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Historically Matching Theory has enjoyed a close connection with algebra; this con-
nection is particularly strong for the maximum cardinality matching problem. Indeed
the early results on bipartite matching were motivated by and even stated in terms
of matrices. Later, for general graphs, Tutte discovered a beautiful formulation of the
matching problem as a matrix rank problem. Tutte was able to use this formulation to

great effect in proving his famous matching theorem.

Despite this close connection to algebra much of the literature on Matching Theory
focuses primarily on purely graphical methods. Of course, this position is easily justified
as augmenting path algorithms provided the first algorithmic solutions to the matching
problem and remain the most efficient solution technique. Nevertheless, we survey
some the many applications of Tutte’s algebraic formulation in Matching Theory. In
particular, we will prove the Tutte-Berge Theorem and the Edmonds—Gallai Structure
Theorem, and we develop randomized and deterministic algorithms for the maximum
cardinality matching problem. The algebraic approach attains elegance and simplicity

at the cost of computational efficiency.

These notes were developed for a minicourse on Matching Theory at the Euler Institute
for Discrete Mathematics and its Applications, March 5-9, 2001.



1 Some definitions

A matching of a graph G = (V, E) is a subset M of E with the property that no two edges in
M share a common end. We are primarily interested in the mazimum matching problem; that is,
th problem of finding a matching of maximum cardinality. For simplicity, we refer to a matching
of maximum cardinality as a mazimum matching, and let v(G) denote the size of a maximum
matching in G.

Let M be a matching in G, and let v be a vertex of G. If v is the end of an edge in M, then
we say that M saturates v. The set of all vertices saturated by a particular matching is called a
matchable set of G. Note that, since each edge saturates two vertices, matchable sets have even
cardinality. A matching that saturates every vertex is called perfect. The perfect matching problem
is the problem of deciding whether a graph has a perfect matching. Obviously, G has a perfect
matching if and only if |V| = 2v(G), so the perfect matching problem is a special case of the
maximum matching problem.

A vertex is said to be avoided by M if it is not saturated by M. The minimum number of
vertices avoided by any matching is called the deficiency of G, and is denoted by def(G). Evidently,
def(G) = |V| — 2v(G). Therefore, computing the deficiency is equivalent to computing the size of

a maximum matching.

Figure 1: A graph

Consider the graph G in Figure 1. The edge set {13,45} is a matching and hence {1,3,4,5} is
a matchable set. This is not a maximum matching, in fact, G has a perfect matching: {14, 25, 36}.
Thus v(G) = 3 and def(G) = 0.

Lovész and Plummer [12] and Cook, Cunningham, Pulleyblank, and Schrijver [2] provide more
comprehensive treatments of Matching Theory, particularly regarding weighted matching problems

and augmenting path methods.

2 Algebraic formulations

Let G = (V, E) be a bipartite graph with bipartition (V;, V.), and let (z. : e € E) be algebraically
independent commuting indeterminates. Now, define a V, by V. matrix X, such that X, ; = z if

1j =e € E and X; ; = 0 otherwise. We call X the bipartite-matching matriz of G.



Figure 2: A bipartite graph

The following matrix is the bipartite matching matrix of the graph in Figure 2.

Note that,
det X = 2412522c3%d4 — Za1 2b2%c4%d3 — Za22b1 Ze32d4 + Za2 261 Zca 2d3 -

Thus, we see that det X enumerates the perfect matchings of G. This is clearly true more generally.
Suppose that |V,| = |V, and let M be the set of perfect matchings of G. Then, by considering the

permutation expansion of the determinate, we have

det X = Z oM H Ze,

MeM e€M

where opy = £1.

Lemma 2.1 Let X be the bipartite matching matriz of a bipartite graph G. Then G has a perfect

matching if and only if X is square and nonsingular. [ |

The submatrices of X are bipartite matching matrices of vertex induced subgraphs of G. There-

fore, we obtain the following strengthening of the previous lemma.
Lemma 2.2 If X is the bipartite-matching matriz of a bipartite graph G, then v(G) = rank X . 1

Thus, we have reformulated the bipartite matching problem as a matrix—rank problem. This
formulation is not a panacea, as the matrix in question has indeterminate entries, so it is non—
trivial to compute its rank. However, we shall see that such formulations easily provide efficient
randomized algorithms, and may be used to obtain min—max theorems and efficient deterministic

algorithms.



Let
: e € E) be algebraically independent commuting

We now progress to matching in general graphs; for this we introduce “Pfaffians”.
G = (V,E) be a simple graph, and let (z
indeterminates. We define a V' by V skew—symmetric matrix T, called the Tutte matriz of G, such
that T;; = £z, if ij = e € E, and T;; = 0 otherwise. The Tutte matrix was introduced by Tutte,
in 1947, in his seminal paper on matching.

The following matrix is the Tutte matrix of the graph in Figure 1. There is some choice for the

signs of the entries, however the signing does not effect the rank.

1 2 3 4 5 6
1 0 Z12 213 —Z14 0 0
2| =212 0 —z93 0 — 295 0
T_ 3| —z13 293 0 0 0 —Z36
41 214 0 0 0 245 —Z4g
5 0 25 0 —z45 O 256
6 0 0 236 246  — 256 0

One can check that,
2
det T = (212224736 — 212236745 + 213225236 + 214223756) " -

Thus, we see the perfect matchings of G are enumerated by the square-root of det 7. This is true
more generally. The determinant of any skew—symmetric matrix is always a perfect square, and its
square—root is called the Pfaffian. The Pfaffian has an expansion somewhat like the permutation
expansion of the determinant. Suppose that V' = {1,...,n} and let M be the set of all perfect
matchings of G. The Pfaffian of T, denoted Pf(T), is defined as follows:

PET):= > om [] T,

MeMm uv €M

u<lv

where oy takes the value 1 or —1 as appropriate; see Godsil [5].

Lemma 2.3 Let T be the Tutte matriz of a graph G. Then G has a perfect matching if and only

if T is nonsingular. [ |

For A CV, we will denote T[A, A] by T[A]. Note that T[A] is the Tutte matrix of G[A]. Now
suppose that A is a maximum cardinality matchable set. By Lemma 2.3, rank T > |A| = 2v(G).
In fact, this inequality holds with equality. To see this we require the following elementary fact

about matrices.

Theorem 2.4 Let () be a V, by V. matriz, let Y, index a mazrimal set of linearly independent rows
of @ and let'Y, index a maximal set of linearly independent columns of Q. Then, Q[Y,,Y.] is square

and nonsingular. [ |



Now consider a set A C V that indexes a maximal set of linearly independent rows of T. By
skew—symmetry, A also indexes a maximal set of linearly independent columns of 7. Hence, T[A]
is nonsingular. Then, by Lemma 2.3, A is a matchable set of G. Then, rank T = |4| < 2v(G).

Therefore, we obtain the following strengthening of the previous lemma.
Lemma 2.5 If T is the Tutte matriz of a graph G, then 2v(G) = rank T. |

Thus, we have reformulated the matching problem as a matrix-rank problem.

Exercise Set 2

2.1 Prove Lemma 2.3 without using Pfaffians. (Hint: Consider the permutation expansion of the

determinant of T'.)
2.2 Prove Theorem 2.4.

2.3 Without considering Pfaffians, prove that the rank of any skew—symmetric matrix is even.

3 Evaluations and randomized algorithms

The matrix-rank formulations do not immediately provide efficient algorithms, as we cannot effi-
ciently perform basic operations on a matrix with indeterminate entries. For example, the deter-
minant of a bipartite matching matrix is a polynomial that may have exponentially many terms.
Lovész [11] overcomes this problem by replacing the indeterminates with rational values. If K is
a matrix with indeterminate entries, then an evaluation of K is any matrix obtained from K by
replacing the indeterminates with rational values.

Let K be an evaluation of a matrix K. Note that rank K < rank K. Consider the bipartite
matching matrix X of the graph given in Figure 2. Now consider the evaluation X obtained by
replacing each indeterminate by 1. Now X has rank 4 and X has rank 3. What went wrong?
Recall that

det X = 2412522c3%d4 — Za1 2b2%c4%d3 — Za22b1 Ze32d4 + Za2 261 Zca 2d3 -

The determinant of X is a nonzero polynomial but we get a root of the polynomial by setting each
of the variables to 1. Fortunately, as demonstrated by the following theorem of Zippel [18] and

Schwartz [16], roots of polynomials are relatively scarce.

Theorem 3.1 Let p(z1,...,2%) be a nonzero polynomial of degree at most d, and let S be a finite
subset of R. If (#1,...,2%) is a random element of S*, then p(3y,...,2) # 0 with probability at
least 1 — %.

The proof of Theorem 3.1 is left as an exercise. Now we can show that random evaluations of

a bipartite matching matrix have the desired rank.



Theorem 3.2 Let G be a bipartite graph with bipartition (V,.,V.) and let X be the bipartite match-
ing matriz of G. If X is an evaluation of X with entries chosen independently and at random from
{1,...,2|V;|}, then rank X = v(G) with probability at least %

Proof. Let A, U A, be a maximum cardinality matchable set where A, C V, and A, C V..
Thus X[A4,, A.] is nonsingular, and its determinant is a polynomial of degree at most |V;|. So, by
Theorem 3.1, X[AT, A.] is nonsingular with probability at least % Therefore rank X = rank X =
v(G) with probability at least a 3. n

By considering the Pfaffian of the Tutte matrix of a graph, we can prove the following theorem

in a similar fashion.

Theorem 3.3 Let T be the Tutte matriz of a graph G = (V,E). If T is an evaluation of T
with entries chosen independently and at random from {1,...,|V|}, then rank T = 2v(G) with
probability at least % [ |

These theorems provide efficient randomized algorithms for computing the size of a maximum
matching. The reader may not be comfortable with a one in two chance of failure, but the odds
improve significantly with repeated trials. If n = |[V| then among n independent evaluations of the
Tutte matrix, one has the correct rank with probability at least 1 —1/2".

Let X be the bipartite matching matrix of a bipartite graph G and let X be an evaluation of
X. Note that G has a matching of size at least rank X. Unfortunately it seems difficult to use X

to efficiently obtain a matching of size rank X.

Exercise Set 3
3.1 Prove Theorem 3.1 (Hint: Use induction on the number of variables.)

3.2 Consider the Tutte matrix T of the graph in Figure 1. What is the minimum rank of an

evaluation of T if none of the indeterminates is assigned to be zero?

3.3 Let X be the bipartite matching matrix of a bipartite graph G. Show that, for any distinct
real numbers a and b, there is an evaluation X, with entries chosen from {a,b}, of X such

that rank (X) = rank (X).

4 Matroids and matrices

We need not discuss matroids in our development of Matching Theory, however, there are very
nice connections and it would be a shame for these to pass unnoticed. This section gives a brief
introduction to elementary matroid concepts.

Let M = (V,Z) be a pair where V is a finite set and 7 is a collection of subsets of V'; these sets

are the independent sets of M. We call M a matroid if it satisfies the following axioms.

(I0) The empty set is independent.



(I1) Any subset of an independent set is independent.
(I2) If A is a subset of V' then all maximal independent subsets of A have the same cardinality.

A basis of M is a maximal independent subset. As well as independent sets and bases, we also
equip matroids with a rank function. For a subset A of V', we denote by ras(A), or just r(A), the
maximum size of an independent subset of A.

As is evident from the terminology, matroids are related to matrices. Consider a matrix @
whose columns are indexed by V. Call a subset of V independent if it indexes a set of linearly
independent columns, and let Z be the set of all independent sets. Evidently, (V,Z) is a matroid.
This matroid is called the column-matroid of ) and is denoted by M.(Q). The column-matroid
of the transpose of Q) is called the row-matroid of @ and is denoted by M, (Q). With these new
definitions, we can restate Theorem 2.4: If Y, is a basis of M,(Q) and Y, is a basis of M.(Q)
then Q[Y,,Y.] is nonsingular. Let T be the Tutte matrix of a graph G = (V, E). Since T is
skew—symmetric M, (T') and M.(T') are the same. Therefore, by Theorems 2.3 and 2.4, each basis
M.(T) is a matchable set of G. Indeed, it is straightforward to show that, the bases of M.(T) are
precisely the maximum cardinality matchable sets of GG; see the exercises for this section. Thus, we
call M. (T') the matching matroid of G.

Let M = (V,Z) be a matroid and let v be an element of M. Then define M \v = (V —{v},T'),
where 7’ is the set of independent subsets of V' — {v}. Evidently, M \ v is a matroid. We say
that M \ v is obtained from M by deleting v. The order in which elements are deleted is clearly
not important, so, for a set of elements X, we let M \ X denote the matroid obtained from M by
deleting each of the elements in X.

We are interested in minimal sets of elements whose deletion decrease the rank of a matroid.
In particular, an element whose deletion decreases the rank of a matroid is called a coloop. Equiv-
alently, a coloop is an element that is contained in every basis of a matroid. The following lemma
shows that, if X is the set of all coloops of a matroid M, then M is completely determined by
M\ X. Indeed, the bases of M are obtained by appending X to the bases of M \ X.

Lemma 4.1 Let X be the set of all coloops of the matroid M. Then, for any subset A of V — X
we have ry(AUX) =ry(4) + | X|.

Proof. See Exercise 4.2. ]

Let @ be a V, by V. matrix. A row of ) is avoidable if its deletion does not decrease the rank.
That is, v € V, indexes an avoidable row of @ if and only if v is not a coloop of the row—matroid of
Q. The set of avoidable rows is denoted by D, (Q). We define avoidable columns analogously, and
we let D.(Q) denote the set of avoidable columns.

We now consider what happens to the set of avoidable columns of a matrix when we delete

TOws.

Lemma 4.2 Let Q be a'V, by V. matriz, and let Y, be a subset of V.. Then, D.(Q[Y,,V;]) C D.(Q).



Proof. Theorem 2.4 shows that deleting avoidable rows does not affect dependencies among the
columns. Therefore, we may assume that ¢ has full row—rank. Now it is straightforward to see
that each basis of M.(Q) contains a basis of M.(Q[Y,,V.]). Thus each avoidable column of @ is
also avoidable in Q[Y,, V.. |

A vertex v of a graph G is called avoidable if v(G — v) = v(G). The set of all avoidable vertices
is denoted by D(G). We will see that this set plays a very important role in Matching Theory. The

following lemmas follow from these definitions.

Lemma 4.3 Let G be a bipartite graph with bipartition (V,,V.) and let X be the bipartite matching
matriz of G. Then D(G) = D,(X)U D.(X). n

Lemma 4.4 Let T be the Tutte matriz of a graph G = (V, E). Then, D(G) = D,(T). n

Let  and y be elements of a matroid M. If neither 2 nor y is a coloop of M but raf(V—{z,y}) <
ra(V), then we call (x,y) a series—pair. Note that, if (z,y) is a series—pair then x is a coloop of

M \ y. Series—pairs enjoy the property of being transitive.

Lemma 4.5 If z,y, z are distinct elements of a matroid M such that (z,y) and (y, z) are series—

pairs then (z,z) is a series pair.

Proof. Suppose otherwise, and thus there exists a basis B of M that contains neither 2 nor z.
Since (z,y) is a series pair, B must contain y. Now B — {y} is an independent set of M \ y and,
since y is not a coloop of M, ray(V — {y}) = rm(V) = |B|. We can extend B — {y} to a basis B’
of M\ y. Now |B'| = |B — {y}| + 1 and B contains neither x nor y, so B’ cannot contain both =z
and y. By symmetry we may assume that B’ does not contain z. Thus B’ is a basis of M that

contains neither 2 nor y. This contradicts the assertion that (z,y) is a series pair. [ |

Exercise Set 4

4.1 Let T be the Tutte matrix of G. Show that the bases of M.(T') are exactly the maximum
cardinality matchable sets of G.

4.2 Prove Lemma 4.1.

4.3 Do the set of matchings of a graph necessarily determine the independent sets of a matroid?

5 Konig’s Theorem

The purpose of this section is to provide a good characterization for the size of a maximum matching
in a bipartite graph. Let G be the bipartite graph in Figure 3, and let M* = {2d, 1g, ¢, 3¢, 7a, 4b}.
Thus M* is a matching of G; we claim that M™* is in fact a maximum matching of G. To establish
this claim we need a succinct method to show that G has no matching with more than 6 edges.
Let C* = {1,2,5,a,b,e}. Thus C* is a cover of G; that is, each edge of G is incident with at least



one vertex in C*. Now consider any matching M of G. Since C* is a cover of G, each edge in M*
is incident with at least one vertex in C*. Moreover, as M is a matching, no two edges of M are
incident with a common vertex in C*. We conclude that |M| < |C*| = 6 = |M*|. Hence M* is

indeed a maximum matching.

d 2 e 3

C 5 b 4

Figure 3: Another bipartite graph

More generally, if M is a matching and C'is a cover, then, |[M| < |C|. Furthermore, if |M| = |C|
then M is a maximum matching of G and C' is a minimum cardinality cover. Unfortunately, it is
not always the case that we can find a matching and a cover of the same size; indeed, consider Kj.

The situation is, however, much nicer for bipartite graphs.

Theorem 5.1 (K&nig [10]) In a bipartite graph the size of a maximum matching is the minimum

size of a cover.

If C is a cover of a graph G = (V, E) then, by definition, there are no edges having both ends
in V—C. A subset Y of vertices is called stable if there is no edge having both ends in Y. That
is, a stable set is the complement of a cover. The following lemma is the key to proving Koénig’s
Theorem. (Recall that D(G) is the set of avoidable vertices of G.)

Lemma 5.2 If G is a bipartite graph then D(G) is a stable set of G.

Proof. Let (V,,V,) be the bipartition of G and let X be the matching matrix of G. Suppose the
result is false, and thus there exists an edge uv of G where u € D,(X) and v € D.(X). Now, u
is not a coloop of M, (X)), so there exists a basis Y, of M, (X) that does not contain ». Similarly,
there exists a basis Y. of M. (X)) that does not contain v. By Theorem 2.4, X[Y,,Y.] is nonsingular,
and, hence, Y, UY, is a maximum cardinality matchable set of G. However this is a contradiction
since Y, UY. U {u,v} must also be a matchable set. |

Proof of K6nig’s Theorem. Let G = (V| E) be a bipartite graph, and choose C' C V maximal
such that v(G) = v(G — C) 4 |C|. By our choice of C, every vertex of G — C'is avoidable. Then,
by Lemma 5.2, V' — C'is a stable set. Thus, C'is a cover of G and v(G) =v(G - C) +|C| = |C|.

Exercise Set 5



5.1 (Hall’s Theorem) Let G be a bipartite graph with bipartition (V;,, V). Prove that there exists
a matching of G covering each vertex in V, if and only if for each subset A of V,., [N(A4)] > |A|.

(Here N(A) denotes the set of vertices that are adjacent to some vertex in A.)

5.2 Let G be a bipartite graph with bipartition (V;,V.), let X be the matching matrix of G, and
let ) be a real V., by V. matrix. Consider the problem of determining the rank of @ + X; this

is a generalization of the bipartite matching problem.
(a) Show that, if Y, C V, and Y. C V, such that X[Y,,Y.] = 0 then
rank (Q + X) < rank Q[Y;, Vo] + [V; — Vi + Vi — Y.
(b) Prove that there exists Y, C V, and Y. C V. such that X[Y,,Y.] =0 and

rank (Q + X) = rank Q[Y,, Y] + |V, = Yi[ + [Ve - Y.

6 The Tutte—Berge Formula

We now progress to general graphs, but still we are looking for a good characterization for the size
of a maximum matching. Consider the graph G in Figure 4 and the matching M* = {15, 26, 39, 48}
of G. We claim that M* is a maximum matching. Note that M* leaves just two exposed vertices,
s0 to show that M™* is a maximum matching it suffices to show that no matching leaves fewer than
2 exposed vertices. Recall that the deficiency of G, denoted def(G), is the minimum number of
vertices that are left exposed by any matching. Note that, when we delete a vertex the deficiency can
increase by at most one. Therefore, def(G) > def(G —{6,9}) —2. Now G — {6, 9} has 4 components
and each of these components has an odd number of vertices. Therefore, for any matching of
G — {6,9}, there must be an exposed vertex in each component. Therefore, def(G — {6,9}) > 4
and, hence, def(G) > 2. Finally, we conclude that def(G) = 2 and that M™* is, as claimed, a

maximum matching.

9]
\]

10 8

Figure 4: Another graph

More generally, if G = (V, E) is a graph and A C V then def(G) > odd(G — A) — |A|, where

odd(G — A) denotes the number of components of G — A that have an odd number of vertices.

10



Therefore, if M is a matching and A C V such that |V| — 2|M| = odd(G — A) — | A| then M is a

maximum matching.
Theorem 6.1 (Tutte-Berge Formula) If G = (V, E) is a graph then
def(G) = min (odd(G — A) — |A| : ACV).

Before proving the Tutte-Berge Formula, we observe an important special case: Tutte’s Match-

ing Theorem.

Theorem 6.2 (Tutte) A graph G = (V, E) has a perfect matching if and only if, for each subset
A of V, we have odd(G — A) < |A|.

To prove the Tutte-Berge Formula we require the following lemma. A graph G = (V, E) is
called hypomatchable if G — v has a perfect matching for each vertex v € V. Note that, if G is

hypomatchable then G has an odd number of vertices.

Lemma 6.3 (Gallai) If G is connected and every vertex of G is avoidable then G is hypomatch-
able.

Proof. Let M be the matching matroid of G. That is, the bases of M are the maximum cardinality
matchable sets of G. Since each vertex of G is avoidable, M has no coloops. Now consider an edge
uv of G. There is no maximum cardinality matchable set of G' that avoids both u and v. In the
context of matroids, this says that (u,v) is a series pair of M. However, M is connected and series
pairs are transitive. Therefore, each pair of vertices is a series pair. Thus any maximum cardinality
matchable set can avoid at most 1 vertex. However, every vertex is avoidable, so G — v must have

a perfect matching for each v € V. |

Proof of the Tutte-Berge Formula. We have already established that def(G) > odd(G — A) —
|A|, for all A C V, so it suffices to show that this is attained with equality for some set A. Choose
A C V maximal such that def(G) = def(G — A) — |A|. By our choice of A, each vertex of G — A

is avoidable. Therefore, by Gallai’s Lemma, each component of G — A is hypomatchable. Thus,
def(G — A) = 0odd(G — A) and, hence, def(G) = odd(G — A) — | A|, as required. |

Exercise Set 6

6.1 Prove the Tutte-Berge Formula as a direct corollary of Tutte’s Matching Theorem.

6.2 Let M be the matching matroid of a graph G = (V, E). For a subset S of V| the rank, r(5),
of S in M is the maximum number of vertices in S that can be covered by a matching of G.
Prove that,

r(S) = min (|S] — (odds(G — 4) — |[A]) : AC V),
where oddg(G — A) denotes the number of odd components of G — A whose vertices are all

elements of S.

11



6.3 Let T be the Tutte matrix of a graph G = (V, E) and let Y,, Y. C V. Consider the problem

of determining the rank of T[Y,,Y.]; this is a generalization of the matching problem.

(a) If X, CY, and X. C Y. such that T[X, — X, X.] =0 and T[X,, X, — X,] = 0 then we
call (X, X.) a bi-stable pair. (Equivalently, (X,, X,) is bi-stable if no indeterminate of
T occurs exactly once in T[X,, X.].) Show that, if (X, X.) is a bi-stable pair then

rank TY,, Y] < |X, N X, |+ Y, — X, | + |Ye — X | — odd(G[X, N X.]).
(b) Prove that there exists a bi-stable pair such that

rank T[Y,, Y.] = |X, 0 Xo| 4+ ¥, — X,| + Y, — X.| — 0dd(G[X, N X.]).

7 An algorithm for bipartite matching

In this section we present an efficient deterministic algorithm for finding an optimum evaluation of
the bipartite matching matrix. This allows us to determine the size of a maximum matching in a
bipartite graph.

Let G be the bipartite graph in Figure 2, let X be its bipartite matching matrix, and consider

the following evaluation of X.

1 2 3 4
afl 1 0 0

- b1 1 1
X = 0
c|0 0 1 1
d\0 0 1 1

Note that X has rank 4, but X has rank 3. A greedy approach is to try to change a single entry
in a way that increases the rank. For an edge e of G and a real number a we let X (z, — a) denote
the evaluation of X obtained by changing the value of 2. to a. We say that X (2, — a) is obtained
from X by perturbation. We claim that we cannot increase the rank of the matrix above by a single
perturbation. By way of contradiction, suppose that X(ze — a) is nonsingular for some edge e and
real number a. Note that the last two rows of X are the same, so we must have perturbed some
entry in these rows. Similarly, the first two columns are the same, so we must have perturbed some
entry in these columns. However, we may not perturb entries in the submatrix X[{c, d},{1,2}].
This verifies the claim.

Since this greedy approach fails, we will have to accept more modest rewards from perturbation.
However, before giving up on the greedy approach, it is helpful to understand when perturbations

increase the rank of a matrix.

Theorem 7.1 Let Q) be a V, by V. matriz, leti € V, and j € V. and let Q(a) be the matriz obtained
from @Q by replacing the (i, j)—entry of Q with the value a. If a # Q;;, then rank Q(a) > rank Q if
and only if i € D,(Q) and j € D.(Q).

12



Proof. First we suppose that ¢ ¢ D, (Q). Thus,

rank Q(a) < rank (Q(a)[V, — {i}, Vi) - 1
= rank (Q[V, — {1}, Vi]) -1
= rank Q.

IN

That is, rank Q(a) < rank Q. Similarly, if j ¢ D.(Q) then rank Q(a) < rank Q.

Conversely, suppose that i € D,(Q) and that j € D.(Q). Let Y, be a basis of M, (Q) that does
not contain ¢ and let Y. be a basis of M, (Q) that does not contain j. By Theorem 2.4, Q[Y,, Y]
is nonsingular. Consider p(a) = det Q(a)[Y, U {¢}, Y. U {j}]. Now p(a) is a nonzero linear function
in a. However, as Q[Y, U {i},Y. U {j}] is singular, p(Qi;;) = 0. Thus a = Q;; is the only root
of p(a). Hence, for all a # Q;;, the matrix Q(a)[Y, U {i},Y. U {j}] is nonsingular, and, hence,
rank Q(a) > rank Q. |

Since the greedy algorithm fails, we introduce a more refined ordering (actually, a quasi-
ordering) on matrices than simply comparing the rank. Let @y and Q2 be V, by V. matrices.
We write Q1 = Q2 if rank @1 > rank @3, or rank @)1 = rank Q3 and D" (Q2) C D"(Q,). Similarly,
we write Q1 & Q7 if rank Q; = rank Q3 and D" (Q1) = D"(Q3). If Q1 > Q2 but Q1 % Q2 then we
write Q1 = Q2. This gives a quasi-ordering of matrices; if Q1 = Qo then we say that Q¢ is more
independent than Q.

Consider the evaluation X above. It is easy to check that X (244 — 2) is more independent than

X. Our algorithm is now clear, we make perturbations if doing so increases the independence.

Theorem 7.2 Let X be the bipartite matching matriz of a bipartite graph G, with bipartition
(Vi Va), and let X be an evaluation of X. Then either rank X = v(G), or there exists an edge e
of G and a € {1,...,|V;| + 1} such that X (2. — a) > X.

This theorem clearly provides a polynomial-time deterministic algorithm for computing the size of a
maximum matching in a graph. Let us briefly consider the running time of a naive implementation
of our algorithm. Firstly the rank of an evaluation is at most |V;| and there are at most |V} |
avoidable rows. Therefore, our algorithm may require as many as (|V,| + 1)? steps. At each step
we may have to consider each edge and each value of @ € {1,...,|V;| + 1}. Thus, in a step we
may have to compare as many as (|V,| 4+ 1)|E| evaluations with X. For each of these evaluations
we must determine the rank and the set of avoidable rows; this can be done with |V, |+ 1 rank
computations. Each of these rank computations requires O(n3) time, where n is the number of
vertices of G. Combining the numbers above, we reluctantly concede that, in the worst case, the
algorithm may require as much as O(n”) time. With some modifications the running time of this
algorithm can be reduced to O(n%).

Using augmenting path methods, the size of a maximum matching can be easily determined in
O(n?), and, with work, this can be improved to O(n??); see Hopcroft and Karp [9]. Moreover, the
augmenting path algorithms actually find a maximum matching, whereas our evaluation algorithms
do not.

Now we commence the proof of Theorem 7.2, for this we require the following easy lemmas.
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Lemma 7.3 If Q is a V, by V. matriz, Y, = D, (Q), and Y. = D.(Q[Y:, V.]) then
i. rank Q[Y,, V] = rank Q — |V, — Y,| and each row of Q[Y,,V.] is avoidable, and
i, rank QY. Y,] = rank Q — [V, — Yi| — V.~ Yi|.

Proof. Part i is an immediate consequence of Lemma 4.1, and part ¢ follows from part ¢ and
Lemma 4.1. |

Lemma 7.4 Let 1 and Q3 be V, by V. matrices such that Q1 ~ Q2, and let Y, = D,(Q1). Then
rank Ql[}/;w ‘/C] = rank QZDCH ‘/c]

Proof. This follows immediately from Lemma 7.3, part ¢. |

Lemma 7.5 Let X be the bipartite matching matriz of a bipartite graph G, with bipartition (V,, V.),
and let X be an evaluation of X. For any edge e of G and indeterminate a, there exists a' €
{1,...,|Vs| + 1} such that X(z. — a) ~ X (2. — a').

Proof. Let X(a) denote X (2. — a). Clearly, X (a) > X (a’). Moreover, X (a) ~ X (a') if and only
if

i. rank X (a) = rank X (a’) and
ii. For each v € V,, rank X (a)[V; — {v},Vi] = rank X (a)[V; — {v}, V4].

That is, we are seeking an evaluation that preserves the rank of |V, |+ 1 matrices. Now, « is in some
row, say u. Then X (a)[V, — {u}, V] = X(a')[V, — {u}, V], so we need not consider this matrix.
For each of the other |V,| matrices there is at most one choice for @’ that decreases the rank of the

matrix; see Exercise 7.1. Therefore, there remains some choice for o’ € {1,...,|V;| + 1} such that

X(a)z)z’(a’). n

What have we gained in the previous results? Let X be an evaluation of X, let e be an edge
of G, and let a be an indeterminate. Clearly X (z. — a) > X. If X(z. — a) > X then, by
Lemma 7.5 we can an evaluation of X that is more independent than X. So we may assume that
X(ze —a) X. Let Y, = D,,(X). Then, by Lemma 7.4, rank X’[Yr7 V.] = rank X(ze — a)[Y;, V.
Thus, increasing the the independence of X is tantamount to increasing the rank of X’[Yr7 V.]; the

following lemma makes this more precise.

Lemma 7.6 Let X be the bipartite matching matriz of a bipartite graph G, with bipartition (V,, V.),
let X be an evaluation of X, and let Y, = D, (X) If there exists any edge e of G and and indeter-
minate a such that rank X (2. — a)[Yy, Vi] > rank X[Y,, V] then there exists a’ € {1,...,|V,| + 1}
such that X (z. — a') = X. |

To complete the proof of Theorem 7.2 we need a sufficient condition for determining when

rank X = v(G).
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Lemma 7.7 Let X be the bipartite matching matriz of a bipartite graph G, with bipartition (V,, V.),
let X be an evaluation of X, let Y, = D, (X), and let Y, = DC()E’[YT7 Ve]). If Y, UY, is a stable set
of G then rank X = v(G).

Proof. Firstly, rank X < v(G), so it suffices to prove the reverse inequality. If Y, UY. is a stable
set of G then (V, —=Y,) U (V. = Y,) is a cover, and, hence, v(G) < |V, = Y, | + |V, — Y.|. Moreover,
as Y, UY, is stable, X’[YT,YC] = (. Then, by Lemma 7.3 part 7, rank X = |V, =Y, | + |V, = Y|, as

required. [ |

Proof of Theorem 7.2. Let Y, = DT(X) and Y, = DC()E’[YT7 Ve]). By Lemma 7.7, we may assume
that Y, U Y. is not a stable set of G. Thus, there exists an edge e = wv of G such that v € Y,
and v € Y,. By definition, v is an avoidable column of X’[Yr7 V], and, by Lemma 7.3 part 7, v is
an avoidable row of X[Y;,V.]. Therefore, by Lemma 7.1, rank X (z. — a)[Y;, V] > rank X[Y;, V,],
where a is an indeterminate. Therefore, by Lemma 7.6, there exists «’ € {1,...,|V;| 4+ 1} such that

X (2. — a') is more independent than X. n

Exercise Set 7

7.1 Let Q(a) be a matrix that contains an indeterminate a in exactly one entry. Prove that there

is at most one real number @’ such that rank Q(a’) < rank Q(a).
7.2 Consider ways of improving the running time of the evaluation algorithm.

(a) Show that rank X and D,(X) can be computed in O(n??®). (For n by n matrices,

multiplication and inversion require O(n?3%) time.)

(b) Show that, in O(n?3®) time you can either prove that rank X = v(G) or you can find

an edge e of G such that, for an indeterminate a, X(ze — a) is more independent than

X.

(c) Suppose that, for some edge e of G and indeterminate a, X(ze — a) is more independent
than X. How efficiently can you find o’ € {1,...,|V;|+1} such that X(z, — a’) is more
independent than X.

(d) How efficiently can you implement the evaluation algorithm?

7.3 Given an integer k find an example of a bipartite matching matrix X and an evaluation X
of X such that rank X < rank X and the rank of X cannot be increased by perturbing any

k variables.

7.4 Let G be a bipartite graph with bipartition (V;, V.), let X be the matching matrix of G, and
let @) be a real V, by V. matrix. Prove an analogue of Theorem 7.2 for @ + X.

8 An algorithm for general matching

Motivated by the results in the previous section, a natural algorithm for determining the size of a

maximum matching in a graph is to take an evaluation of the Tutte matrix, and repeatedly apply
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perturbations in a way that increases the independence. The main theorem of this section shows

that this algorithm works; see [6].

Theorem 8.1 Let T be the Tutte matriz of a graph G = (V, E), and let T be an evaluation of
T. Then either rank T = 2v(G), or there exists an edge e of G and a € {1,...,|V|} such that
T(ze —a)>T.

A naive implementation of the evaluation algorithm requires O(n?) time, whereas, Edmonds’
Algorithm [4] can be implemented to run in O(n?), and more sophisticated augmenting path al-
gorithms have running time as low as O(n??); see Micali and Vazirani [13]. Nevertheless, there
is a case to be made for evaluation algorithms. For general graphs, augmenting path algorithms
become complicated, while the evaluation algorithm remains essentially trivial.

We can use some of the results from the previous section to prove Theorem 8.1. However,
some of the lemmas in that section refer specifically to bipartite matching matrices, and we will
have to develop analogues of these. Suppose that T(ze — a) is a nonsingular matrix, where T
is an evaluation of the Tutte matrix of a graph G = (V,E), e € E, and «a is an indeterminate.
The indeterminate a occurs twice in T(z. — a), so the determinant of T'(2. — a) is quadratic in
a. Therefore, the Pfaffian of T(2. — a) (which is the square-root of the determinant) is a linear
function in a. Therefore, there is at most one real number a’ for which T(2. — ') is singular.
(This can also be deduced without using Pfaffians; see Exercise 8.2.) This observation allows us to

prove the appropriate analogue of Lemma 7.5.

Lemma 8.2 Let T be the Tutte matriz of a graph G = (V, E), and let T be an evaluation of T.

For any edge e of G and indeterminate a, there exists a' € {1,...,|V|} such that T(2. — a) &
T(z. — d').
Proof. See Exercise 8.3. |

Lemma 8.3 Let T be the Tutte matriz of a graph G = (V, E), let T be an evaluation of T, and
let Y, = D,(T). If there exists and edge e of G and and indeterminate a such that rank T(z, —
a)[Yy, V] > rank T[Y,,V] then there exists a’ € {1,...,|V|} such that T(z. — a') > T.

Proof. If T(z. — a)is more independent than T then, by Lemma 8.2, there exists «’ € {1,...,|V]|}
such that T(z. — ') is more independent than T. Moreover, it is clear that T(z. — a) = T.
Therefore, we may assume that T(ze —a)~ T. Therefore, by Lemma 7.4, rank T(ze — a)[Y,, V] =
rank T[Y,,V]. This contradiction completes the proof. |

We also require an analogue of Lemma 7.7. That is, given an evaluation T of T, we require a

necessary condition that allows us to conclude that T has the desired rank.

Lemma 8.4 Let T be the Tutte matriz of a graph G = (V, E), let T be an evaluation of T, let
Y, = D,(T), and let Y. = D.(T[Y,,V]). If

1. There is no edge having one end in Y, and the other end in Y, —Y,, and
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it. If w and v are adjacent vertices of G where u,v € Y, then (u,v) is a series—pair of

M(T[Y:, V]),
then rank T = 2v(G).

Proof. Certainly, rank T < 2v(@G), so it suffices to prove the reverse inequality. By Lemma 4.2
we observe that Y, C Y,.. Thus,

2v(G) = rank T
< rank T[Y,, Y]+ |V - Y[+ [V - Y|
< rank TV, ]+ |V = Y| + [V - Y
= [Vi| = def(G[V;]) + [V = Yo | + [V - Y
< Vil = odd(GY}]) + |V = Y[+ [V = Y.

Now, by Lemma 7.3,
rank T = rank T[Y;, Y]+ |V = Y, |+ |V - Y,|.

Since there is no edge with an end in Y, and the other end in Y, — Y,., we have T[Y,,Y. — Y,] = 0.
Therefore,

rank T = rank T[Y,] 4+ |V = Y, |+ |V = Y,|.

Now let G[S] be a connected component of G[Y,], and let uv be an edge of G[S]. We are given that
(u,v) is a series—pair of .7\40(1;[}/}7 V]). Then, by Lemma 4.1, (u, v) is a series—pair of .7\40(1;[}/}7 Y.]).
Now, since T[Y;,Y, — Y,] = 0, (u,v) is a series—pair of MC(T[YT]) Finally, considering the block

diagonal structure of G[Y,], we see that (u,v) is a series—pair of M.(T[S]). That is, for each edge

uwv of G[S], (u,v) is a series—pair of M.(T[S]). Then, by the transitivity of series—pairs, any two
vertices of G[Y;] are a series—pair of M,(T[S]). Therefore, each basis of M,(T[S]) avoids exactly one
vertex in each component of G[Y;]. Thus, rank T[S] = |S| — 1, and, since T[S] is skew-symmetric
it has even rank, so |S| is odd. Then, rank T[Y;] = |Y;| — odd(G[Y;]). Therefore,

rank T = |Vi| - odd(G[Y]) + [V ~ V| +[V - Yo
= 2v(G),

as required. [ |

Proof of Theorem 8.1. Suppose that rank T # 2v(G). Let Y, = D,(T) and let Y, =
D.(T[Y;,V]). Note that, by Lemma 4.2, ¥, C Y.. Now, by Lemma 8.4, either

i. There exists an edge uv of G such that u € Y, and v € Y. - Y, or
ii. There exits an edge uv of G such that u,v € Y, and (u,v) is not a series—pair of M.(T[Y,,V]).

Consider the case that e = uv is an edge of G such that v € Y, and v € Y. — Y,. Let a be

an indeterminate. Since v ¢ Y;, the indeterminate a occurs in just one entry of T(z. — a)[Y;, V].
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Moreover, by definition v is an avoidable column of T[YT, V], and, by Lemma 4.2, u is an avoidable
row of T[Y,,V]. Therefore, by Lemma 7.1, rank T(ze — a)[Y;,V] > rank T[Y,,V]. Then, by
Lemma 8.3, there exists a’ € {1,...,|V]|} such that T(ze — ') is more independent than T, as
required.

Now consider the case that e = uv is an edge of G such that u,v € Y, and (u, v) is not a series—
pair of .7\40(1;[}/}7 V]). Let a be an indeterminate. By Lemma 4.1 and definition, each row of T[Y,, V]
is avoidable. Also, by Lemma 4.2, each row of T[Y,,V — {u}] is avoidable. Moreover, as (u,v) is a
series—pair of M,(T[Y,,V]), v is an avoidable column of T[Y;,V — {u}]. Therefore, by Lemma 7.1,
rank T(ze — a)[Y;, V—{u}] > rank T[Y,,V —{u}]. However, since u is an avoidable row of T[Y;, V],
rank T(z, — a)[Y;, V] > rank T[Y,,V]. Then, by Lemma 8.3, there exists a’ € {1,...,|V]|} such
that T(ze — ') is more independent than T, as required. |

Exercise Set 8

8.1 Let T be an evaluation of the Tutte matrix of a graph G = (V, E), let e be an edge of G, and let
a be an indeterminate. Prove that, for any real number o/, rank T(z, — ') = rank T(z. — a)
if and only if, for any v € V, rank T(ze — a)[V = {v}, V] > rank T(ze —a)— 1.

8.2 Let T be an evaluation of the Tutte matrix of a graph G = (V, E), let e be an edge of G, and
let @ be an indeterminate. Without using Pfaffians, prove that there exists at most one real

number a’ such that rank T(z, — a’) < rank T(z. — a).

8.3 Prove Lemma 8.2.

9 Structural results

In this section we explore some surprising properties of the set of avoidable vertices of a graph.
In particular, if we are told D(G) then we can easily determine v(G) and we can say a lot about
the structure of maximum matchings. Let A be the neighbour—set of D(G). The most important

point of this section is that the set A achieves equality in the Tutte-Berge Formula; that is,
def(G) = odd(G — A) — |A].

Theorem 9.1 (Edmonds—Gallai Structure Theorem) Let G = (V,E) be a graph and let
(D, A, C) be a partition of V' such that D is the set of avoidable vertices, A is the neighbour-set of
D, and C =V — (DU A). Then

i. def(G) = odd(G — A) — |A|,
it. each component of G[D] is hypomatchable, and
iti. G[C] has a perfect matching.

We require the following lemma.

18



Lemma 9.2 Let K be a V by V skew-symmetric matriz, let Y, = D,(K), and let Y. =
D.(K[Y,,V]). Then, rank K = rank K[Y.] + 2|V = Y.|, and D, (K[Y.]) = D,(K).

Proof. Note that, by Lemma 4.2, ¥, C Y,.. Let A =V —Y.. Now, A is a set of coloops of
M, (K), so, since K is skew-symmetric, A is a set of coloops of M.(K). Therefore, by Lemma 4.1,
rank K[V|Y,] = rank K — |A|. Now, by Lemma 4.2, Y, C D,(K[V,Y.]). However, by Lemma 7.3,

rank K =rank K[Y,, Y]+ |V - Y, |+ |A].

Thus, rank K[Y,,Y.] = rank K[V,Y.] — |V — Y,|. Therefore, each element of V' — Y, is a coloop
of M,(K[V,Y.]), and, hence, D,(K[V,Y.]) = Y,. Therefore, by Lemma 4.1, rank K[Y.] =
rank K[V|Y,] — |A| = rank K — 2|A|, and D, (K[Y.]) =Y,, as required. |

Lemma 9.3 Let T be the Tutte matriz of a graph G = (V, E), let Y, = D,(T), and let Y, =
D.(T[Y,,V]). Then, V =Y. is the neighbour-set of Y.

Proof. Let A’ =V —Y,, and let A be the neighbour-set of ¥, in G. By Theorem 7.3, each row of

T[Y,, V] is avoidable, and, by definition, Y. is the set of avoidable columns of T[Y,,V]. Moreover,
by Lemma 4.2, Y, C Y.. Suppose that there exists and edge e = uv where u € Y, and v € Y, — Y,.
Then, the indeterminate z. occurs just once in T[Y,, V], and both the row and column containing
2z are avoidable. This contradicts Lemma 7.1. Therefore, A C A’. Now consider an element v € A’.
By definition, v is a coloop of M.(T[Y,,V]). Since v is in some basis of M.(T'[Y;,V]), the column
of T[Y,,V] indexed by v must contain some nonzero entry. Thus, v € A. Therefore, A = A’ as
required. [ |

Proof of Theorem 9.1. Let T be the Tutte-matrix of G, let Y, = D,(T), and let Y, =
D.(T[Y,,V]). Clearly D = D,(T), and, by Lemma 9.3, A = V — Y.. Now, by Lemma 9.2,
rank T = rank T[V — A] 4 2|A| and D,(T[Y.]) = D. Translating this back to graphs, we see that
def(G) = def(G — A) — |A|, and D(G — A) = D. By definition, there are no edges from D to C.
Therefore, D(G[D]) = D and D(G[C]) = 0.

perfect matching. Now, every vertex of G[D] is avoidable, so, by Lemma 6.3, each component of
G[D] is hypomatchable. |

Since G[C] has no avoidable vertices it must have a

A subset A’ of the vertices of a graph G is called a Tutte-set if def(G) = odd(G — A’) — |A'|.
Thus, the neighbour-set, 4, of D(G) is a Tutte-set. We claimed that we can determine structural
information about the maximum matchings from D(G); this structure follows easily from the fact

that A is a Tutte—set. A matching that saturates all but one vertex of a graph is called near—perfect.

Theorem 9.4 Let G = (V, E) be a graph, and let (D', A',C") be a partition of V where A’ is a
Tutte-set, D' is the set of vertices in odd components of G — A, and C' is the set of vertices in

even components of G — A'. If M is a mazimum matching of G then

e M contains a perfect matching of G[C'],
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e M contains a near—perfect matching of each component of G[D'], and
e cach vertex of A’ is matched to a vertex in D'.

Proof. See Exercise 9.1. ]

The Edmonds—Gallai Structure Theorem provided the original motivation for the evaluation
algorithm. Let T be an evaluation of the Tutte matrix of a graph G. If we are lucky rank T = 2v(G),
and D, (T) = D(G). The Edmonds-Gallai Structure Theorem lets us check whether this is the case,

since we can determine v(G) from D(G).

Lemma 9.5 Let T be an evaluation of the Tutte matriz of a graph G = (V,E), and let A be the
neighbour—set of D,(T) in G. If rank T = |V| — (0dd(G — A) — |A|) then rank T = 2v(G).

Proof. See Exercise 9.2. ]

We can use Lemma 9.5 to obtain a more satisfactory randomized algorithm for determining
the size of a maximum matching. Our randomized algorithms presented earlier are “Monte Carlo”
algorithms; they guess v(G) with high probability. However, when we are given the guess, we do
not actually know whether or not the guess is correct. Suppose that T is an evaluation of the Tutte
matrix of the graph G = (V, E). Lemma 9.5 provides sufficient condition to check whether T is
optimal. This leads to a randomized algorithm that will either terminate with the correct value of
v(G) or, with some limited probability, will terminate without guessing a value of v(G). This “Las
Vegas” algorithm was proposed by Cheriyan [1]. It remains to show that a random evaluation is

likely to satisfy the optimality condition in Lemma 9.5.

Lemma 9.6 Let T be the Tutte matriz of a graph G = (V, E). If T is an evaluation of T with
entries chosen independently and at random from {1,...,|V|*}, and A is the neighbour—set of

D, (T), then rank T = |V | — (0dd(G — A) — |A|) with probability at least L.
Proof. See Exercise 9.3. |
Exercise Set 9

9.1 Prove Theorem 9.4.

9.2 Prove Theorem 9.5.

9.3 Prove Theorem 9.6.

10 Matroid intersection

Given two matroids My, Ms on a common ground set S, we would like to find a common independent
set of maximum cardinality; this is the matroid intersection problem. We let A(My, M3) denote the
maximum size of a common independent set of M; and M,. The matroid intersection problem

is a generalization of the maximum matching problem for bipartite graphs, and can be solved by
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augmenting path methods; see Edmonds [3]. In this section we consider the case that My and M,
are linear matroids. (A matroid is linear if it is “given” to us as a column-matroid of a matrix.)
We formulate the linear matroid intersection problem as a matrix rank problem.

Consider a bipartite graph G = (V, E) with bipartition (V,,V.). Now define a matroid M, with
ground set F such that a subset A of F is declared independent if no two edges in A are incident
with a common vertex in V,. (It is easy to check that M, is indeed a matroid.) We define M.
analogously. Evidently, a set of edges is a matching if and only if it is a common independent
set of M, and M,.. Therefore, the matroid intersection problem is indeed a generalization of the
maximum matching problem for bipartite graphs.

As well as finding an efficient algorithm for solving the matroid intersection theorem, Ed-

monds [3] also proved a remarkable min-max theorem.

Theorem 10.1 (Edmonds) If My = (S,Z1) and M, = (S,Z;) are matroids with rank functions

r1(-) and ry(-) respectively, then
max(|A| : A€ Z1NZy) =min(r(X)+r(S—X) : X C9).
Note that, if A is a common independent set of My and Ms;, and X C S, then
Al =[AN X[+ |A - X| <r(X)+r(S - X).

The hard part of the theorem is showing that there exist sets A and X that satisfy this inequality
with equality.

If X is a V, by V. bipartite-matching matrix and @ is a V, by V. matrix over the rationals,
then we call @ + X a mized matriz. Murota [15] studies mixed matrices extensively, and shows
that computing their rank is in fact equivalent to the linear matroid intersection problem. The
following lemma does not provide a good characterization for the rank of a mixed matrix, but it is

useful in formulations.

Lemma 10.2 (Murota) If Q + X is a V, by V. mized matriz then
rank (Q + X) = max(rank Q[A,, Ac] + rank X[V, — A, , V. — A ] : A, CV,, A. CV,).

Let 1 and Q9 be matrices whose columns are indexed by a set V :={1,...,n}. Consider the
intersection problem for the linear matroids M; := M.(Q1) and My := M.(Q3). We will formulate
this as a matrix rank problem for a mixed matrix. Let (z,...,2,) be algebraically independent

commuting indeterminates, and consider the following matrix:

7"1 PN rn

(S ]



Let r1(-) and ry(-) denote the rank functions of M; and M; respectively. By Lemma 10.2, we see
that
rank Z = max(rq(A) +r(A)+ |V —A| : ACV).

By considering the case that A is a maximum common independent set of M; and M; we see
that rank Z > X(My, My) + |V|. Moreover, if A is a minimal subset of V such that rank Z =
r1(A) 4+ re(A) + |V — A| then A is a common independent set of M; and M;. Therefore, rank Z =
A( My, M) + |V].

Using the above formulation, we will sketch a proof of the matroid intersection theorem for
linear matroids. First consider any submatrix Z’ of Z. If Z’ contains the indeterminate z; then
either r; & D, (Z') or ¢; ¢ D.(Z'). That is we can reduce the rank of Z’ by either deleting row r; or
column ¢;. Therefore, there exists a partition (A4, B) of V such that deleting the rows (r; : ¢ € A)
and the columns (¢; : ¢ € B) from Z reduces the rank of Z by |V|. The resulting matrix contains
no indeterminates and has rank rq(B) + ra(A). Therefore, A(My, Ms) + |V| = |V|+ r1(B) + r2(A).
That is, A(My, My) = ri(B) + ro(V — B), as required.

Exercise Set 10

10.1 Let G = (V, E) be a bipartite graph with bipartition (V,,V,), and let M, be a matroid with
ground set E such that a subset A of F is declared independent if no two edges in A are
incident with a common vertex in V,.. Find a matrix N, such that M, is the column-matroid
of N,.

10.2 Prove Kénigs theorem as a corollary of Edmonds’ matroid intersection theorem.
10.3 Show that the rank of a mixed matrix can be computed using matroid intersection.

10.4 Prove Lemma 10.2.

11 Matroid parity

Let M = (S,7) be a matroid and let IT be a partition of S into pairs. A subset X of S is matched
if each pair in II is either contained in S or is disjoint from S. We are interested in finding a
maximum cardinality matched independent set in M; this is the matroid parity problem. Let
v(M,TI) be the maximum size of a matched independent set in M. The matroid parity problem
has been extensively studied by Lovasz; see [12]; it is very general problem that contains both
matching and matroid intersection. Unfortunately, the matroid parity problem is NP-hard and is
intractable using the usual oracle approach to matroid algorithms. Nevertheless, Lovasz was able
to solve the matroid parity problem for linear matroids.

Consider a graph G = (V, E). From an edge ¢ = uv of G we define two half-edges e, and
€y. The half edge e, is incident with v. Let S be the set of all half-edges, and define a matroid
M = (S,7) such that a subset A of S is declared to be independent if each vertex of G is incident

with at most one half-edge in A. (It is easy to see that M is a matroid, moreover there exists a
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matrix () such that M = M.(Q).) Now let II = ({ey, ey} : uv = ¢ € E). Then there is a natural
bijection between matchings of G and matched independent sets of M. Hence, v(M,II) = v(G).
If T is the Tutte matrix of a graph G = (V, E) and K is a V by V skew-symmetric matrix
then we call T + K a mized skew-symmetric matriz. We will formulate the linear matroid parity
problem as a matrix rank problem for a mixed skew—-symmetric matrix. We require the following

analogue of Lemma 10.2.

Lemma 11.1 (Murota) If T+ K is a V by V mized skew—-symmetric matriz then
rank T + K = max(rank T[A] 4+ rank K[V — A] : ACYV).

Let @ be a matrix whose columuns are indexed by S = {1,...,2n} and let IT = ({1,2},...,{2n—
1,2n}). Consider the matroid parity problem for M = M.(Q). Let (z1,...,z,) be algebraically

independent commuting indeterminates, and let

0 4l

—Z1 0

Q 0

Let r(-) denote the rank function of M. By Lemma 11.1,

rank Z = max(2r(A4)+ |S — A| : A a matched subset of S).

Considering a matched independent set A of M, we see that rank Z > v(M,II) + |S|. Moreover, if
A is a minimal matched subset of A such that rank Z = 2r(A) + |S — A| then A is independent.
Hence, rank Z = v(M,II) + |S|.

Algorithms for solving the linear matroid parity problem are quite complicated. However, the
matrix rank formulation above provides us with a trivial randomized algorithm. The matrix rank
formulation is also useful in proving a minmax theorem, but this is somewhat more complicated,

so we do not include the details here.

Exercise Set 11
11.1 Formulate a matroid intersection problem as a matroid parity problem.

11.2 Prove Lemma 11.1.
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