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1. Introduction

We prove a refinement of the Growth Rate Theorem for certain exponentially dense classes.
We call a class of matroids minor-closed if it is closed under both minors and isomorphism. The
growth rate function, haq : N — N U {oo} for a class M of matroids is defined by

haq(n) = max{|M|: M € M is simple, and r(M) < n}.
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The following striking theorem summarizes the results of several papers, [1,2,4].

Theorem 1.1 (Growth Rate Theorem). Let M be a minor-closed class of matroids, not containing all simple
rank-2 matroids. Then there is an integer ¢ such that either:

(1) haq(n) <cnforalln >0, or

(2) ("“) < hpq(n) < cn? foralln > 0, and M contains all graphic matroids, or

(3) there is a prime power q such that qu_f < hp(m) < cq" for alln > 0, and M contains all GF(q)-
representable matroids.

In particular, the theorem implies that h x4 (n) is finite for all n if and only if M does not contain
all simple rank-2 matroids. If M is a minor-closed class satisfying (3), then we say that M is base-q
exponentially dense. Our main theorems precisely determine, for many such classes, the eventual value
of the growth rate function:

Theorem 1.2. Let q be a prime power. If M is a base-q exponentially dense minor-closed class of matroids
such that U, g21 ¢ M, then

hpmn) =

for all sufficiently large n.

Consider, for example, the class M of matroids with no U; ¢4>-minor, where ¢ > 2 is an integer.
By the Growth Rate Theorem, this class is base-q exponentially dense, where q is the largest prime-
power not exceeding ¢. Clearly g2 > ¢, so, by Theorem 1.2, hp(n) = ‘f;%f for all large n. This special
case is the main result of [3], which essentially also contains a proof of Theorem 1.2.

Theorem 1.3. Let q be a prime power. If M is a base-q exponentially dense minor-closed class of matroids
such that Uy g2 411 ¢ M, then there is an integer k > O such that

qn+k_-l qZk_-l
h = —
m(n) -1 g

for all sufficiently large n.

Consider, for example, any proper minor-closed subclass M of the GF(g?)-representable matroids
that contains all GF(q)-representable matroids. Such classes are all base-q exponentially dense and do
not contain U, ;2. ,, so Theorem 1.3 applies; this special case is the main result of [8].

If the hypothesis of Theorem 13 is weakened to allow U; p2,4.1 € M, then the conclusion no

longer holds. Consider the class M defined to be the set of truncations of all GF(q)-representable
—1

matroids; note that U, 2,445 ¢ My and hpq, (n) = for all n >

More generally, for each k > 0, if My is the set of matroids obtamed from GF(q)-representable
—1

matroids by applying k truncations, then hq, (n) = for all n > 2. This expression differs from

q2:11. It is conjectured [8,9] that, for each k, these are the
extremes in a small spectrum of possible growth rate functions:

Conjecture 1.4. Let q be a prime power, and M be a base-q exponentially dense minor- closed class of ma-
2k

troids. There exist integers k and d with k > 0 and 0 < d < ‘22 T such that haq(n) = ’1 —qd for all

sufficiently large n.
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We conjecture further that, for every allowable q, k and d, there exists a minor-closed class with
the above as its eventual growth rate function.

There is a stronger conjecture [9] regarding the exact structure of the extremal matroids. For a
non-negative integer k, a k-element projection of a matroid M is a matroid of the form N/C, where
N\C=M, and C is a k-element set of N.

Conjecture 1.5. Let q be a prime power, and M be a base-q exponentially dense minor-closed class of ma-
troids. There exists an integer k > 0 such that, if M € M is a simple matroid of sufficiently large rank with
IM| = haq(r(M)), then M is the simplification of a k-element projection of a projective geometry over GF(q).

We will show, as was observed in [9], that this conjecture implies the previous one; see Lemma 3.1.
2. Preliminaries

A matroid M is called (q, k)-full if

M) > qr(M)+I< -1 q2k -1 .
€ = 1 —q 2_] )
q q

moreover, if strict inequality holds, M is (q, k)-overfull.

Our proof of Theorem 1.3 follows a strategy similar to that in [8]; we show that, for any in-
teger n > 0, every (g, k)-overfull matroid in EX(U; g2444), with sufficiently large rank, contains a
(q,k + 1)-full rank-n minor. The Growth Rate Theorem tells us that a given base-q exponentially
dense minor-closed class cannot contain (g, k)-full matroids for arbitrarily large k, so this gives the
result. Theorem 1.2 is easier and will follow along the way.

We follow the notation of Oxley [10]; flats of rank 1, 2 and 3 are respectively points, lines and
planes of a matroid. If M is a matroid, and X, Y € E(M), then [],(X,Y) =ru(X) +rm(Y) —rm(XUY)
is the local connectivity between X and Y. If [ ],,(X,Y) =0, then X and Y are skew in M, and if X" is a
collection of sets in M such that each X € X is skew to the union of the sets in X — {X}, then X is a
mutually skew collection of sets. A pair (Fi, F») of flats in M is modular if [],,(F1, F2) =rm(F1 N Fy),
and a flat F of M is modular if, for each flat F’ of M, the pair (F, F’) is modular. In a projective
geometry each pair of flats is modular and, hence, each flat is modular.

For a matroid M, we write |M| for |E(M)|, and (M) for |si(M)|, the number of points in M. Thus,
haq(n) = max(e(M): M € M, r(M) < n). Two matroids are equal up to simplification if their simpli-
fications are isomorphic. We let EX(M) denote the set of matroids with no M-minor; Theorems 1.2
and 1.3 apply to subclasses of EX(U, 42, 1) and EX(U; g2 4,1) respectively. The following theorem of
Kung [6] bounds the density of a matroid in EX(U3 ¢42):

Theorem 2.1. Let ¢ > 2 be an integer. If M € EX(Uy,¢12), then (M) < £mcl.

The next result is an easy application of the Growth Rate Theorem.

Lemma 2.2. There is a real-valued function o (n, B8, £) so that, for any integers n > 1 and ¢ > 2, and
real number B > 1, if M € EX(U3,¢42) is a matroid such that e(M) > az5(n, 8, £)8™™), then M has a
PG(n — 1, q)-minor for some q > B.

The following lemma was proved in [8]:
Lemma 2.3. Let A, it be real numbers with . > 0 and u > 1, let t > 0 and £ > 2 be integers, and let A and B

be disjoint sets of elements in a matroid M € EX(U3,¢42) with ry(B) <t < r(M) and e(M|A) > Au™@),
Then there is a set A’ C A that is skew to B and satisfies e(M|A") > )»(“TT])HHM(A').
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3. Projections

Recall that a k-element projection of a matroid M is a matroid of the form N/C, where C is a
k-element set of a matroid N satisfying N\C = M.

In this section we are concerned with projections of projective geometries. Consider a k-element
set C in a matroid N such that N\C =PG(n+k —1,q) and let M = N/C. Thus M is a k-element
projection of PG(n+ k — 1, q). Below are easy observations that we use freely.

e If C is not independent, then M is a (k — 1)-element projection of PG(n + k — 1, q).

e If C is not coindependent, then M is a (k — 1)-element projection of PG(n +k — 1, q).

e If C is not closed in N, then M is, up to simplification, a (k — 1)-element projection of PG(n +
k—2,q).

e M has a PG(r(M) — 1, q)-restriction.

Our next result gives the density of projections of projective geometries; given such a projection M,
this density is determined to within a small range by the minimum k for which M is a k-element
projection. As mentioned earlier, this lemma also tells us that Conjecture 1.5 implies Conjecture 1.4.

Lemma 3.1. Let q be a prime power, and k > 0 be an integer. If N is a matroid, and C is a rank-k flat of N such
that N\C = PG(r(N) — 1,q), then £ (N/C) = £(N\C) — qd for some d € (0, 1,...., &=},

=
Proof. Each point P of N/C is a flat of the projective geometry N\C, so |P| = qr'\;(f)l_l =1+
quv(:)%. Therefore ¢(N\C) — ¢(N/C) is a multiple of q.

Let P denote the set of all points in N/C that contain more than one element, and let F be the
flat of N\C spanned by the union of these points. Choose a minimal set Py € P of points spanning F
in N/C (so |Pol =rnyc(F)); if possible choose Pp so that it contains a set in P € P with ry(P) > 2.
Note that: (1) the points in Py are mutually skew in N/C, (2) each pair of flats of N\C is modular,
and (3) C is a flat of N. It follows that Pp is a mutually skew collection of flats in N\C. Now, for each
P € Po, rn(P) > rn/c(P). Therefore, since r(N) —r(N/C) =k, we have ry,c(F) = [Po| < k. Moreover,
if ry/c(F) =k, then each set in Py is a line of N\C, and, hence, by our choice of Py, each set in P is
a line in N\C.

qlk_l

If rn/c(F) =k, then we have |F| = “— and |P| < q‘%. This gives ¢(N\C) —&(N/C) < qql% =
2k _q

qzz_l , as required.

g?-1_1 . ) . g?-1_1 g1
If rn/c(F) <k, then e(N\C) —e(N/C) < |F| < e It is routine to verify that 1 <@g
which proves the result. O

The next two lemmas consider single-element projections, highlighting the importance of U, ;24
and U g2, 44 in Theorems 1.2 and 1.3.

Lemma 3.2. Let q be a prime power and let e be an element of a matroid M such that M\e = PG(r(M) — 1, q).
Then there is a unique minimal flat F of M\e that spans e. Moreover, if r(M) > 3 and ry (F) > 2, then M /e
contains a U, g2 ;-minor, and if ry (F) > 3, then M /e contains a U, g2, 1-minor.

Proof. If F1 and F; are two flats of M\e that span e, then, since ry(F1 N F2) +ry(F1UFy) =ry(F1)+
rm (F2), it follows that F1 N Fo also spans e. Therefore there is a unique minimal flat F of M\e that
spans e. The uniqueness of F implies that e is freely placed in F.

Suppose that ry(F) > 3. Thus (M/e)|F is the truncation of a projective geometry of rank > 3. So
M/e contains a truncation of PG(2, q) as a minor; therefore M/e has a Uy, ¢2+q+1-Minor.

Now suppose that r(M) > 3 and that ry(F) = 2. If F/ is a rank-3 flat of M\e containing F, then
e((M/e)|F') =q*+1, so M/e has a Uy 2 -minor. O
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An important consequence is that, if M is a simple matroid with a PG(r(M) — 1, q)-restriction R
and no U, g2 444-minor, then every e € E(M) — E(R) is spanned by a unique line of R. The next result
describes the structure of the projections in EX(Uj g24411)-

Lemma 3.3. Let q be a prime power, and M € EX(U; 42.4.1) be a simple matroid, and e € E(M) be such that
M\e = PG(r(M) — 1, q). If L is the unique line of M\e that spans e, then L is a point of M /e, and each line of
M /e containing L has g + 1 points and is modular.

Proof. Let L’ be a line of M/e containing L. Then L’ is a plane of M\e, so, by Lemma 3.2, L’ has q® +1
points in M/e.

Note that e is freely placed on the line LU{e} in M. It follows that M is GF(q?)-representable. Now
L’ is a (g% + 1)-point line in the GF(q%)-representable matroid M/e; hence, L’ is modular in M/e. O

4. Dealing with long lines

This section contains two lemmas that construct a U, g, q-minor of a matroid M with a
PG(r(M) — 1, g)-restriction R and some additional structure.

Lemma 4.1. Let q be a prime power, and M be a simple matroid of rank at least 7 such that

o M has a PG(r(M) — 1, q)-restriction R, and
e M has a line L containing at least g + 2 points, and
e E(M)#E(R)UL,

then M has a U, g2 4,4 -minor.

Proof. We may assume that E(M) = E(R) UL U {z}, where z ¢ LU E(R). Let F be a minimal flat of R
that spans LU{z}. It follows easily from Lemma 3.2, that either M has a U; g2 4, ;-minor or ry (F) <6.
To simplify the proof we will prove the lemma with the weaker hypothesis that r(M) > 1 4+ ry(F),
in place of the hypothesis that r(M) > 7, and we will suppose that (M, R, L) forms a minimum rank
counterexample under these weakened hypotheses.

Let L, denote the line of R that spans z in M. Since z ¢ L, we have ry(L U L;) > 3. We may
assume that ry(L U L;) = 3, since otherwise we could contract a point in F — (L U L;) to obtain a
smaller counterexample. Similarly, we may assume that ry(F) =3 and r(M) = 4, as otherwise we
could contract an element of F — cly;(LUL;) or E(M) — cly (F).

By Lemma 3.3, L, is a point of (M/z)|R and each line of (M/z)|R is modular and has g% + 1
points. One of these lines is F, and, since F spans L, F spans a line with g% + 2 points in M/z. Let
e € cly/z(F) be an element that is not in parallel with any element of F. Since F is a modular line in
(M/2)|R, the point e is freely placed on the line F U {e} in (M/z)|(R U {e}). Therefore e(M/{e, z}) >
e(M/{zDIR) —q*> =14+ ¢*(@+1) — q* = ¢> + 1, contradicting the fact that M € EX(U g2,411). O

Lemma 4.2. Let q be a prime power, and k > 3 be an integer. If M is a matroid of rank at least k + 7, with

2k
a PG(r(M) — 1, q)-restriction, and a set X € E(M) with ry(X) < k and e(M|X) > 22_’11, then M has a

U; g24q+1-minor.

Proof. Let Mo be a matroid satisfying the hypotheses, with a PG(r(Mg) — 1, q)-restriction Rg. We may
assume that Mo € EX(U; g24441), and by choosing a rank-k set containing X, we may also assume that
M, (X) = k. By Lemma 3.2, Ro has a flat Fo of rank at most 2k such that X C cly, (Fo). By contracting
at most k points in Fg — clpy, (X), we obtain a minor M of My, of rank at least 7, such that ry(X) =k,
and M has a PG(r(M) — 1, q)-restriction R, and there is a rank-k flat F of R such that X C cly(F).
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We may assume that M is simple and that X is a flat of M, so F C X. Let n=|F| = ‘Z(T_ll. By
Lemma 3.2, each point of X is spanned in M by a line of R|F. There are (})/(*") such lines, each

containing q + 1 points of F. If each of these lines spans at most (g2 — q) points of X — F, then

k 2 n 2k
—1 - —1
X=Fl+x—F<L=1,4 D) _a ,

q-1 (*3") ¢ —1

contradicting the definition of X. Therefore, some line L of M|X contains at least q> 4+ 2 points.

2k k
We also have |L| < g%+ g, so a calculation gives |X — L| > 22:11 —(@*+q) > %%11 =|F|,s0 X FUL.

Applying Lemma 4.1 to M|(E(R) U X) gives the result. O

5. Matchings and unstable sets

For an integer k > 0, a k-matching of a matroid M is a mutually skew k-set of lines of M. Our first
theorem was proved in [8], and also follows routinely from the much more general linear matroid
matching theorem of Lovasz [7]:

Theorem 5.1. There is an integer-valued function fs1(q, k) so that, for any prime power q and integersn > 1
and k > 0, if L is a set of lines in a matroid M = PG(n — 1, q), then either

(i) L contains a (k + 1)-matching of M, or
(ii) thereis aflat F of M with ry(F) <k, and a set Lo C L with |Lo| < f5.1(q, k), such that every line L € L
either intersects F, or is in Lg. Moreover, if ry (F) =k, then Lo = @.

We now define a property in terms of a matching in a spanning projective geometry. Let q be
a prime power, M € EX(U3 g2 4g+41) be a simple matroid with a PG(r(M) — 1, q)-restriction R, and
X C E(M\R) be a set such that M|(E(R) U X) is simple. Recall that, by Lemma 3.2, each x € X lies in
the closure of exactly one line Ly of R. We say that X is R-unstable in M if the lines {Ly: x € X} are
a matching of size |X]| in R.

Lemma 5.2. There is an integer-valued function fs,(q, k) so that, for any prime power q and integer k > 0, if
M € EX(Uj g24q41) is a matroid of rank at least 3 with a PG(r(M) — 1, q)-restriction R, then either

(i) thereis an R-unstable set of size k + 1 in M, or
(ii) R has a flat F with rank at most k such that e(M/F) < e(R/F) + f5.2(q, k).

Proof. Let q be a prime power, and k > 0 be an integer. Set fs5,(q,k) = (q¢*> + q) f5.1(q, k). Let M be
a matroid with a PG(r(M) — 1, q)-restriction R. We may assume that M is simple, and that the first
outcome does not hold. Let £ be the set of lines L of R such that |cly(L)| > |clg(L)|. If £ contains a
(k+1)-matching of R, then choosing a point from cly; (L) — clg(L) for each line L in the matching gives
an R-unstable set of size k+ 1. We may therefore assume that £ contains no such matching. Thus, let
F and Ly be the sets defined in the second outcome of Theorem 5.1. Let D = UL€£0 clpr(L). We have
ID| < (g% + q)| Lol < f5.2(q, k). By Lemma 3.2, each element of M\D either lies the closure of a line
in £ or in a point of R, so is parallel in M/F to an element of R. Therefore, e(M/F) < &(R/F)+ |D|;
the result now follows. O

We use an unstable set to construct a dense minor. Recall that (q, k)-full and (g, k)-overfull were
defined at the start of Section 2.

Lemma 5.3. Let q be a prime power, and k > 1 and n > k be integers. If M € EX(U; g2, ¢,1) is a matroid of
rank at least n + k with a PG(r(M) — 1, q)-restriction R, and X is an R-unstable set of size k in M, then M has
arank-n (q, k)-full minor N with a U, g2 4 -restriction.
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Proof. We may assume by taking a restriction if necessary that r(M) =n+k, and E(M) = E(R) U X;
we show that N = M/X has the required properties. For each x € X, let Ly denote the line of R
that spans X; thus {Ly: x € X} is a matching. By the definition of instability, it is clear that X is
independent, so r(N) =n. Let x € X, and P be a plane of R that contains Ly and is skew to X — {x}. By
Lemma 3.3, (M/x)|P has a U, g q-restriction. Since X — {x} is skew to P, M/X also has a Uj g2~
restriction.

To complete the proof it is enough, by Lemma 3.1, to show that cly(X) is disjoint from R. This
is trivial if X is empty, so consider x € X and let R’ =si(R/Ly). Note that R" =PG(n +k —3,q) is a
spanning restriction of M/Ly and X — {x} is R’-unstable. Inductively, we may assume that cly;;, (X —
{x}) is disjoint from R/Ly, but this implies that cly(X) is disjoint from R, as required. O

6. The spanning case

In this section we consider matroids that are spanned by a projective geometry.

Lemma 6.1. There is an integer-valued function fs.1(n, q, k) such that, for any prime power q and integers
k>0andn>k+1,ifMe EX(Uy g24941) is a matroid of rank at least fs1(n, q, k) such that

o M has a PG(r(M) — 1, q)-restriction R, and
e M is (q, k)-overfull,

then M has a rank-n (q, k + 1)-full minor N with a U, g2 4-restriction.

Proof. Let k >0 and n > k + 1 be integers, and q be a prime power. Let m > max(k +7,n+k + 1) be
an integer such that

qr+k -1 qzk -1 qr+j -1

R e M +max(q* +4, (¢° —q) f5.1(q, k)

for all r >m and 0 < j < k. We set fs1(n,q,k) =m.
Let M € EX(Uj g24g+1) be a (q, k)-overfull matroid of rank at least m, and let R be a PG(r(M) — 1,
q)-restriction of M. We will show that M has the required minor N; we may assume that M is simple.

6.1.1. If k > 1, then no line of M contains more than q + 1 points.

Proof of the claim. Let L be a line of M containing at least g + 2 points. We have |L| < g2 + ¢, so

[E(R)UL| < qr;M% + g% 4 q < |M| by the definition of m. Therefore, there is a point of M in neither

R nor L. By Lemma 4.1, M has a U; g4, ¢-minor, a contradiction. O

Let £ be the set of lines of R, and £ be the set of lines of R that are not lines of M; note that
each L € LT contains exactly g 4+ 1 points of R, and spans an extra point in M. By Lemma 3.2, every
point of M\E(R) is spanned by a line in £*.

6.1.2. £+ contains a (k + 1)-matching of R.

Proof of the claim. If k =0, then since |M| > |R|, we must have £ # @, so the claim is trivial.
Thus, assume that k > 1 and that there is no such matching. Let F C E(R) and Lo C L be the sets
defined in Theorem 5.1. Let j =ry(F); we know that 0 < j <k, and that Lo is empty if j =k. Let
Lrp={LeL: |LNF|=1}. By definition, every point of M\R is in the closure of F, or the closure of a
line in Lf U L.

Every point of R\F lies on exactly |F| lines in Lf, and each such line contains exactly g points
of R\F, so
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_IFIRVF] _ @ = D@ —q)

|LF|
F q q(q —1)?

Furthermore, each line in £ contains q + 1 points of R, and its closure in M contains at most q* —q
points of M\R by the first claim. We argue that | cly (F)| < ‘f:;—_’:; if j <2, then this follows from the

first claim, and otherwise, we have r(M) >m >k + 7, so the bound follows by applying Lemma 4.2 to
M and cly;(F). We now estimate |M|:

IM[ = R + [M\E(R)|

<RI+ Y |du(@) — E(R)| + |clu(F) — F|

LeLFULy
g™ —1 ) g -1 ¢i-1
S——+ - Lr| 4+ |Lol) + — .
P (@* = a)(ILF| + 1£ol) a-1 q-1
Now, a calculation and our value for £ obtained earlier together give |M| < qr“\;)% — q‘z;j—_’l] +
r(M)+k _q qqu

@ =@ Lol. If j <k, then, since r(M) >m and |Lo| < f5.1(q, k), we have |M| < T gL by
definition of m. If j =k, then |Lg| =0, so the same inequality holds. In either case, we contradict the
fact that M is (q, k)-overfull. O

Now, £ has a matching of size k + 1, so by construction of £*, there is an R-unstable set X of
size k + 1 in M. Since r(M) > m > n +k + 1, the required minor N is given by Lemma 5.3. O

7. Connectivity

A matroid M is weakly round if there is no pair of sets A, B with union E(M), such that ry(A) <
r(M) — 2 and ry(B) < r(M) — 1. Any matroid of rank at most 2 is clearly weakly round. This is a
variation on roundness, a notion equivalent to infinite vertical connectivity introduced by Kung [5]
under the name of ‘non-splitting’. Weak roundness is preserved by contraction; the following lemma
is easily proved, and we use it freely.

Lemma 7.1. If M is a weakly round matroid, and e € E(M), then M /e is weakly round.

The first step in our proof of the main theorems will be to reduce to the weakly round case; the
next two lemmas give this reduction.

Lemma 7.2. If M is a matroid, then M has a weakly round restriction N such that e(N) > "M —"Mg (M),
where ¢ = 1(1+/5).

Proof. We may assume that M is not weakly round, so r(M) > 2, and there are sets A, B of M
such that ry (A) =r(M) — 2, ry(B) =r(M) — 1, and E(M) = A U B. Now, since ¢~ + gz)‘z =1, either
&(M|A) > ¢2e(M) or e(M|B) > ¢~ 'e(M); in the first case, by induction M|A has a weakly round
restriction N with &(N) > @"MTMN g (M|A) > "N =TMD+2=20 (M) = "N =TMg(0), giving the
result. The second case is similar. O

Lemma 7.3. Let q be a prime-power, and k > 0 be an integer. If M is a base-q exponentially dense minor-
closed class of matroids that contains (q, k)-overfull matroids of arbitrarily large rank, then M contains weakly
round, (q, k)-overfull matroids of arbitrarily large rank.
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Proof. Note that ¢ <2 < q; by the Growth Rate Theorem, there is an integer t > 0 such that

tr(l\/l)-‘rk_l Zk_l
aM><(3)q R K
@ q-—1 q-—1

for all M € M.

For any integer n > 0, consider a (q, k)-overfull matroid M € M with rank at least n + t. By
Lemma 7.2, M has a weakly round restriction N such that e(N) > ¢—5&(M), where s =r(M) — r(N).
We have

e(N) = ¢ ~"e(M)

r(M)+k_1 2k_1
AR

q—1 qg—1

q Sqr(N)+I<_1 q2k -1
> — —q— .
@ qg—1 q- -1

Thus N is (q, k)-overfull. Moreover, by the definition of t, we have s <t and, hence, r(N) >n. O
8. Exploiting connectivity

We now exploit weak roundness by showing that any interesting low-rank restriction can be con-
tracted into the span of a projective geometry.

Lemma 8.1. There is an integer-valued function fg1(n,q,t, £) so that, for any prime power q, and integers
n=1,£>2andt>0,if M € EX(U3 ¢42) is a weakly round matroid with a PG(fs.1(n, q,t, £) — 1, q)-minor,
and T is a restriction of M of rank at most t, then there is a minor N of M of rank at least n, such that T is a
restriction of N, and N has a PG(r(N) — 1, q)-restriction.

Proof. Let n >1,¢ > 2 and t > 0 be integers. Let n’ = max(n,t + 1), and set fg1(1,q,t,£) to be an
integer m such that m > 2t, and

q" -1 , 1 ta-p\ 1\"
> g ) —F) la—3) -
-1 Olz.z(” q 3 q—% q )

Let M € EX(U3,¢42) be a weakly round matroid with a PG(m — 1, q)-minor S = M/C\D, where
r(S) =r(M) —ry(C). Let T be a restriction of M of rank at most t; we show that the required minor
exists.

8.1.1. There is a weakly round minor M of M, such that T is a restriction of M1, and M1 has a PG(n’ — 1, q)-
restriction R1.

Proof of the claim. Let C’ C C be maximal such that T is a restriction of M/C’, and let M’ = M/C’.

Maximality implies that C — C’ C clpy (E(T)), so ry(C —C") <t. Now, rpy (E(S)) =r(S) +ry (C—C") <
m + t. Therefore,

g —1 , 1 . 3\ " 1\™
em (E(S)) = =1 Z 022 n,q—i,ﬁ L -3 a-5

1 3 =1\t 1rM/(E(S))
> La—=.e)(ela-3 — .
S DI(CHBICS)
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By Lemma 2.3 applied to E(S) and E(T), with u =q — % there is a set A C E(S), skew to E(T)
in M’, such that

r(M'|A)
8(M’|A)2a2,2<n’,q—%,£><q—%) )

Therefore, Lemma 2.2 implies that M’|A has a PG(n’ — 1,q)-minor Ry = (M’|A)/C1\D1, for some
q>q— % Let My = M’/Cy. The set A is skew to E(T) in M’, and therefore also skew to C — C’, so
M'|A=(M'/(C—C")|A=S|A, so M'|A is GF(q)-representable, and so is its minor Ry. Thus, ¢’ =q,
and Ry is a PG(n’ — 1, q)-restriction of M1. Moreover, C; C A, so Cq is skew to E(T) in M’, and
therefore M1 has T as a restriction. The matroid My is a contraction-minor of M, so is weakly round,
and thus satisfies the claim. O

Let M, be a minor-minimal matroid such that:

e M> is a weakly round minor of M1, and
e T and R; are both restrictions of Ms.

If r(Ry) =r(My), then N = M, is the required minor of M. We may therefore assume that
r(M3) > r(Ry) =n’. We have r(T) <t <n’ —1<r(My)— 2, so by weak roundness of M, there is
some e € E(M>y) spanned by neither E(T) nor E(R7), contradicting minimality of M. O

9. Critical elements
An element e in a (q, k)-overfull matroid M is called (q, k)-critical if M/e is not (q, k)-overfull.

Lemma 9.1. Let q be a prime power and k > 0 be an integer. If e is a (q, k)-critical element in a (q, k)-overfull
matroid M, then either

(i) e is contained in a line with at least g% + 2 points, or

2K
(ii) e is contained in 2;’1] + 1 lines, each with at least q + 2 points.

Proof. Suppose otherwise. Let £ be the set of all lines of M containing e, and let £ be the set of
k
the min(| L[, ‘;22—:11) longest lines in L. Every line in £ — £4 has at most g + 1 points and every line

in £; has at most g> + 1 points, so

e(M) <1+qIL|+ (¢° — q)IL4]

5 q2k_l
<14qeM/e)+ (q° —q) o
qr(M)+l<—] —1 q2k -1 9 q2k ~1
<1 _ _
+q< q—1 T t q)q2—1
r(M)+k _ 1 2% _ 1
=1 +q2 ,
q—1 q> -1

contradicting the fact that M is (q, k)-overfull. O

The following result shows that a large number of (q, k)-critical elements gives a denser minor.
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Lemma 9.2. There is an integer-valued function fq 3 (n, q, k) so that, for any prime power q, and integers k > 0,
n>k+1,ifm> foo(n,q,k)isaninteger,and M € EX(Uy,g24q+1) is a (q, k)-overfull, weakly round matroid
such that

o M has a PG(m — 1, q)-minor, and
e M has a rank-m set of (q, k)-critical elements,

then M has a rank-n, (q, k + 1)~full minor with a U, o> ;-restriction.

Proof. Let q be a prime power, and k > 0 and n > 2 be integers. Let n’ = max(k+8,n+k+1), letd =

f52(q,k), lett =d(d+1)+k+6, let s= 222"_—11 +1, and set foo(n,q,k) = fs1(n',q,t(s+1),¢> +q—1).

Let m > fg92(n,q,k) be an integer, and let M € EX(U3 g24q+41) be a (q, k)-overfull, weakly round
matroid with a PG(m — 1, q)-minor and a t-element independent set I of (q, k)-critical elements (note
that t < m). We will show that M has the required minor.

By Lemma 9.1, for each element e € I, there is a set L, of lines containing e such that either
|Lel =1 and the single line in £, has g% + 2 points, or |L| = 22;:11 + 1 and each line in £, has
at least g + 2 points. There is a restriction K of M with rank at most t(s + 1) that contains all the
lines (Le: e € I). By Lemma 8.1, M has a minor M; of rank at least n’ that has a PG(r(M1) — 1, q)-
restriction Ry, and has K as a restriction. By Lemma 4.1, M; has at most one line containing g° + 2

points.

9.2.1. There is a (t — 5)-element subset I1 of I such that, for each e € 11, we have rg (| L) >k + 2.

Proof of the claim. Note that |I| =t > 5. If k =0, then every e € I satisfies the required condition, so
an arbitrary (t — 5)-subset of I will do; we may thus assume that k > 1. Since K contains at most
one line with at least g% + 2 points, there are at most two elements e € I with |£e| = 1. If the claim
fails, there is therefore an 4-element subset I, of I such that |L.| = ‘f;k_’]l +1and rg(JLe) <k+1
for all e € I.

For each e € I, let Fe = clg(|J Le). Then (K|F¢)/e has rank at most k and has more than ‘Lzzk_’l]
points. Since k > 1, this matroid has rank at least 2. Moreover, M1 /e has rank at least n’ —1>k+7
and has a PG(r(M/e) — 1, q)-restriction, so, by Lemma 4.2, r((K|Fe)/e) = 2. Hence, k > 2, F, is a
rank-3 set containing at least g2 + 2 lines through e, each with at least q + 2 points, and (K|Fe)/e is
a rank-2 set containing at least g% + 2 points.

Let a € I; since ry, (I2) =4 > ry, (Fq), there is some b € I — F,. Now, Mq/b has a line L =
cly, p(Fp — {b}) containing at least q? + 2 points, and (M;/b)|F, is a rank-3 matroid with at least
1+ (g + 1)(q% + 2) points, and therefore at least 1+ (q + 1)(g®2 +2) — (¢®> + q) > q* + g + 1 points
outside L. However, M1 /b has rank at least k + 7, and has a PG(r(M1/b) — 1, q)-restriction containing
at most g% 4+ q + 1 points in F; — L, so we obtain a contradiction to Lemma 4.1. O

9.2.2. M has an Rq-unstable set of size k + 1.

Proof of the claim. Suppose otherwise. By Lemma 5.2, there is a flat F of R; with rank at most
k such that e(M1/F) < &(R1/F) + f52(q,k) = &(R1/F) +d. Let My = M;/F; the matroid M, has a
PG(r(M3) — 1, q)-restriction Ry, and satisfies E(M3) = E(R3) U D, where |D| <d.

Let I, C 11 be a set of size of size |I1| —k that is independent in M;; note that |I;| >d(d+ 1) + 1.
For each e € I, we have 1y, (I £e) > (k+2) —k =2, so e is contained in a line L, with at least g +2
points in Mj.

Let £ ={L.: e € I,}. Each L, contains e, and at most one other point in I, so || > %|12| > (d'zH).
Each line in £ contains g + 2 points, so must contain a point of M2\ E(R3). However, |[M2\E(R2)| <d,
so there are at most (g) lines of M; containing two points of M;\E(R3), and by Lemma 3.2, we may



J. Geelen, P. Nelson / Advances in Applied Mathematics 50 (2013) 142-154 153

assume that there are at most d lines of M, containing g + 2 points, but just one point of M\E(R3).
This gives |£| <d + (g) = (szrl), a contradiction. O

Since r(M{) >n’ >n+k+ 1, we get the required minor N from the above claim and Lem-
ma 5.3. O

10. The main theorems
The following result implies Theorems 1.2 and 1.3:

Theorem 10.1. Let q be a prime power, and let M C EX(U, 42, 4,1) be a base-q exponentially dense minor-
closed class of matroids. There is an integer k > 0 such that

qn+k_-l q2k_-l
ha(n) = -
m(n) -1 g1

for all sufficiently large n. Moreover, if M € EX(Uj g2,1), then k =0.

Proof. By the Growth Rate Theorem, M contains all projective geometries over GF(q) and, hence,
M contains (q, 0)-full matroids of every rank. We may assume that there are (g, 0)-overfull matroids
of arbitrarily large rank, since otherwise the theorem holds. By the Growth Rate Theorem, there is a
maximum integer k > 0 such that M contains (q, k)-overfull matroids of arbitrarily large rank, and
there is an integer s > 0 such that PG(s — 1,q’) ¢ M for all ¢’ > q.

To prove the result, it suffices to show that, for all n > k+ 1, there is a rank-n matroid M € M that
is (¢, k+ 1)-full and has a U, ;2 4-restriction. Suppose for a contradiction that n > k + 1 is an integer
for which this M does not exist.

Let m = fg9,(n, q,k), and my = max(m+1,s, fs.1(n, q, k)). Let m3 be an integer such that

-1 A q_l P4q—1 ¢ +q-1\" q_l e
q—l 2.2 4, 2; q_% D) .

Let my = max(s, msm), and choose an integer m; > s such that

1 ) ) 1 r<qr+k_l qZk_l
%22\ M2,q4 = 5.4"+q— a=5) s q—1 —qu_l

for all r > my. By Lemma 7.3, M contains weakly round, (q, k)-overfull matroids of arbitrarily large
rank; let M1 € M be a weakly round, (q, k)-overfull matroid with rank at least m;. By Lemma 2.2,
M; has a PG(my — 1,q') minor Ny for some q' > q — 5; since mp > s, we have q' =q. Let I; be an
independent set of M; such that Ny is a spanning restriction of M/I1, and choose J; € I; maximal
such that M1/ ] is (g, k)-overfull.

Let My, = M1/ J1 and let I =11 — J1. By our choice of J1, each element in I; is (q, k)-critical in M5.
Since my > m, Lemma 9.2 gives |I>| < m. Choose a collection (Fq, ..., Fy) of mutually skew rank-ms

flats in the projective geometry N7p; each F; satisfies r(My|F;) <m3+m — 1 and ¢(M;|F;) = %

By our choice of m3, and by Lemma 2.3 with u =q — % for each i € {1,...,m}, there is a flat F] C F;
of My that is skew to I in Ma, and satisfies &(M2|F)) > a22(ma.q— 3. 4> +q—1)(q — %)r"”z(F;). Note
that, since the sets (Fy,..., F;,) are mutually skew in M/I, and each of these sets is skew to I
in My, the flats (F,..., F},) are mutually skew in M.

By Lemma 2.2, M>|F; has a PG(m4 — 1,q') minor P; for some q’ > q — %; since m4 > s, we have
q' =gq. Let X; be an independent set of M>|F) such that P; is a spanning restriction of M2/X;. Now
choose Z C X1 U--- U X;; maximal such that M,/Z is (q, k)-overfull. Let M3 = M,/Z. Each element
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of X1 U---U X — Z is (q, k)-critical in M3, and P; is a minor of M3 for each i. The X; are mutually
skew in M3 and hence pairwise disjoint; thus, by Lemma 9.2, there exists ip € {1,...,m} such that
Xi, —Z = @ and, hence, Pj;, is a restriction of M3; let R = P;,.

Choose a minor M4 of M3 that is minimal such that:

e My is weakly round, and (g, k)-overfull,
e My has R as a restriction.

By Lemma 6.1, r(M4) > r(R). Every element of E(M4) — cly,(E(R)) is (g, k)-critical and, since M4
is weakly round, r(M4\cly,(E(R))) > r(Mg) —2 >m4 — 1 > m. We now get a contradiction from
Lemma 9.2. O

Acknowledgments

We thank the referees for their very detailed reading of the manuscript and for their useful cor-
rections and comments.

References

[1] J. Geelen, K. Kabell, Projective geometries in dense matroids, J. Combin. Theory Ser. B 99 (2009) 1-8.

[2] J. Geelen, ].P.S. Kung, G. Whittle, Growth rates of minor-closed classes of matroids, J. Combin. Theory Ser. B 99 (2009)
420-427.

[3] J. Geelen, P. Nelson, The number of points in a matroid with no n-point line as a minor, J. Combin. Theory Ser. B 100
(2010) 625-630.

[4] J. Geelen, G. Whittle, Cliques in dense GF(q)-representable matroids, ]. Combin. Theory Ser. B 87 (2003) 264-269.

[5] J.PS. Kung, Numerically regular hereditary classes of combinatorial geometries, Geom. Dedicata 21 (1) (1986) 85-105.

[6] J.P.S. Kung, Extremal matroid theory, in: Graph Structure Theory, Seattle, WA, 1991, in: Contemp. Math., vol. 147, American
Mathematical Society, Providence, RI, 1993, pp. 21-61.

[7] L. Lovasz, Selecting independent lines from a family of lines in a space, Acta Sci. Math. 42 (1980) 121-131.

[8] P. Nelson, Growth rate functions of dense classes of representable matroids, 2011, submitted for publication.

[9] P. Nelson, Exponentially dense matroids, PhD thesis, University of Waterloo, 2011.

[10] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 2011.



	On minor-closed classes of matroids with exponential growth rate
	1 Introduction
	2 Preliminaries
	3 Projections
	4 Dealing with long lines
	5 Matchings and unstable sets
	6 The spanning case
	7 Connectivity
	8 Exploiting connectivity
	9 Critical elements
	10 The main theorems
	Acknowledgments
	References


