. It follows that *M* is $GF(q^2)$ -representable. Now *L'* is a $(q^2 + 1)$ -point line in the $GF(q^2)$ -representable matroid *M/e*; hence, *L'* is modular in *M/e*. \Box

4. Dealing with long lines

This section contains two lemmas that construct a U_{2,q^2+q+1} -minor of a matroid M with a PG(r(M) - 1, q)-restriction R and some additional structure.

Lemma 4.1. Let q be a prime power, and M be a simple matroid of rank at least 7 such that

- *M* has a PG(r(M) 1, q)-restriction *R*, and
- *M* has a line *L* containing at least $q^2 + 2$ points, and
- $E(M) \neq E(R) \cup L$,

then M has a U_{2,a^2+a+1} -minor.

Proof. We may assume that $E(M) = E(R) \cup L \cup \{z\}$, where $z \notin L \cup E(R)$. Let *F* be a minimal flat of *R* that spans $L \cup \{z\}$. It follows easily from Lemma 3.2, that either *M* has a U_{2,q^2+q+1} -minor or $r_M(F) \leqslant 6$. To simplify the proof we will prove the lemma with the weaker hypothesis that $r(M) \ge 1 + r_M(F)$, in place of the hypothesis that $r(M) \ge 7$, and we will suppose that (M, R, L) forms a minimum rank counterexample under these weakened hypotheses.

Let L_z denote the line of R that spans z in M. Since $z \notin L$, we have $r_M(L \cup L_z) \ge 3$. We may assume that $r_M(L \cup L_z) = 3$, since otherwise we could contract a point in $F - (L \cup L_z)$ to obtain a smaller counterexample. Similarly, we may assume that $r_M(F) = 3$ and r(M) = 4, as otherwise we could contract an element of $F - cl_M(L \cup L_z)$ or $E(M) - cl_M(F)$.

By Lemma 3.3, L_z is a point of (M/z)|R and each line of (M/z)|R is modular and has $q^2 + 1$ points. One of these lines is F, and, since F spans L, F spans a line with $q^2 + 2$ points in M/z. Let $e \in cl_{M/z}(F)$ be an element that is not in parallel with any element of F. Since F is a modular line in (M/z)|R, the point e is freely placed on the line $F \cup \{e\}$ in $(M/z)|(R \cup \{e\})$. Therefore $\varepsilon(M/\{e,z\}) \ge \varepsilon((M/\{z\})|R) - q^2 = 1 + q^2(q+1) - q^2 = q^3 + 1$, contradicting the fact that $M \in \text{EX}(U_{2,q^2+q+1})$. \Box

Lemma 4.2. Let q be a prime power, and $k \ge 3$ be an integer. If M is a matroid of rank at least k + 7, with a PG(r(M) - 1, q)-restriction, and a set $X \subseteq E(M)$ with $r_M(X) \le k$ and $\varepsilon(M|X) > \frac{q^{2k}-1}{q^2-1}$, then M has a U_{2,q^2+q+1} -minor.

Proof. Let M_0 be a matroid satisfying the hypotheses, with a $PG(r(M_0) - 1, q)$ -restriction R_0 . We may assume that $M_0 \in EX(U_{2,q^2+q+1})$, and by choosing a rank-k set containing X, we may also assume that $r_{M_0}(X) = k$. By Lemma 3.2, R_0 has a flat F_0 of rank at most 2k such that $X \subseteq cl_{M_0}(F_0)$. By contracting at most k points in $F_0 - cl_{M_0}(X)$, we obtain a minor M of M_0 , of rank at least 7, such that $r_M(X) = k$, and M has a PG(r(M) - 1, q)-restriction R, and there is a rank-k flat F of R such that $X \subseteq cl_M(F)$.

We may assume that *M* is simple and that *X* is a flat of *M*, so $F \subseteq X$. Let $n = |F| = \frac{q^k - 1}{q - 1}$. By Lemma 3.2, each point of *X* is spanned in *M* by a line of R|F. There are $\binom{n}{2}/\binom{q+1}{2}$ such lines, each containing q + 1 points of *F*. If each of these lines spans at most $(q^2 - q)$ points of X - F, then

$$|X| = |F| + |X - F| \leq \frac{q^k - 1}{q - 1} + \frac{(q^2 - q)\binom{n}{2}}{\binom{q+1}{2}} = \frac{q^{2k} - 1}{q^2 - 1},$$

contradicting the definition of *X*. Therefore, some line *L* of *M*|*X* contains at least $q^2 + 2$ points. We also have $|L| \leq q^2 + q$, so a calculation gives $|X - L| > \frac{q^{2k} - 1}{q^2 - 1} - (q^2 + q) \ge \frac{q^k - 1}{q - 1} = |F|$, so $X \neq F \cup L$. Applying Lemma 4.1 to $M|(E(R) \cup X)$ gives the result. \Box

5. Matchings and unstable sets

For an integer $k \ge 0$, a *k*-matching of a matroid *M* is a mutually skew *k*-set of lines of *M*. Our first theorem was proved in [8], and also follows routinely from the much more general linear matroid matching theorem of Lovász [7]:

Theorem 5.1. There is an integer-valued function $f_{5,1}(q, k)$ so that, for any prime power q and integers $n \ge 1$ and $k \ge 0$, if \mathcal{L} is a set of lines in a matroid $M \cong PG(n-1, q)$, then either

- (i) \mathcal{L} contains a (k+1)-matching of M, or
- (ii) there is a flat F of M with $r_M(F) \leq k$, and a set $\mathcal{L}_0 \subseteq \mathcal{L}$ with $|\mathcal{L}_0| \leq f_{5,1}(q, k)$, such that every line $L \in \mathcal{L}$ either intersects F, or is in \mathcal{L}_0 . Moreover, if $r_M(F) = k$, then $\mathcal{L}_0 = \emptyset$.

We now define a property in terms of a matching in a spanning projective geometry. Let q be a prime power, $M \in \text{EX}(U_{2,q^2+q+1})$ be a simple matroid with a PG(r(M) - 1, q)-restriction R, and $X \subseteq E(M \setminus R)$ be a set such that $M|(E(R) \cup X)$ is simple. Recall that, by Lemma 3.2, each $x \in X$ lies in the closure of exactly one line L_x of R. We say that X is R-unstable in M if the lines $\{L_x: x \in X\}$ are a matching of size |X| in R.

Lemma 5.2. There is an integer-valued function $f_{5,2}(q, k)$ so that, for any prime power q and integer $k \ge 0$, if $M \in \text{EX}(U_{2,q^2+q+1})$ is a matroid of rank at least 3 with a PG(r(M) - 1, q)-restriction R, then either

- (i) there is an *R*-unstable set of size k + 1 in *M*, or
- (ii) R has a flat F with rank at most k such that $\varepsilon(M/F) \leq \varepsilon(R/F) + f_{5,2}(q,k)$.

Proof. Let *q* be a prime power, and $k \ge 0$ be an integer. Set $f_{5,2}(q, k) = (q^2 + q)f_{5,1}(q, k)$. Let *M* be a matroid with a PG(r(M) - 1, q)-restriction *R*. We may assume that *M* is simple, and that the first outcome does not hold. Let \mathcal{L} be the set of lines *L* of *R* such that $|cl_M(L)| > |cl_R(L)|$. If \mathcal{L} contains a (k+1)-matching of *R*, then choosing a point from $cl_M(L) - cl_R(L)$ for each line *L* in the matching gives an *R*-unstable set of size k + 1. We may therefore assume that \mathcal{L} contains no such matching. Thus, let *F* and \mathcal{L}_0 be the sets defined in the second outcome of Theorem 5.1. Let $D = \bigcup_{L \in \mathcal{L}_0} cl_M(L)$. We have $|D| \leq (q^2 + q)|\mathcal{L}_0| \leq f_{5,2}(q, k)$. By Lemma 3.2, each element of $M \setminus D$ either lies the closure of a line in \mathcal{L} or in a point of *R*, so is parallel in M/F to an element of *R*. Therefore, $\varepsilon(M/F) \leq \varepsilon(R/F) + |D|$; the result now follows. \Box

We use an unstable set to construct a dense minor. Recall that (q, k)-full and (q, k)-overfull were defined at the start of Section 2.

Lemma 5.3. Let *q* be a prime power, and $k \ge 1$ and n > k be integers. If $M \in \text{EX}(U_{2,q^2+q+1})$ is a matroid of rank at least n + k with a PG(r(M) - 1, q)-restriction *R*, and *X* is an *R*-unstable set of size *k* in *M*, then *M* has a rank-n(q, k)-full minor *N* with a U_{2,q^2+1} -restriction.

Proof. We may assume by taking a restriction if necessary that r(M) = n + k, and $E(M) = E(R) \cup X$; we show that N = M/X has the required properties. For each $x \in X$, let L_x denote the line of R that spans X; thus $\{L_x: x \in X\}$ is a matching. By the definition of instability, it is clear that X is independent, so r(N) = n. Let $x \in X$, and P be a plane of R that contains L_x and is skew to $X - \{x\}$. By Lemma 3.3, (M/x)|P has a U_{2,q^2+1} -restriction. Since $X - \{x\}$ is skew to P, M/X also has a U_{2,q^2+1} -restriction.

To complete the proof it is enough, by Lemma 3.1, to show that $cl_M(X)$ is disjoint from R. This is trivial if X is empty, so consider $x \in X$ and let $R' = si(R/L_X)$. Note that $R' \cong PG(n + k - 3, q)$ is a spanning restriction of M/L_X and $X - \{x\}$ is R'-unstable. Inductively, we may assume that $cl_{M/L_X}(X - \{x\})$ is disjoint from R/L_X , but this implies that $cl_M(X)$ is disjoint from R, as required. \Box

6. The spanning case

In this section we consider matroids that are spanned by a projective geometry.

Lemma 6.1. There is an integer-valued function $f_{6.1}(n, q, k)$ such that, for any prime power q and integers $k \ge 0$ and n > k + 1, if $M \in \text{EX}(U_{2,a^2+a+1})$ is a matroid of rank at least $f_{6.1}(n, q, k)$ such that

- *M* has a PG(r(M) 1, q)-restriction *R*, and
- *M* is (q, k)-overfull,

then *M* has a rank-n (q, k + 1)-full minor *N* with a U_{2,q^2+1} -restriction.

Proof. Let $k \ge 0$ and n > k + 1 be integers, and q be a prime power. Let $m > \max(k + 7, n + k + 1)$ be an integer such that

$$\frac{q^{r+k}-1}{q-1} - q\frac{q^{2k}-1}{q^2-1} > \frac{q^{r+j}-1}{q-1} + \max\left(q^2 + q, \left(q^2 - q\right)f_{5.1}(q, k)\right)$$

for all $r \ge m$ and $0 \le j < k$. We set $f_{6,1}(n, q, k) = m$.

Let $M \in \text{EX}(U_{2,q^2+q+1})$ be a (q,k)-overfull matroid of rank at least m, and let R be a PG(r(M) - 1, q)-restriction of M. We will show that M has the required minor N; we may assume that M is simple.

6.1.1. If $k \ge 1$, then no line of M contains more than $q^2 + 1$ points.

Proof of the claim. Let *L* be a line of *M* containing at least $q^2 + 2$ points. We have $|L| \leq q^2 + q$, so $|E(R) \cup L| \leq \frac{q^{r(M)}-1}{q-1} + q^2 + q < |M|$ by the definition of *m*. Therefore, there is a point of *M* in neither *R* nor *L*. By Lemma 4.1, *M* has a U_{2,a^2+q+1} -minor, a contradiction. \Box

Let \mathcal{L} be the set of lines of R, and \mathcal{L}^+ be the set of lines of R that are not lines of M; note that each $L \in \mathcal{L}^+$ contains exactly q + 1 points of R, and spans an extra point in M. By Lemma 3.2, every point of $M \setminus E(R)$ is spanned by a line in \mathcal{L}^+ .

6.1.2. \mathcal{L}^+ contains a (k + 1)-matching of *R*.

Proof of the claim. If k = 0, then since |M| > |R|, we must have $\mathcal{L}^+ \neq \emptyset$, so the claim is trivial. Thus, assume that $k \ge 1$ and that there is no such matching. Let $F \subseteq E(R)$ and $\mathcal{L}_0 \subseteq \mathcal{L}$ be the sets defined in Theorem 5.1. Let $j = r_M(F)$; we know that $0 \le j \le k$, and that \mathcal{L}_0 is empty if j = k. Let $\mathcal{L}_F = \{L \in \mathcal{L} : |L \cap F| = 1\}$. By definition, every point of $M \setminus R$ is in the closure of F, or the closure of a line in $\mathcal{L}_F \cup \mathcal{L}_0$.

Every point of $R \setminus F$ lies on exactly |F| lines in \mathcal{L}_F , and each such line contains exactly q points of $R \setminus F$, so

J. Geelen, P. Nelson / Advances in Applied Mathematics 50 (2013) 142-154

$$|\mathcal{L}_F| = \frac{|F||R \setminus F|}{q} = \frac{(q^J - 1)(q^{r(M)} - q^J)}{q(q-1)^2}.$$

Furthermore, each line in \mathcal{L} contains q + 1 points of R, and its closure in M contains at most $q^2 - q$ points of $M \setminus R$ by the first claim. We argue that $|cl_M(F)| \leq \frac{q^{2j}-1}{q^2-1}$; if $j \leq 2$, then this follows from the first claim, and otherwise, we have $r(M) \geq m \geq k + 7$, so the bound follows by applying Lemma 4.2 to M and $cl_M(F)$. We now estimate |M|:

$$\begin{split} |M| &= |R| + \left| M \setminus E(R) \right| \\ &\leqslant |R| + \sum_{L \in \mathcal{L}_F \cup \mathcal{L}_0} \left| \mathrm{cl}_M(L) - E(R) \right| + \left| \mathrm{cl}_M(F) - F \right| \\ &\leqslant \frac{q^{r(M)} - 1}{q - 1} + \left(q^2 - q \right) \left(|\mathcal{L}_F| + |\mathcal{L}_0| \right) + \left(\frac{q^{2j} - 1}{q^2 - 1} - \frac{q^j - 1}{q - 1} \right). \end{split}$$

Now, a calculation and our value for \mathcal{L}_F obtained earlier together give $|M| \leq \frac{q^{r(M)+j}-1}{q-1} - q\frac{q^{2j}-1}{q^2-1} + (q^2-q)|\mathcal{L}_0|$. If j < k, then, since $r(M) \ge m$ and $|\mathcal{L}_0| \le f_{5.1}(q, k)$, we have $|M| \le \frac{q^{r(M)+k}-1}{q-1} - q\frac{q^{2k}-1}{q^2-1}$ by definition of m. If j = k, then $|\mathcal{L}_0| = 0$, so the same inequality holds. In either case, we contradict the fact that M is (q, k)-overfull. \Box

Now, \mathcal{L}^+ has a matching of size k + 1, so by construction of \mathcal{L}^+ , there is an *R*-unstable set *X* of size k + 1 in *M*. Since $r(M) \ge m > n + k + 1$, the required minor *N* is given by Lemma 5.3. \Box

7. Connectivity

A matroid *M* is *weakly round* if there is no pair of sets *A*, *B* with union E(M), such that $r_M(A) \leq r(M) - 2$ and $r_M(B) \leq r(M) - 1$. Any matroid of rank at most 2 is clearly weakly round. This is a variation on *roundness*, a notion equivalent to infinite vertical connectivity introduced by Kung [5] under the name of 'non-splitting'. Weak roundness is preserved by contraction; the following lemma is easily proved, and we use it freely.

Lemma 7.1. If *M* is a weakly round matroid, and $e \in E(M)$, then M/e is weakly round.

The first step in our proof of the main theorems will be to reduce to the weakly round case; the next two lemmas give this reduction.

Lemma 7.2. If *M* is a matroid, then *M* has a weakly round restriction *N* such that $\varepsilon(N) \ge \varphi^{r(N)-r(M)}\varepsilon(M)$, where $\varphi = \frac{1}{2}(1+\sqrt{5})$.

Proof. We may assume that *M* is not weakly round, so r(M) > 2, and there are sets *A*, *B* of *M* such that $r_M(A) = r(M) - 2$, $r_M(B) = r(M) - 1$, and $E(M) = A \cup B$. Now, since $\varphi^{-1} + \varphi^{-2} = 1$, either $\varepsilon(M|A) \ge \varphi^{-2}\varepsilon(M)$ or $\varepsilon(M|B) \ge \varphi^{-1}\varepsilon(M)$; in the first case, by induction M|A has a weakly round restriction *N* with $\varepsilon(N) \ge \varphi^{r(N)-r(M|A)}\varepsilon(M|A) \ge \varphi^{r(N)-r(M)+2}\varphi^{-2}\varepsilon(M) = \varphi^{r(N)-r(M)}\varepsilon(M)$, giving the result. The second case is similar. \Box

Lemma 7.3. Let q be a prime-power, and $k \ge 0$ be an integer. If \mathcal{M} is a base-q exponentially dense minorclosed class of matroids that contains (q, k)-overfull matroids of arbitrarily large rank, then \mathcal{M} contains weakly round, (q, k)-overfull matroids of arbitrarily large rank.

149

Proof. Note that $\varphi < 2 \leq q$; by the Growth Rate Theorem, there is an integer t > 0 such that

$$\varepsilon(M) \leqslant \left(\frac{q}{\varphi}\right)^t \frac{q^{r(M)+k}-1}{q-1} - q\frac{q^{2k}-1}{q^2-1},$$

for all $M \in \mathcal{M}$.

For any integer n > 0, consider a (q, k)-overfull matroid $M \in \mathcal{M}$ with rank at least n + t. By Lemma 7.2, M has a weakly round restriction N such that $\varepsilon(N) \ge \varphi^{-s}\varepsilon(M)$, where s = r(M) - r(N). We have

$$\begin{split} \varepsilon(N) &\geqslant \varphi^{-s} \varepsilon(M) \\ &> \varphi^{-s} \left(\frac{q^{r(M)+k}-1}{q-1} - q \frac{q^{2k}-1}{q-1} \right) \\ &> \left(\frac{q}{\varphi} \right)^s \frac{q^{r(N)+k}-1}{q-1} - q \frac{q^{2k}-1}{q^2-1}. \end{split}$$

Thus *N* is (q, k)-overfull. Moreover, by the definition of *t*, we have s < t and, hence, r(N) > n. \Box

8. Exploiting connectivity

We now exploit weak roundness by showing that any interesting low-rank restriction can be contracted into the span of a projective geometry.

Lemma 8.1. There is an integer-valued function $f_{8,1}(n, q, t, \ell)$ so that, for any prime power q, and integers $n \ge 1, \ell \ge 2$ and $t \ge 0$, if $M \in \text{EX}(U_{2,\ell+2})$ is a weakly round matroid with a PG $(f_{8,1}(n, q, t, \ell) - 1, q)$ -minor, and T is a restriction of M of rank at most t, then there is a minor N of M of rank at least n, such that T is a restriction of N, and N has a PG(r(N) - 1, q)-restriction.

Proof. Let $n \ge 1$, $\ell \ge 2$ and $t \ge 0$ be integers. Let $n' = \max(n, t + 1)$, and set $f_{8,1}(n, q, t, \ell)$ to be an integer *m* such that $m \ge 2t$, and

$$\frac{q^m-1}{q-1} \ge \alpha_{2.2}\left(n',q-\frac{1}{2},\ell\right) \left(\frac{\ell(q-\frac{1}{2})}{q-\frac{3}{2}}\right)^t \left(q-\frac{1}{2}\right)^m.$$

Let $M \in \text{EX}(U_{2,\ell+2})$ be a weakly round matroid with a PG(m-1,q)-minor $S = M/C \setminus D$, where $r(S) = r(M) - r_M(C)$. Let T be a restriction of M of rank at most t; we show that the required minor exists.

8.1.1. There is a weakly round minor M_1 of M, such that T is a restriction of M_1 , and M_1 has a PG(n' - 1, q)-restriction R_1 .

Proof of the claim. Let $C' \subseteq C$ be maximal such that T is a restriction of M/C', and let M' = M/C'. Maximality implies that $C - C' \subseteq cl_{M'}(E(T))$, so $r_{M'}(C - C') \leq t$. Now, $r_{M'}(E(S)) = r(S) + r_{M'}(C - C') \leq m + t$. Therefore,

$$\varepsilon_{M'}(E(S)) = \frac{q^m - 1}{q - 1} \ge \alpha_{2,2} \left(n', q - \frac{1}{2}, \ell\right) \ell^t \left(q - \frac{3}{2}\right)^{-t} \left(q - \frac{1}{2}\right)^{m+t}$$
$$\ge \alpha_{2,2} \left(n', q - \frac{1}{2}, \ell\right) \left(\ell \left(q - \frac{3}{2}\right)^{-1}\right)^t \left(q - \frac{1}{2}\right)^{r_{M'}(E(S))}.$$

By Lemma 2.3 applied to E(S) and E(T), with $\mu = q - \frac{1}{2}$, there is a set $A \subseteq E(S)$, skew to E(T) in M', such that

$$\varepsilon(M'|A) \ge \alpha_{2,2}\left(n',q-\frac{1}{2},\ell\right)\left(q-\frac{1}{2}\right)^{r(M'|A)}.$$

Therefore, Lemma 2.2 implies that M'|A has a PG(n' - 1, q')-minor $R_1 = (M'|A)/C_1 \setminus D_1$, for some $q' > q - \frac{1}{2}$. Let $M_1 = M'/C_1$. The set A is skew to E(T) in M', and therefore also skew to C - C', so M'|A = (M'/(C - C'))|A = S|A, so M'|A is GF(q)-representable, and so is its minor R_1 . Thus, q' = q, and R_1 is a PG(n' - 1, q)-restriction of M_1 . Moreover, $C_1 \subseteq A$, so C_1 is skew to E(T) in M', and therefore M_1 has T as a restriction. The matroid M_1 is a contraction-minor of M, so is weakly round, and thus satisfies the claim. \Box

Let M_2 be a minor-minimal matroid such that:

- *M*₂ is a weakly round minor of *M*₁, and
- T and R_1 are both restrictions of M_2 .

If $r(R_1) = r(M_2)$, then $N = M_2$ is the required minor of M. We may therefore assume that $r(M_2) > r(R_1) = n'$. We have $r(T) \le t \le n' - 1 \le r(M_2) - 2$, so by weak roundness of M_2 , there is some $e \in E(M_2)$ spanned by neither E(T) nor $E(R_1)$, contradicting minimality of M_2 . \Box

9. Critical elements

An element e in a (q, k)-overfull matroid M is called (q, k)-critical if M/e is not (q, k)-overfull.

Lemma 9.1. Let q be a prime power and $k \ge 0$ be an integer. If e is a (q, k)-critical element in a (q, k)-overfull matroid M, then either

- (i) *e* is contained in a line with at least $q^2 + 2$ points, or
- (ii) *e* is contained in $\frac{q^{2k}-1}{a^2-1} + 1$ lines, each with at least q + 2 points.

Proof. Suppose otherwise. Let \mathcal{L} be the set of all lines of M containing e, and let \mathcal{L}_1 be the set of the min $(|\mathcal{L}|, \frac{q^{2k}-1}{q^2-1})$ longest lines in \mathcal{L} . Every line in $\mathcal{L} - \mathcal{L}_1$ has at most q + 1 points and every line in \mathcal{L}_1 has at most $q^2 + 1$ points, so

$$\begin{split} \varepsilon(M) &\leq 1 + q |\mathcal{L}| + \left(q^2 - q\right) |\mathcal{L}_1| \\ &\leq 1 + q \varepsilon(M/e) + \left(q^2 - q\right) \frac{q^{2k} - 1}{q^2 - 1} \\ &\leq 1 + q \left(\frac{q^{r(M) + k - 1} - 1}{q - 1} - q \frac{q^{2k} - 1}{q^2 - 1}\right) + \left(q^2 - q\right) \frac{q^{2k} - 1}{q^2 - 1} \\ &= \frac{q^{r(M) + k} - 1}{q - 1} + q \frac{q^{2k} - 1}{q^2 - 1}, \end{split}$$

contradicting the fact that *M* is (q, k)-overfull. \Box

The following result shows that a large number of (q, k)-critical elements gives a denser minor.

Lemma 9.2. There is an integer-valued function $f_{9,2}(n, q, k)$ so that, for any prime power q, and integers $k \ge 0$, n > k + 1, if $m \ge f_{9,2}(n, q, k)$ is an integer, and $M \in EX(U_{2,q^2+q+1})$ is a (q, k)-overfull, weakly round matroid such that

- *M* has a PG(m 1, q)-minor, and
- *M* has a rank-m set of (q, k)-critical elements,

then M has a rank-n, (q, k + 1)-full minor with a U_{2,q^2+1} -restriction.

Proof. Let *q* be a prime power, and $k \ge 0$ and $n \ge 2$ be integers. Let $n' = \max(k+8, n+k+1)$, let $d = f_{5,2}(q, k)$, let t = d(d+1) + k + 6, let $s = \frac{q^{2k}-1}{q^2-1} + 1$, and set $f_{9,2}(n, q, k) = f_{8,1}(n', q, t(s+1), q^2+q-1)$. Let $m \ge f_{9,2}(n, q, k)$ be an integer, and let $M \in \text{EX}(U_{2,q^2+q+1})$ be a (q, k)-overfull, weakly round

Let $m \ge f_{9,2}(n, q, k)$ be an integer, and let $M \in EX(U_{2,q^2+q+1})$ be a (q, k)-overfull, weakly round matroid with a PG(m - 1, q)-minor and a *t*-element independent set *I* of (q, k)-critical elements (note that $t \le m$). We will show that *M* has the required minor.

By Lemma 9.1, for each element $e \in I$, there is a set \mathcal{L}_e of lines containing e such that either $|\mathcal{L}_e| = 1$ and the single line in \mathcal{L}_e has $q^2 + 2$ points, or $|\mathcal{L}_e| = \frac{q^{2k}-1}{q^2-1} + 1$ and each line in \mathcal{L}_e has at least q + 2 points. There is a restriction K of M with rank at most t(s + 1) that contains all the lines (\mathcal{L}_e : $e \in I$). By Lemma 8.1, M has a minor M_1 of rank at least n' that has a PG($r(M_1) - 1, q$)-restriction R_1 , and has K as a restriction. By Lemma 4.1, M_1 has at most one line containing $q^2 + 2$ points.

9.2.1. There is a (t-5)-element subset I_1 of I such that, for each $e \in I_1$, we have $r_K(\bigcup \mathcal{L}_e) \ge k+2$.

Proof of the claim. Note that $|I| = t \ge 5$. If k = 0, then every $e \in I$ satisfies the required condition, so an arbitrary (t - 5)-subset of I will do; we may thus assume that $k \ge 1$. Since K contains at most one line with at least $q^2 + 2$ points, there are at most two elements $e \in I$ with $|\mathcal{L}_e| = 1$. If the claim fails, there is therefore an 4-element subset I_2 of I such that $|\mathcal{L}_e| = \frac{q^{2k}-1}{q^2-1} + 1$ and $r_K(\bigcup \mathcal{L}_e) \le k + 1$ for all $e \in I_2$.

For each $e \in I_2$, let $F_e = cl_K(\bigcup \mathcal{L}_e)$. Then $(K|F_e)/e$ has rank at most k and has more than $\frac{q^{2k}-1}{q^2-1}$ points. Since $k \ge 1$, this matroid has rank at least 2. Moreover, M_1/e has rank at least $n' - 1 \ge k + 7$ and has a $PG(r(M_1/e) - 1, q)$ -restriction, so, by Lemma 4.2, $r((K|F_e)/e) = 2$. Hence, $k \ge 2$, F_e is a rank-3 set containing at least $q^2 + 2$ lines through e, each with at least q + 2 points, and $(K|F_e)/e$ is a rank-2 set containing at least $q^2 + 2$ points.

Let $a \in I_2$; since $r_{M_1}(I_2) = 4 > r_{M_1}(F_a)$, there is some $b \in I_2 - F_a$. Now, M_1/b has a line $L = cl_{M_1/b}(F_b - \{b\})$ containing at least $q^2 + 2$ points, and $(M_1/b)|F_a$ is a rank-3 matroid with at least $1 + (q + 1)(q^2 + 2)$ points, and therefore at least $1 + (q + 1)(q^2 + 2) - (q^2 + q) > q^2 + q + 1$ points outside *L*. However, M_1/b has rank at least k + 7, and has a PG($r(M_1/b) - 1, q$)-restriction containing at most $q^2 + q + 1$ points in $F_a - L$, so we obtain a contradiction to Lemma 4.1. \Box

9.2.2. M_1 has an R_1 -unstable set of size k + 1.

Proof of the claim. Suppose otherwise. By Lemma 5.2, there is a flat *F* of R_1 with rank at most *k* such that $\varepsilon(M_1/F) \leq \varepsilon(R_1/F) + f_{5,2}(q, k) = \varepsilon(R_1/F) + d$. Let $M_2 = M_1/F$; the matroid M_2 has a $PG(r(M_2) - 1, q)$ -restriction R_2 , and satisfies $E(M_2) = E(R_2) \cup D$, where $|D| \leq d$.

Let $I_2 \subseteq I_1$ be a set of size of size $|I_1| - k$ that is independent in M_2 ; note that $|I_2| \ge d(d+1) + 1$. For each $e \in I_2$, we have $r_{M_2}(\bigcup \mathcal{L}_e) \ge (k+2) - k = 2$, so e is contained in a line L_e with at least q + 2 points in M_2 .

Let $\mathcal{L} = \{L_e: e \in I_2\}$. Each L_e contains e, and at most one other point in I_2 , so $|\mathcal{L}| \ge \frac{1}{2}|I_2| > \binom{d+1}{2}$. Each line in \mathcal{L} contains q + 2 points, so must contain a point of $M_2 \setminus E(R_2)$. However, $|M_2 \setminus E(R_2)| \le d$, so there are at most $\binom{d}{2}$ lines of M_2 containing two points of $M_2 \setminus E(R_2)$, and by Lemma 3.2, we may assume that there are at most *d* lines of M_2 containing q + 2 points, but just one point of $M_2 \setminus E(R_2)$. This gives $|\mathcal{L}| \leq d + {d \choose 2} = {d+1 \choose 2}$, a contradiction. \Box

Since $r(M_1) \ge n' \ge n + k + 1$, we get the required minor N from the above claim and Lemma 5.3. \Box

10. The main theorems

The following result implies Theorems 1.2 and 1.3:

Theorem 10.1. Let q be a prime power, and let $\mathcal{M} \subseteq \text{EX}(U_{2,q^2+q+1})$ be a base-q exponentially dense minorclosed class of matroids. There is an integer $k \ge 0$ such that

$$h_{\mathcal{M}}(n) = \frac{q^{n+k} - 1}{q - 1} - q\frac{q^{2k} - 1}{q^2 - 1}$$

for all sufficiently large n. Moreover, if $\mathcal{M} \subseteq \text{EX}(U_{2,a^2+1})$, then k = 0.

Proof. By the Growth Rate Theorem, \mathcal{M} contains all projective geometries over GF(q) and, hence, \mathcal{M} contains (q, 0)-full matroids of every rank. We may assume that there are (q, 0)-overfull matroids of arbitrarily large rank, since otherwise the theorem holds. By the Growth Rate Theorem, there is a maximum integer $k \ge 0$ such that \mathcal{M} contains (q, k)-overfull matroids of arbitrarily large rank, and there is an integer $s \ge 0$ such that $PG(s - 1, q') \notin \mathcal{M}$ for all q' > q.

To prove the result, it suffices to show that, for all n > k+1, there is a rank-n matroid $M \in \mathcal{M}$ that is (q, k+1)-full and has a U_{2,q^2+1} -restriction. Suppose for a contradiction that n > k+1 is an integer for which this M does not exist.

Let $m = f_{9,2}(n, q, k)$, and $m_4 = \max(m + 1, s, f_{6,1}(n, q, k))$. Let m_3 be an integer such that

$$\frac{q^{m_3}-1}{q-1} > \alpha_{2.2} \left(m_4, q - \frac{1}{2}, q^2 + q - 1\right) \left(\frac{q^2 + q - 1}{q - \frac{3}{2}}\right)^m \left(q - \frac{1}{2}\right)^{m_3 + m - 1}$$

Let $m_2 = \max(s, m_3 m)$, and choose an integer $m_1 > s$ such that

$$\alpha_{2,2}\left(m_2, q - \frac{1}{2}, q^2 + q - 1\right)\left(q - \frac{1}{2}\right)^r \leqslant \frac{q^{r+k} - 1}{q - 1} - q\frac{q^{2k} - 1}{q^2 - 1}$$

for all $r \ge m_1$. By Lemma 7.3, \mathcal{M} contains weakly round, (q, k)-overfull matroids of arbitrarily large rank; let $M_1 \in \mathcal{M}$ be a weakly round, (q, k)-overfull matroid with rank at least m_1 . By Lemma 2.2, M_1 has a PG $(m_2 - 1, q')$ minor N_1 for some $q' > q - \frac{1}{2}$; since $m_2 \ge s$, we have q' = q. Let I_1 be an independent set of M_1 such that N_1 is a spanning restriction of M_1/I_1 , and choose $J_1 \subseteq I_1$ maximal such that M_1/J_1 is (q, k)-overfull.

Let $M_2 = M_1/J_1$ and let $I_2 = I_1 - J_1$. By our choice of J_1 , each element in I_2 is (q, k)-critical in M_2 . Since $m_2 \ge m$, Lemma 9.2 gives $|I_2| < m$. Choose a collection (F_1, \ldots, F_m) of mutually skew rank- m_3 flats in the projective geometry N_1 ; each F_i satisfies $r(M_2|F_i) \le m_3 + m - 1$ and $\varepsilon(M_2|F_i) = \frac{q^{m_3} - 1}{q - 1}$. By our choice of m_3 , and by Lemma 2.3 with $\mu = q - \frac{1}{2}$ for each $i \in \{1, \ldots, m\}$, there is a flat $F'_i \subseteq F_i$ of M_2 that is skew to I_2 in M_2 , and satisfies $\varepsilon(M_2|F'_i) \ge \alpha_{2.2}(m_4, q - \frac{1}{2}, q^2 + q - 1)(q - \frac{1}{2})^{r_{M_2}(F_i)}$. Note that, since the sets (F'_1, \ldots, F'_m) are mutually skew in M_2/I_2 and each of these sets is skew to I_2 in M_2 , the flats (F'_1, \ldots, F'_m) are mutually skew in M_2 .

By Lemma 2.2, $M_2|F'_i$ has a $PG(m_4 - 1, q')$ minor P_i for some $q' > q - \frac{1}{2}$; since $m_4 \ge s$, we have q' = q. Let X_i be an independent set of $M_2|F'_2$ such that P_i is a spanning restriction of M_2/X_i . Now choose $Z \subseteq X_1 \cup \cdots \cup X_m$ maximal such that M_2/Z is (q, k)-overfull. Let $M_3 = M_2/Z$. Each element

of $X_1 \cup \cdots \cup X_s - Z$ is (q, k)-critical in M_3 , and P_i is a minor of M_3 for each *i*. The X_i are mutually skew in M_3 and hence pairwise disjoint; thus, by Lemma 9.2, there exists $i_0 \in \{1, \ldots, m\}$ such that $X_{i_0} - Z = \emptyset$ and, hence, P_{i_0} is a restriction of M_3 ; let $R = P_{i_0}$.

Choose a minor M_4 of M_3 that is minimal such that:

- M_4 is weakly round, and (q, k)-overfull,
- *M*₄ has *R* as a restriction.

By Lemma 6.1, $r(M_4) > r(R)$. Every element of $E(M_4) - cl_{M_4}(E(R))$ is (q, k)-critical and, since M_4 is weakly round, $r(M_4 \setminus cl_{M_4}(E(R))) \ge r(M_4) - 2 \ge m_4 - 1 \ge m$. We now get a contradiction from Lemma 9.2. \Box

Acknowledgments

We thank the referees for their very detailed reading of the manuscript and for their useful corrections and comments.

References

- [1] J. Geelen, K. Kabell, Projective geometries in dense matroids, J. Combin. Theory Ser. B 99 (2009) 1-8.
- [2] J. Geelen, J.P.S. Kung, G. Whittle, Growth rates of minor-closed classes of matroids, J. Combin. Theory Ser. B 99 (2009) 420-427.
- [3] J. Geelen, P. Nelson, The number of points in a matroid with no n-point line as a minor, J. Combin. Theory Ser. B 100 (2010) 625–630.
- [4] J. Geelen, G. Whittle, Cliques in dense GF(q)-representable matroids, J. Combin. Theory Ser. B 87 (2003) 264–269.
- [5] J.P.S. Kung, Numerically regular hereditary classes of combinatorial geometries, Geom. Dedicata 21 (1) (1986) 85-105.
- [6] J.P.S. Kung, Extremal matroid theory, in: Graph Structure Theory, Seattle, WA, 1991, in: Contemp. Math., vol. 147, American Mathematical Society, Providence, RI, 1993, pp. 21–61.
- [7] L. Lovász, Selecting independent lines from a family of lines in a space, Acta Sci. Math. 42 (1980) 121-131.
- [8] P. Nelson, Growth rate functions of dense classes of representable matroids, 2011, submitted for publication.
- [9] P. Nelson, Exponentially dense matroids, PhD thesis, University of Waterloo, 2011.
- [10] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 2011.