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A 3-separation (A, B), in a matroid M, is called sequential if the elements of A
can be ordered (a1 , ..., ak) such that, for i=3, ..., k, ([a1 , ..., a i], [ai+1 , ..., ak] _ B)
is a 3-separation. A matroid M is sequentially 4-connected if M is 3-connected and,
for every 3-separation (A, B) of M, either (A, B) or (B, A) is sequential. We prove
that, if M is a sequentially 4-connected matroid that is neither a wheel nor a whirl,
then there exists an element x of M such that either M"x or M�x is sequentially
4-connected. � 2001 Academic Press

1. INTRODUCTION

In this, paper we find an analogue of Tutte's Wheels and Whirls
Theorem [10] for 4-connected matroids. We begin by recalling Tutte's
theorem.

Theorem 1.1 (Wheels and Whirls Theorem). If M is a 3-connected
matroid that is neither a wheel nor a whirl, then M has an element x such
that either M"x or M�x is 3-connected.

While there is general agreement on an appropriate definition for
matroid 3-connectivity, for higher connectivity the situation is more
problematic. Recall Tutte's definition of connectivity [10]. Let M be a
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matroid with ground set E. A set X�E is k-separating if r(X )+r(E&X )�
r(E )+k&1. Thus, a partition (X, Y ) of E is a k-separation of M if X is
k-separating and |X |, |Y |�k. Now, M is k-connected if and only if M has
no k$-separation, where k$<k.

Tutte's notion of connectivity is attractive, as it is self-dual. Moreover,
the definition of matroid 3-connectivity is intimately related to graph
3-connectivity and has proved to be fundamental in matroid representation
theory and matroid structure theory. But this is not the case for 4-connec-
tivity. Indeed, from a graph theorist's point of view, complete graphs
should be regarded as highly connected but, due to the existence of
triangles, are not 4-connected in Tutte's definition. Moreover, from the
perspective of matroid representation, we would like to think of projective
geometries as being 4-connected, but, due to the existence of long lines, this
is not the case. We believe that there will not be a universally accepted
definition for 4-connectivity, but that several definitions will emerge based
on the intended application. However, note that throughout this paper, by
a 4-connected matroid we will always mean one that is 4-connected in the
sense defined above. Other notions of 4-connectivity will be qualified with
an adjective.

A k-separation (A, B) is called sequential if the elements of A can be
ordered (a1 , ..., am) such that [a1 , ..., ai] is k-separating for i=1, ..., m.
A k-separation (A, B) is non-sequential if neither (A, B) nor (B, A) is
sequential. A matroid M is sequentially 4-connected if M is 3-connected and
has no non-sequential 3-separations.

Sequential 4-connectivity is a self-dual notion; moreover, matroids of
complete graphs and projective geometries are sequentially 4-connected. It
is readily checked that wheels and whirls are sequentially 4-connected. The
main result of this paper is the following.

Theorem 1.2. If M is a sequentially 4-connected matroid that is neither
a wheel nor a whirl, then M has an element x such that either M"x or M�x
is sequentially 4-connected.

Our main motivation is for intended applications in matroid representa-
tion theory. Kahn [4] conjectured that for any prime power q there exists
an integer nq such that any 3-connected matroid has at most nq inequivalent
representations over GF(q). Unfortunately this conjecture fails for all q>5;
see Oxley, Vertigan, and Whittle [7]. This suggests that 3-connectivity is
not enough for substantial progress and that higher connectivity is needed.
Our goal is to use Theorem 1.2 to prove the following conjecture.

Conjecture 1.3. For any prime power q there exists an integer nq such
that any sequentially 4-connected matroid has at most nq inequivalent
representations over GF(q).
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One may wonder why we have chosen sequential 4-connectivity in the
statement of the conjecture over other variations of 4-connectivity. A
3-connected matroid M on E is vertically 4-connected if whenever X is
3-separating in M, either r(X )�2 or r(E&X )�2. Vertical 4-connectivity
is a minimal relaxation of 4-connectivity that holds for projective geometries.
Using the operation of ``segment�cosegment exchange,'' introduced by
Oxley, Semple, and Vertigan [6], it is not hard to show that representa-
tions of a sequentially 4-connected matroid over a field are in one-to-one
correspondence with representations of a canonically associated vertically
4-connected matroid. It follows that, for many purposes, sequential 4-con-
nectivity is no weaker than vertical 4-connectivity. However, sequential
4-connectivity enjoys the significant advantage that it is maintained under
duality.

For graphs, Johnson and Thomas [3] have proved a theorem on ``inter-
nal'' 4-connectivity that is analogous to Seymour's Splitter Theorem [8].
They show how to build an internally 4-connected graph from an internally
4-connected minor in small steps that keep the intermediate graphs ``almost
internally'' 4-connected. In the light of this it seems natural to look for an
analogue to the Splitter Theorem for sequential 4-connectivity. However,
from the perspective of our intended applications, we foresee other varia-
tions on 4-connectivity providing more useful splitter theorems.

We assume that the reader is familiar with basic notions in matroid
theory; see Oxley [5] for an excellent introduction. Also see Truemper [9]
for a deep discussion of aspects of higher connectivity. In addition to
standard notation, we let si(M) and co(M) denote the simplification and
cosimplification of M, respectively. A set X of elements is a segment of M
if |X |�3 and every 3-element subset of X is a triangle. Dually X is a
cosegment if |X |�3 and every 3-element subset of X is a triad.

2. 3-CONNECTIVITY

In this section we review results on 3-connectivity. The purpose of this
is to show how standard 3-connectivity theorems can be obtained as a
straightforward consequence of a lemma of Bixby and Coullard. This casts
a somewhat different light on these results, and it also serves to motivate
the approach taken in this paper.

Bixby [1] originally stated the following lemma for the case that k=3.
Coullard [2] observed that the proof, which is a simple rank argument,
works for arbitrary k; see [5, pp. 296�297]. We will use this lemma as a
starting point in the proof of Theorem 1.2.

Lemma 2.1. Let e be an element of a k-connected matroid M, and let
(Xd , Yd) and (Xc , Yc) be (k&1)-separations in M"e and M�e, respectively.
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Then, (Xd , Yd) and (Xc , Yc) cross. Moreover, either |Xd & Xc |�k&2 or
|Yd & Yc |�k&2.

The following theorem of Bixby [1] is an easy consequence of Lemma 2.1.

Theorem 2.2. If e is an element of a 3-connected matroid M, then one
of the following holds.

1. co(M"e) is 3-connected. Moreover, no series class of M"e contains
more than 2 elements.

2. si(M�e) is 3-connected. Moreover, no parallel class of M�e contains
more than 2 elements.

The proof of Tutte's Wheels and Whirls Theorem can be easily derived
from Theorem 2.2 and the following lemma of Tutte [10].

Lemma 2.3 (Tutte's Triangle Lemma). Let [t1 , t2 , t3] be a triangle in a
3-connected matroid. If neither M"t1 nor M"t2 is 3-connected, then there
exists a triad using t1 and exactly one of t2 and t3 .

We now briefly sketch the proof of Tutte's Wheels and Whirls Theorem.
If M is a 3-connected matroid without triangles or triads, Theorem 2.2 is
considerably stronger than Tutte's Wheels and Whirls Theorem. On the
other hand, if M has a triangle, then we search for a fan (that is, an
alternating sequence of triads and triangles in which consecutive triads and
triangles intersect). If we cannot delete or contract some element in the last
triangle or triad, then, by Tutte's Triangle Lemma, we can build a longer
fan. If this process of building the fan does not terminate, then M is a wheel
or a whirl.

Bixby's theorem also provides an easy proof of the following partial
result toward Seymour's Splitter Theorem [8]. (To upgrade the following
result to the Splitter Theorem, one uses essentially the same method that
is used to obtain the Wheels and Whirls Theorem from Bixby's theorem.)

Corollary 2.4. Let M be a 3-connected matroid and let N be a 3-con-
nected proper minor of M with at least 4 elements. Then, there exists an
element e of M such that either co(M"e) or si(M�e) is 3-connected with N
as a minor.

Proof. Choose x # E(M)&E(N). By duality we may assume that M�x
has N as a minor. We may also assume that si(M�x) is not 3-connected.
Then there exists a 2-separation (A, B) of M�x such that r(A), r(B)�2. We
may assume that |E(N) & A|�|E(N)|&1 and that A is closed. Consider
any element e # B. If M�e does not have an N-minor, then (A, B&[e]) is
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a separation in M�x, e. However, M�x is connected, so e must be in the
closure of A in M. This contradicts the fact that A is closed. Hence M�e has
an N-minor. If there exists e # B such that M"e has an N-minor, then the
result follows from Bixby's Theorem. Suppose otherwise. Then, for every
e # B, (A, B&[e]) is a separation in M�x"e. Therefore, B is a series class
in M�x. But then B is a series class in M. This contradicts the fact that M
is 3-connected. K

3. BASIC LEMMAS ON SEPARATIONS

Virtually all of the argument in this paper is focused on analysing the
behaviour of 3-separations in matroids and we need lemmas giving basic
properties of such separations. Many of these properties hold for general
k-separations in which case we state the results at this level. Most of the
proofs are omitted as they are more-or-less immediate consequences of
definitions. Throughout this paper free use will be made of the results of
this section.

Let X, Y be sets of elements of a matroid M. We let *M(X ) denote r(X )
+r(E(M )&X )&r(M ). Note that X is k-separating if and only if *M(X )�
k&1. We refer to *M as the connectivity function of M. Note that the con-
nectivity function is symmetric; that is *M(X )=*M(E(M )&X ). Moreover,
Tutte [10] proved that the connectivity function is submodular.

Lemma 3.1 (Tutte [10]). If X and Y are sets of elements of a matroid
M then, *M(X )+*M(Y )�*M(X & Y )+*M(X _ Y ).

The following are easy corollaries of Lemma 3.1.

Proposition 3.2. Let X and Y be k-separating in M. If X & Y is not
(k&1)-separating in M, then X _ Y is k-separating in M.

Proposition 3.3. Let X be 4-separating and Y be 3-separating in M.
Then either X & Y or X _ Y is 3-separating in M.

Of course, a set is k-separating if and only if its complement is k-separating.
Thus the previous two lemmas have alternative equivalent formulations
that we use frequently. For example, if (A1 , A2) and (B1 , B2) are k-separations
of M and A1 & B1 , is not (k&1)-separating, then A2 & B2 is k-separating.

The coclosure of a set X of elements of a matroid M is the closure of X
in M*. Evidently, an element x # E(M )&X belongs to the coclosure of X
if and only if x is a coloop of M"X.
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Guts and Coguts. Let (A, B) be a k-separation of the matroid M. The
elements that can be moved from one side of the separation to the other
maintaining the property of being a k-separation play an important role in
this paper. These elements come in two types. The guts of (A, B) is the set
cl(A) & cl(B). Dually, the coguts of (A, B) is the set of elements in the
coclosure of both A and B. The following comment may aid intuition. If
(A, B) is a 3-separation in a representable matroid, then the subspaces
spanned by A and B meet in a line. Points on this line are points in the
guts of (A, B). The easy proof of the next proposition is omitted. Let (A, B)
be a partition of the elements of M. We say that (A, B) is an exact
k-separation, or that A is exactly k-separating, if *M(A)=k&1.

Proposition 3.4. Let (A, B) be an exact k-separation of the matroid M
and x be an element of B. Then,

(i) A _ [x] is exactly k-separating if x belongs to either the guts or
the coguts of (A, B), but not both.

(ii) A _ [x] is exactly (k&1)-separating if x belongs to both the guts
and the coguts of (A, B).

(iii) A _ [x] is exactly (k+1)-separating if x belongs to neither the
guts nor the coguts of (A, B).

Blocking and Coblocking. Say that x is an element of the matroid M,
and let (A, B) be a k-separation of M"x. Then x blocks (A, B) if neither
(A _ [x], B) nor (A, B _ [x]) is a k-separation of M. Now let (A, B) be a
k-separation of M�x. Then x coblocks (A, B) if neither (A _ [x], B) nor
(A, B _ [x]) is a k-separation of M.

Proposition 3.5. Let [A, B, [x]] be a partition of the ground set of the
matroid M.

(i) If (A, B) is an exact k-separation of M"x, then the element x
blocks (A, B) if and only if x is not a coloop of M, x � cl(A) and x � cl(B).

(ii) If (A, B) is an exact k-separation of M�x, then the element x
coblocks (A, B) if and only if x is not a loop, x # clM(A) and x # clM(B).

This immediately implies

Proposition 3.6. Let (A, B) be an exact (k+1)-separation of the
matroid M and let x be an element in B.

(i) A is k-separating in M"x if and only if x is in the coguts of (A, B).

(ii) A is k-separating in M�x if and only if x is in the guts of (A, B).
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Non-sequential Separations and Quads. Proposition 3.7. Let (A, B)
be a non-sequential k-separation of the matroid M. Then

(i) (A&cl(B), cl(B)) is a non-sequential k-separation of M. Dually,

(ii) if B$ denotes the coclosure of B, then (A&B$, B$) is a non-sequential
k-separation of M.

A 4-element subset of elements of a matroid is a quad if it is both a
circuit and a cocircuit. Apart from M(K4), 3-connected graphic matroids
do not have quads. Alas this is not the case more generally, and quads are
the cause of most of the difficulties in this paper.

Proposition 3.8. Let M be a 3-connected matroid and (A, B) be a
non-sequential 3-separation of M. If |A|=4, then A is a quad.

Note that if (A, B) is non-sequential 3-separation of a 3-connected
matroid and A contains a triad or a triangle, then |A|�5.

4. WEAK 4-CONNECTIVITY

A matroid M is weakly 4-connected if M is 3-connected and has no
3-separations (A, B) where |A|, |B|�5. The next lemma is an immediate
consequence of Proposition 3.8.

Lemma 4.1. Let (A, B) be a non-sequential 3-separation of a weakly
4-connected matroid M. Then either A or B is a quad.

As noted earlier, we use Lemma 2.1 as the starting point for our
argument. Applied to 4-connected matroids, it shows that any element in
a 4-connected matroid can be either deleted or contracted so as to keep
weak 4-connectivity.

Lemma 4.2. Let M be a 4-connected matroid and x be an element of M.
Then at least one of M"x or M�x is weakly 4-connected. Moreover, if P is
a quad in M"x and (A, B) is a 3-separation in M�x with |A|, |B|�4, then
|A & P|= |B & P|=2.

Proof. Assume that M"x is not weakly 4-connected. Then M"x has a
3-separation (Xd , Yd), where |Xd |, |Yd |>4. Now consider any 3-separa-
tion (Xc , Yc) of M�x. By Lemma 2.1 we may assume that |Xd & Xc |�2.
But then, again by Lemma 2.1, either |Xc & Yd |�2 or |Xd & Yc |�2. The
latter does not occur since |Xd |>4. Thus |Xc & Yd |�2 and hence |Xc |�4.
It follows that M�x is weakly 4-connected. A similar easy argument
establishes the latter part of the theorem. K
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As noted earlier, if M is a 3-connected graphic matroid with a quad, then
M is isomorphic to M(K4). Moreover, M(K4) is sequentially 4-connected.
Therefore, by Lemma 4.2, if M is a 4-connected graphic matroid and e is an
element of M, then either M"e or M�e is sequentially 4-connected. The task
of the next section is to deal with the potential presence of quads in
non-graphic matroids.

5. TUTTE 4-CONNECTIVITY

The main result in this section is the following.

Theorem 5.1. Let M be a 4-connected matroid. Then M has an element
z such that either M"z or M�z is sequentially 4-connected.

This theorem will be an immediate consequence of more specific struc-
tural results that we now develop. One case that arises is dealt with by the
next lemma.

Lemma 5.2. Let [t1 , t2 , t3 , a1 , a2 , a3 , b1 , b2 , b3] be distinct elements of
the 4-connected matroid M. Suppose, for k=1, 2, 3, that M"tk is weakly
4-connected and that [t1 , t2 , t3 , ak , bk]&[tk] is a quad of M"tk . Then
M�t1 is sequentially 4-connected.

Proof. For k=1, 2, 3, let Pk=[t1 , t2 , t3 , ak , bk] and P$k=Pk&[tk].
Now let P=P1 _ P2 _ P3 .

Suppose that M�t1 is not sequentially 4-connected, and let (A, B) be a
non-sequential 3-separation. Since P$2 and P$3 are 4-circuits in M, both
[a2 , b2 , t3] and [a3 , b3 , t2] are triangles in M�t1 . We may assume without
loss of generality that neither of these triangles cross the 3-separation
(A, B). By hypothesis P$1 is a quad in M"t1 , so, by Lemma 4.2, |P$1 & A|=
|P$1 & B|=2. Also note that, by Proposition 3.4, (A _ [t1], B) is a
4-separation of M with t1 in the guts.

5.2.1. |A & [t2 , t3]|=1.

Proof. Suppose otherwise, then we may assume without loss of
generality that t2 , t3 # A. However, neither [a2 , b2 , t3] nor [a3 , b3 , t2]
crosses (A, B), so a2 , a3 , b2 , b3 # A. Now P2 is a cocircuit in M, so
t1 � cl(B). This is, however, a contradiction, since (A _ [t1], B) is a
4-separation in M with t1 in the guts. This proves the claim. K

By possibly relabeling, we may assume that |A|� |B| and A & P$1=
[a1 , t2]. Therefore, A & P=[a1 , t2 , a3 , b3] and B & P=[b1 , t3 , a2 , b2]. Note
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that, since (A, B) is non-sequential and [t2 , a3 , b3] is a triangle in M�t1 ,
we have 5�|A|�|B|. Consequently M has at least 11 elements.

Note that P1 and P3 are 4-separating in M, moreover |P1 & P3 |=3, so,
by Proposition 3.2, P1 _ P3 is 4-separating. Also A is 4-separating in M
and |E&(A & (P1 _ P3))|�3, so, by Proposition 3.2, A & P=A &

(P1 _ P3) is 4-separating in M. But |A & P|=4, so A & P is either a circuit
or a cocircuit. Since t2 is the only element of A & P that is in the cocircuit
P2 , A & P is not a circuit. Hence A & P is a cocircuit. Because P$2 is a
circuit, t3 is not in the coclosure of A & P. Therefore, A & P is a cocircuit
in M"t3 . However, this implies that a1 is in the coguts of the 3-separation
(P$3 , E&P3) in M"t3 . Therefore, P$3 _ [a1] is 3-separating in M"t3 . This
contradicts the fact that M"t3 is weakly 4-connected. This completes the
proof. K

The following lemma contains some of the finite case checking for the
proof of Theorem 5.1. The proof is somewhat terse, so the reader may wish
to skip it on first reading.

Lemma 5.3. Let M be a 4-connected matroid with at most 11 elements,
and let x, a, p, b1 , b2 , c1 , c2 be distinct elements of M such that M"x is
weakly 4-connected with a quad [a, p, b1 , b2], and such that [b1 , b2 , c1 , c2]
is a quad of M"p. Then, there exists an element y of M such that either
M"y or M�y is sequentially 4-connected.

Proof. Let D=E(M )&[x, a, p, b1 , b2 , c1 , c2], P=[a, p, b1 , b2], and
Q=[b1 , b2 , c1 , c2]. Assume that M has rank 4. If z # E(M ), then M�z is a
3-connected rank-3 matroid. It is easily checked that such a matroid is
sequentially 4-connected, so that the lemma holds in this case.

By dualising the above argument we assume that the rank and corank
of M are both at least 5. Hence M has either 10 or 11 elements, and D has
either 3 or 4 elements. By Proposition 3.2, D is 3-separating in M"x, p.
Since P is a circuit, and P & D=<, we see that D is also 3-separating in
M"x. As x blocks the 3-separation (D, Q _ [a]) but not the 3-separation
(D _ [a], Q) in M"p, x, we see that x # cl(D _ [a]) but x � cl(D). Since P
and Q are 4-element circuits, meeting in two elements, 3�r(P _ Q)�4.
Since P is a quad of M"x, P�3 cl(Q). Hence r(P _ Q)=4. Then, since D is
3-separating in M"x, we have r(M )=r(D)+2.

Suppose that M�b1 is not sequentially 4-connected, and let (R, R$) be a
non-sequential 3-separation in M�b1 . We may assume that the triangle
[a, p, b2] is not crossed by (R, R$), and that a, p, b2 # R. Since [b2 , c1 , c2]
is a triangle of M�b1 , we may further assume that, if R contains either c1

or c2 , then R contains both c1 and c2 . Note that, since M is 4-connected,
b1 coblocks (R, R$), so that b1 is in the closure of R$. But [b1 , b2 , c1 , c2]
is a quad in M"p, so b1 � cl(D _ [x]). Thus R$ must contain one of c1
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and c2 . Consequently R$ must contain both c1 and c2 . Also, since
b1 � cl(D _ P), we must have x # R$. Moreover, since (R, R$) is not sequen-
tial, R and R$ each contain at least two elements of D _ [x].

Suppose that R contains three elements of D. Then |D|=4 and |R$|=4.
Consequently, R$ is a quad in M�b1 and, hence, D cannot be a circuit in
M�b1 . Therefore, D is a cosegment and R & D is a triad in M"x. Since R$
is a circuit, x # cl((R$ _ [b1])&[x]). Therefore, R & D is a triad in M, con-
tradicting the fact that M is 4-connected. Hence R & D contains 2 elements,
say d1 and d2 , and it follows that [a, p, d1 , d2] is a quad in M�b1 . Thus
[a, p, d1 , d2] is a cocircuit in M and r([a, p, d1 , d2 , b1 , b2])=4. Since Q is
a circuit, r([a, p, d1 , d2 , b1 , b2 , c1 , c2])=5. Therefore, since M is 4-connected,
r(M )=5 and hence D has rank 3.

Now c1 and c2 are not both in the closure of [d1 , d2 , a, p] in M, since
otherwise (R$, R) would be a sequential 3-separation in M�b1 . By possibly
relabeling, we may assume that c1 is not in the closure of [d1 , d2 , a, p].
Now [d1 , d2 , a, p] is not a circuit, since otherwise Q would be a quad in
M. Therefore [d1 , d2 , a, p, c1] has rank 5 in M. Now suppose that M�c1 is
not sequentially 3-connected, and let (T, T $) be a non-sequential 3-separa-
tion. Since M�c1 has rank 4, both T and T $ have rank 3 in M�c1 . It follows
that neither T nor T $ contain all of [d1 , d2 , a, p]. Moreover, as [d1 , d2 ,
a, p] is a cocircuit, T and T $ must each contain two elements of [d1 , d2 , a, p].
Note that [b1 , b2 , c2] is a triangle in M�c1 . Thus we may assume that b1 ,
b2 , c2 # T. Now, as c1 coblocks (T, T $) we must get c1 in the closure of T $.
Therefore, as Q is a cocircuit of M"p, we must have p # T $. Moreover p
cannot be in the closure of T (since otherwise we could put it in T ), so
a # T $. It follows that d1 , d2 # T. Since T has rank 3 in M�c1 , we see that
[d1 , d2 , c1 , c2] has rank 3 in M�b1 . However, in M�b1 , [a, p, d1 , d2] has
rank 3, and [c1 , c2 , b2] and [a, p, b2] are triangles. We conclude that c1

and c2 are both in the closure of R, and hence (R$, R) is a sequential
3-separation in M�b1 . K

If x is an element of a 4-connected matroid M, then either M"x or M�x
is weakly 4-connected. By duality we may assume that M"x is weakly
4-connected. If M"x is not sequentially 4-connected, then M"x has a quad
P. Hence, the following lemma implies Theorem 5.1.

Lemma 5.4. Let M be a 4-connected matroid, and let x be an element of
M such that M"x is a weakly 4-connected matroid with a quad P. Then at
least one of the following holds:

(i) M�x is sequentially 4-connected;

(ii) there exists z # P such that M"z is sequentially 4-connected; or
(iii) M has at most 12 elements and there exists an element y of M

such that either M"y or M�y is sequentially 4-connected.
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Proof. Set P=[ p, a, b1 , b2], where p is chosen such that, if possible,
M"p is weakly 4-connected. Suppose that the result is false, and let M be
a counterexample. Note that every 3-connected matroid of rank 2 or 3 is
sequentially 4-connected. Therefore, since neither M"p nor M�x is sequen-
tially 4-connected, M has rank and corank at least 5. Thus M has at least
10 elements.

Now M"p has a non-sequential 3-separation. By removing x we obtain
a 3-separation (X1 , X2) of M"p, x. Assume that [a, b1 , b2] is contained in
one side of (X1 , X2). Then neither p nor x blocks this 3-separation and it
follows that clM(X1) is 3-separating in M, contradicting the fact that M is
4-connected.

Thus we may assume that (X1 , X2) crosses the triad [a, b1 , b2] of M"p,
x. Without loss of generality assume that X1 & [a, b1 , b2]=[a], and,
hence, X2 & [a, b1 , b2]=[b1 , b2]. Set C=X2 & (E&[a, b1 , b2]) and D=
X1 & (E&[a, b1 , b2]). By possibly moving elements, we may assume that
C is closed.

Since X1 and [a, b1 , b2] are both 3-separating, we deduce from Proposi-
tion 3.2 that D is 3-separating in M"p, x. Since p # cl([a, b1 , b2]), D is also
3-separating in M"x. Thus we have

5.4.1. D is 3-separating in both M"p, x and M"x.

We also have

5.4.2. a is in the coguts of (X1 , X2).

Proof. We know that both D and X1 are 3-separating in M"p, x. But
X1=D _ [a], so a is either in the cuts or the coguts of (X1 , X2). If a is in
the guts of (X1 , X2), then a # cl(X2). But then p # cl(X2), contradicting the
fact that p blocks (X1 , X2). K

5.4.3. x # cl(X1) and x � cl(D). Consequently a # cl(D _ [x]).

Proof. Say x # cl(D). Then, since D is 3-separating in M"x, we have
that D _ [x] is 3-separating in M. This contradicts the fact that M is
4-connected, so x � cl(D).

Since x does not block (X1 , X2), either x # cl(X1) or x # cl(X2). Assume
the latter. By 5.4.1, D is 3-separating in M"x. Since D & X2=< and
x # cl(X2), it follows that D is 3-separating in M. Since M is 4-connected we
deduce that |D|=2. Then (X1 , X2 _ [x]) is a sequential 3-separation in
M"p, contradicting our definition of X1 and X2 . We conclude that
x # cl(X1). K
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5.4.4. C is exactly 4-separating in M and M"x, p.

Proof. Lemma 3.1 shows that C is either 3-separating or 4-separating
in M"x, p. If C is k-separating in M"x, p, then, since x # cl(D _ [a]) and
p # cl([a, b1 , b2]), C is k-separating in M. Thus C is either 3-separating or
4-separating in M. Assume, for a contradiction, that C is 3-separating in
M. Then, as M is 4-connected, |C|�2. Now X2=C _ [b1 , b2], and
(X1 , X2) is a non-sequential 3-separation of M"p, so C _ [b1 , b2] is a
quad in M"p. Moreover, since M"x is weakly 4-connected, |D|�4. Hence
M has at most 11 elements. But now, M satisfies the hypotheses of
Lemma 5.3. Hence M has an element y such that M"y or M�y is sequen-
tially 4-connected, and part (iii) of this lemma holds, contradicting the
assumption that M is a counterexample to the lemma. K

5.4.5. |D|�3.

Proof. Suppose that |D|=4. Since D is 3-separating in M"x, D _ [x]
is 4-separating in M. Moreover, by 5.4.3, a is in the guts of this 4-separa-
tion. Therefore, (D _ [x], X2 _ [ p]) is a 3-separation in M�a. Therefore
M�a is not weakly 4-connected. Hence, by Lemma 4.2, M"a is weakly
4-connected. However, M"p is not weakly 4-connected, contradicting our
choice of p. K

5.4.6. b1 # cl(C _ b2)

Proof. Since P is a quad in M"x, neither b1 nor b2 is in the closure of
C. If b1 � cl(C _ [b2]) then b1 and b2 are both in the coguts of the
3-separation (X1 , X2) in M"x, p contradicting the fact that C is not
3-separating in M"x, p. K

5.4.7. r(X1 _ [b1 , b2])=r(X1)+2.

Proof. Assume not. Then r(X1 _ [b1 , b2])�r(X1)+1. But now

r(X1)+r(X2)�r(X1 _ [b1 , b2])+r(X2&[b1 , b2]).

So C=X2&[b1 , b2] is 3-separating, contradicting the fact that this set is
exactly 4-separating. K

Consider any 3-separation (Q, Q$) of M"a.

5.4.8. Q crosses both D _ x and [ p, b1 , b2].

Proof. This follows immediately from the facts that a # cl(D _ x),
a # cl([ p, b1 , b2]), and M is 4-connected. K
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5.4.9. If C�Q$, then b1 , b2 # cl(Q$).

Proof. By symmetry, we need only show that b1 # cl(Q$). Suppose, to
the contrary, that b1 � cl(Q$). Recall that b1 # cl(C _ [b2]), so b2 � cl(Q$).
Therefore b1 , b2 # Q. Then, since Q crosses [ p, b1 , b2], we have p # Q$.
Moreover, (Q _ [ p], Q$&[ p]) is not a 3-separation of M"a since it does
not cross [ p, b1 , b2]. Therefore p is in the closure of Q$&[ p]. Therefore,
as P _ [x] is a cocircuit, we must have x # Q$. Since r(X1 _ [b1 , b2])=
r(X1)+2, the elements b1 and b2 are in the coguts of (Q, Q$) in M"a.
Hence Q&[b1 , b2] is 3-separating in M"a. However, since P is a circuit,
Q&[b1 , b2] is 3-separating in M. Therefore, |Q&[b1 , b2]|�2. Then,
since r(X1 _ [b1 , b2])=r(X1)+2, we see that Q is an independent set.
Thus Q is a cosegment of M"a. So, for d # Q&[b1 , b2], [b1 , b2 , d] is a
triad of M"a, and [a, b1 , b2 , d] is a cocircuit of M. Hence d is in the
coclosure of P in M, and indeed, in M"x. Therefore d is in the coguts of
the 3-separation (P, E&(P _ [x])) in M"x. However, this implies that
P _ [d] is 3-separating in M"x, contradicting the fact that M"x is weakly
4-connected. K

5.4.10. If C�Q$, then Q&[b1 , b2] is a triad containing p and two
elements of D.

Proof. If |Q|=3 then Q must be a triad of M"a, in which case
Q & cl(Q$) is empty. Therefore, if b1 # Q then (Q&[b1], Q$ _ [b1]) is a
3-separation of M"a. Therefore, we may assume that b1 , b2 # Q$. Hence, by
5.4.8, we have p # Q. Since p blocks the 3-separation (X1 , X2) of M"p, we
see that p is not in the closure of Q&[ p]. Therefore Q&[ p] is 3-separating
in M"a. However, since P is a circuit, Q&[ p] is 3-separating in M. Hence
|Q|=3. That is, Q is a triad of M"a that contains p and two elements of
D _ [x]. Suppose that x # Q and suppose that D & Q=[d]. Now,
(Q _ [a])&[x] is a triad of M"x. This means that d is in the coguts of
the 3-separation (P, E&(P _ [x])) in M"x. Hence P _ [d] is 3-separating
in M"x. This contradicts the fact that M"x is weakly 4-connected.
Therefore x � Q, and the result follows. K

5.4.11. If C�Q$, then Q is a triad containing p and two elements of D.

Proof. We know that Q&[b1 , b2] is a triad containing p and two
elements of D. So, if the result fails, Q contains b1 or b2 . Say b1 # Q. By
5.4.8, b2 � Q. Now Q _ [a] is 4-separating in M and also in M"x.
Moreover, P is 3-separating in M"x. Since P is a quad of M"x, and
|P & (Q _ [a])|=3, we see that P & (Q _ [a]) is not 3-separating in M"x.
Therefore, by Proposition 3.3, P _ (Q _ [a]) is 3-separating in M"x.
However, M"x is weakly 4-connected, so |Q$&(P _ [x])|�4. By 5.4.4
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|C|�3 and C is exactly 4-separating in M"x, so C{Q$&(P _ [x]).
Therefore, by 5.4.5, |D|=3 and |C|=3. Let d be the element in D & Q$.
Now C is exactly 4-separating and C _ [d]=Q$&(P _ [x]) is 3-separating
in M"x, which contradicts the fact that C is closed. K

5.4.12. If (R, R$) is a 3-separation in M"a, where x # R and |R|,
|R$|�4, then |R & [ p, b1 , b2]|=1 and |R & C|�2. Moreover, if |R & D|
{0 then |R$ & C|�2.

Proof. By 5.4.8, both R & [ p, b1 , b2] and R$ & [ p, b1 , b2] are nonempty.
Suppose that R$ & [ p, b1 , b2] contains just one element, say t. Since P _

[x] is a cocircuit of M, and R$&[t] is contained in the complementary
hyperplane, t is not in the closure of R$&[t]. Thus (R$&[t], R _ [t]) is
a 3-separation of M"a. However, R$&[t] does not cross [ p, b1 , b2],
which contradicts 5.4.8. Therefore |R$ & [ p, b1 , b2] |>1, and it follows that
|R & [ p, b1 , b2]|=1.

Note that C is 4-separating and R is 3-separating in M"a. Therefore, by
Proposition 3.3, either R$&C or R & C is 3-separating in M"a. By 5.4.11,
R$&C cannot be 3-separating, so R & C is 3-separating in M"a. Now,
since P is a circuit, R & C is 3-separating in M. Therefore |R & C|�2.

Suppose then that we have chosen R so that |R & D|�1. Consequently,
|R&C|�3. Since C is 4-separating and R$ is 3-separating in M"a, either
R&C or R$ & C is 3-separating in M"a. However, by 5.4.11, R&C is not
3-separating in M"a. Therefore R$ & C is 3-separating in M"a. Then,
because P is a circuit, R$ & C is 3-separating in M. However, M is 4-connected,
so |R$ & C|�2. K

5.4.13. |C|�4. Consequently M has at most 12 elements.

Proof. Suppose that |C|�5. We claim that M"a is weakly 4-connected.
Consider any 3-separation (R, R$) of M"a, where x # R and |R| , |R$|�4.
As |C|�5, we have |R$ & C|�3. Then, by the previous claim, R and D are
disjoint. Consequently |R|�4. Therefore, M"a is weakly 4-connected.

By our choice of p, M"p is weakly 4-connected. Consequently |D|=2
and X1 _ [x] is a quad in M"p. Suppose that M"a is not sequentially
4-connected, and let R be a quad in M"a. Note that x # R, and let t be the
unique element in P & R. Assume t{ p; then, since R is a circuit, x is in the
guts of the 3-separation (X1 _ [x], X2) in M"p. This cannot happen, since
X1 _ [x] is a quad in M"p. Hence t= p. Now the result follows by
Lemma 5.2, where t1=x, t2=a, and t3= p. K

Now M has at most 12 elements. (The rest of the proof of the lemma is
just a finite case check.) Henceforth, we assume that (R, R$) is a non-
sequential 3-separation in M"a with x # R.
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5.4.14. |R & D|�1.

Proof. Now R is 3-separating and D _ x is 4-separating in M"a. There-
fore, by Lemma 3.3, either (D & R) _ [x] or R$&D is 3-separating in M"a.
If R$&D is 3-separating in M"a then, since a # cl(D _ [x]), R$&D is also
3-separating in M. However, this cannot be the case since M is 4-connected
and |R$&D|�3. Therefore, (D & R) _ [x] is 3-separating in M"a.
However, because P is a circuit, (D & R) _ [x] is 3-separating in M. Thus,
since M is 4-connected, |R & D|�1. K

5.4.15. |R$ & D|�2.

Proof. Suppose that |R$ & D|�3. Hence D/R$. Now R$ & D cannot be
3-separating in M, and, since P is a circuit, D & R$ cannot be 3-separating
in M"a. Now R is 3-separating and D _ x is 4-separating in M"a. There-
fore, by Lemma 3.3, R&(D _ [x]) is 3-separating in M"a. However,
a # cl(D _ [x]), so R&(D _ [x]) is 3-separating in M. Then, since M is
4-connected, |R&(D _ [x])|=2. Therefore R is a triad in M"a, contradicting
the assumption that this 3-separation is non-sequential. K

5.4.16. |R$ & D|=2.

Proof. Suppose, to the contrary, that |R$ & D|=1. Then, by 5.4.14,
|D|�2. Now (D _ [a, x], C _ [b1 , b2]) is a non-sequential 3-separation in
M"p. Therefore, |D|=2, |D & R|=1 and D _ [a, x] is a quad in M"p.
Since |D & R|{0, it follows from 5.4.12 that |R$ & C|�2.

Now |R|, |R$|�5 and |E(M )|�11. From part (iii) of the statement of
the lemma and the assumption that M is a counterexample, we see that
M�a is not sequentially 4-connected. Let (Q, Q$) be a non-sequential
3-separation of M�a with x # Q. We may assume that neither of the tri-
angles, D _ [x] and [ p, b1 , b2], crosses (Q, Q$) in M�a. In particular
D _ [x]�Q. Since M is 4-connected, a coblocks (Q, Q$) so that a # cl(Q$).
However, D _ [a, x, p] is a cocircuit, so p � Q. Hence p, b1 , b2 # Q$. So
neither Q nor Q$ is a quad of M�a. Hence, M�a is not weakly 4-connected
and |E(M )|=11. Consequently, M"a is weakly 4-connected. However, if
|E(M )|=11 then |R|= |R$|=5, which is a contradiction. Therefore
|R$ & D|=2. K

If there exists an element y in M such that M�y is weakly 4-connected,
then we could dualize and use y in place of x. Therefore, we assume that:
if there exists an element y of M such that M�y is weakly 4-connected, then
r(M )�r*(M ).

5.4.17. R is disjoint from D.

Proof. Suppose to the contrary that |R & D|=1. In this case M"p is
not weakly 4-connected. Therefore, M�p is weakly 4-connected. So, by
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assumption, we have r(M )�r*(M ). Now r(M )�r(D _ [a, b1 , b2])=
r(D _ [a])+2=6. However M has at most 12 elements, so r(M )=
r*(M )=6. In particular, M has 12 elements, so |C|=4. However, C is
4-separating. Hence, C is either a circuit or a cocircuit. Since r(M )=
r(D _ [a, b1 , b2]), C is not a cocircuit. Therefore, C is a circuit.

By 5.4.11, R&C is not 3-separating in M"a. However, since C is a circuit,
r(R$ _ C)�r(R$)+1. Therefore, r(R&C)=r(R). Thus, as |R&C|=3, we
have r(R)=3. So, R&P is a circuit containing x. This contradicts the fact
that x blocks the 3-separation (P, E&(P _ [x])) in M"x. K

Now, P is a quad in M"x, D _ [a, x] is a quad in M"p, and R is a quad
in M"a. Moreover, since D _ [a, x, p] is a cocircuit and R is a circuit, we
must have p # R. Now the proof follows from Lemma 5.2. K

6. INTERNAL 4-CONNECTIVITY

A matroid is M is internally 4-connected if M is 3-connected and has no
3-separations (A, B) where |A|, |B|�4. That is, if (A, B) is a 3-separation
in an internally 4-connected matroid M, then A or B is a triangle or a
triad. In this section we prove that, if T is a triangle in a sufficiently large
internally 4-connected matroid, then there exists an element of T whose
deletion leaves a sequentially 4-connected matroid. Unfortunately there are
small exceptions to this assertion. Consider the two matroids in Fig. 1.
Note that [a, b, c] is a triangle in both of these matroids; however, none
of M"a, M"b, or M"c is sequentially 4-connected.

The main result in this section is an analogue of Tutte's Triangle Lemma.

Theorem 6.1 (The Triangle Theorem). If T is a triangle in an internally
4-connected matroid M, then either

(i) there exists t # T such that M"t is sequentially 4-connected, or
(ii) M has at most 11 elements, and there exists an element y of M

such that M�y is sequentially 4-connected.

FIG. 1. Nasty examples.
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Proof. Let T=[a, b, c]. We often use the following elementary claim.

6.1.1. Let (t1 , t2 , t3) be a permutation of [a, b, c], and let (X, Y ) be a
non-sequential 3-separation of M"t3 such that t1 # X. Then, t2 # Y. Moreover,
neither t1 nor t2 is in either the guts or the coguts of (X, Y ).

Proof. Since M is internally 4-connected, t3 blocks (X, Y ). Therefore, t3

is not in the closure of X, and hence t2 # Y. If t2 were in the guts or the
coguts of (X, Y ), then (X _ [t2], Y&[t2]) would be a non-sequential
3-separation of M"t3 that would contradict the first part of the claim.
Therefore, t2 is not in the guts or the coguts of (X, Y ), and, by symmetry,
neither is t1 . K

Suppose that none of M"a, M"b, and M"c is sequentially 4-connected.
Then, let (Ab , Ac), (Ba , Bc) and (Ca , Cb) be non-sequential 3-separations
in M"a, M"b and M"c respectively, where a is in Ba and Ca , b is in Ab

and Cb and c is in Ac and Bc . Note that (Ab&[b], Ac&[c]), (Ba&[a],
Bc&[c]) and (Ca&[a], Cb&[b]) are all 3-separations of M"T. In this
proof it may help to imagine that each of these 3-separations arises from
a cube; see Fig. 2. We have symmetries induced by permutations of a, b, c;
these symmetries are also indicated in Fig. 2. For example, the two hollow
vertices of the cube indicate that Ab & Bc & Ca and Ac & Ba & Cb are equiv-
alent sets under some permutation of a, b, c. Also, the three dotted edges
indicate that Ab & Ba , Ac & Ca , and Bc & Cb are equivalent sets under
permutations of a, b, c. The solid vertices, the thin edges, and the thick
edges indicate three other equivalence classes.

We start by focussing on the pair [a, b]. However, it is clear that
analogous results will hold for any 2-element subset of [a, b, c].

6.1.2. M"[a, b] is 3-connected up to series pairs.

Proof. Say (X, Y ) is a 2-separation of M"a, b, where c # Y. Now X is
3-separating in M"a, and b # cl(A _ y) so X is 3-separating in M. Hence
|X |�3.

Assume that |X |=3, so that X is either a triangle or a triad. Consider
Ca and Cb . Without loss of generality assume that |Ca & X |�2. If the
other element of X is not in Ca & X, it is in either the closure or coclosure
of Ca & X, so we may assume that X�Ca . But then b is in the coguts of
(Ca , Cb) contradicting 6.1.1. Hence |X |=2 and it is clear that X is a series
pair. K

6.1.3. If Ab & Ba contains a series pair [a$, b$] in M"a, b then |Ab |,
|Ba |�5.
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FIG. 2. Three crossing 3-separations.

Proof. Assume that |Ab |=4. Then Ab is a quad of M"a. But this quad
contains [b, a$, b$] which is a triad of M"a; a contradiction. Thus |Ab |�5,
and similarly |Ba |�5. K

6.1.4. If Ab & Bc (respectively Ac & Bc or Ac & Ba) is k-separating in
M"a, b, then Ab & Bc (respectively Ac & Bc or Ac & Ba) is k-separating in M.

Proof. We have a # cl(Ba&[a]) and b # cl([a, c]). Therefore, if Ab & Bc ,
is k-separating in M"a, b then Ab & Bc is k-separating in M. Similarly, if
Ac & Ba is k-separating in M"a, b, then Ac & Ba is k-separating in M.
Moreover, since a # cl(Ba&[a]) and b # cl(Ab&[b]), we see that if
Ac & Bc is k-separating in M"a, b then Ac & Bc is k-separating in M. K

By the previous claim and Proposition 3.2, we have

6.1.5. Neither Ab & Bc , Ac & Ba or Ac & Bc contains a series pair of
M"a, b. Moreover,

1. If |Ab & Bc |�2, then Ac & Ba is 3-separating in M.

2. If |Ac & Ba |�2, then Ab & Bc is 3-separating in M.

3. If |Ac & Bc |�2, then Ab & Ba is 3-separating in M"a, b.

4. If Ab & Ba is not 2-separating in M"a, b, then Ac & Bc is 3-separating
in M.

6.1.6. |Ab & Bc |, |Ac & Ba |, |Ac & Bc |�2. Consequently, both Ab & Bc ,
and Ac & Ba are 3-separating in M, and Ab & Ba is 3-separating in M"a, b.

Proof. Suppose that |Ab & Bc |�1. Then, since (Ab , Ac) is a non-
sequential 3-separation in M"a, |Ab & Ba |�2. Assume that |Ab & Ba |=2.
Then |Ab |=4, and Ab is a quad. But then, by 6.1.3, Ab & Ba is not a series
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pair, so Ab & Ba is not 2-separating in M"a, b. On the other hand, if
|Ab & Ba |�3, then, since M"a, b is 3-connected up to series pairs, Ab & Ba

is also not 2-separating in M"a, b. In either case it follows from 6.1.5 that
Ac & Bc is 3-separating in M. However, M is internally 4-connected, so
either |Ac & Bc |�2 or (Ac & Bc , E&(Ac & Bc)) is a sequential 3-separa-
tion. In either case we deduce that (Bc , Ba) is a sequential 3-separation in
M"b. This contradiction shows that |Ab & Bc |�2. By symmetry,
|Ac & Ba |�2. A similar argument shows that |Ac & Bc |�2. K

6.1.7. If |Ac & Bc |�3 then either

1. Ac & Bc is a triangle and |Ac & Bc & Ca |=|Ac & Bc & Cb |=1, or

2. (Ab & Ba) _ [a, b] is a 4-element cocircuit.

Proof. First suppose that Ab & Ba is not 2-separating in M"a, b. By
6.1.5, Ac & Bc is 3-separating in M. Then, since |Ac & Bc |=3, Ac & Bc is
either a triangle or a triad. However, c # Ac & Bc and c is already in the
triangle T. Therefore, since M is internally 4-connected, c is not in a triad.
Hence Ac & Bc is a triangle. Moreover, since c blocks the 3-separation
(Ca , Cb) of M"c, the triangle Ac & Bc must have one element in Ca and
another in Cb .

Now suppose that Ab & Ba is 2-separating in M"a, b. Since M"a, b is
3-connected up to series-pairs, Ab & Ba is a series pair of M"a, b. Now M
is internally 4-connected, and a and b are in a triangle, so neither a nor b
is in a triad of M. Hence, (Ab & Ba) _ [a, b] is a cocircuit as required. K

Note that, since M is internally 4-connected, |Ab & Bc |, |Ac & Ba |�3.
Also, Ab & Ba is nonempty, since otherwise a # cl(Ac & Ba) so that a does
not block the non-sequential 3-separation (Ab , Ac).

By 6.1.6 and symmetry between a, b and c, we know that each of the sets
Ab & Bc , Ac & Cb , Bc & Ca , Ba & Ac , Ca & Ab , and Cb & Ba is exactly
3-separating in M, and, hence, any one of these sets contain at most three
elements. This shows that M has at most 21 elements. Thus the remainder
of the proof is just a finite case check.

Suppose that |Ab & Bc |=3. Then, by 6.1.5, Ab & Bc is either a triangle or
a triad in M. By symmetry we may assume that Ca contains at least two
elements of Ab & Bc . Suppose that Ab & Bc is not contained in Ca and let
x be the element in Ab & Bc & Cb . Thus x is either in the guts or the coguts
of the 3-separation (Ca , Cb) in M"c. Therefore (Ca _ [x], Cb&[x]) is a
nonsequential 3-separation of M"c. By changing Ca and Cb , we may
assume that Ab & Bc /Ca . Using symmetry we may make the following
assumptions.
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6.1.8. We assume, without loss of generality, that

1. If |Ab & Bc |=3 then either Ab & Bc �Ca or Ab & Bc �Cb .

2. If |Ac & Ba |=3 then either Ac & Ba �Ca or Ac & Ba �Cb .

3. If |Ac & Cb |=3 then either Ac & Cb �Ba or Ac & Cb �Bc .

4. If |Ab & Ca |=3 then either Ab & Ca �Ba or Ab & Ca �Bc .

5. If |Bc & Ca |=3 then either Bc & Ca �Ab or Bc & Ca �Ac .

6. If |Ba & Cb |=3 then either Ba & Cb �Ab or Ba & Cb �Ac .

6.1.9. |Ab & Ba & Ca |�1.

Proof. Suppose to the contrary that |Ab & Ba & Ca |�2. By 6.1.8 (part 4),
Ab & Bc & Ca is empty. However, by 6.1.6 and symmetry, |Bc & Ca |�2.
Therefore, |Ac & Bc & Ca |�2. Then, since c # Ac & Bc , |Ac & Bc |�3.
Therefore, by 6.1.7, (Ab & Ba) _ [a, b] a cocircuit of M. Let x and y be the
elements of Ab & Ba & Ca . Now, by 6.1.5 and symmetry, no subset of Ba &

Ca is 2-separating in M"c. Thus b is in the coclosure of [x, y, a] in
M"c. Hence b is in the coguts of the 3-separation (Ca , Cb) in M"c. This
contradiction completes the proof. K

6.1.10. |Ab & Bc & Ca |�1.

Proof. Suppose to the contrary that |Ab & Bc & Ca |�2. By 6.1.8,
Ac & Bc & Ca , Ab & Ba & Ca , and Ab & Bc & Cb are all empty. However, by
6.1.5 (part 3) and symmetry, |Ac & Bc |, |Ab & Cb |, |Ba & Ca |�2. There-
fore, by 6.1.9 and symmetry, |Ac & Bc & Cb |=1, |Ac & Ba & Ca |=1, and
|Ab & Ba & Cb |=1. By 6.1.8 (part 3), |Ac & Ba & Cb |�1 and, hence M has
at most 10 elements. Since |Ac |�4, we must have |Ac & Ba & Cb |=1 and
|Ac |=4. Thus Ac is a quad in M"a. Similarly, Ba is a quad in M"b and
Cb is a quad in M"c. Let y be the element in Ac & Ba & Cb . It is straight-
forward to check that y is not in a triangle. Also, since Ac&[ y], Ba&[ y],
Cb&[ y], and [a, b, c] are all triangles in M�y, it is straightforward to
check that M�y is sequentially 4-connected, as required. K

By 6.1.5 and symmetry, |Ab & Ca |�2. Therefore, by 6.1.9 and 6.1.10,
|Ab & Bc & Ca |=1 and |Ab & Ba & Ca |=1. Then, by symmetry, |Ab &

Bc & Cb |=1, |Ab & Ba & Cb |=1, |Ac & Bc & Ca |=1, |Ac & Bc & Cb |=1,
|Ac & Ba & Ca |=1, and |Ac & Ba & Cb |=1. Therefore, M has 11 elements.
We may assume that there are no elements of M"a in the guts or the
coguts of the 3-separation (Ab , Ac) since, otherwise, we could change Ab

and Ac and then apply 6.1.9 or 6.1.10. Similarly we may assume that there
are no elements of M"b in the guts or the coguts of the 3-separation
(Ba , Bc), and there are no elements of M"c in the guts or the coguts of the
3-separation (Ca , Cb).
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Let y be the element in Ab & Bc & Ca . By the assumptions above, it is
straightforward to check that y is not in a triangle. We will show that M�y
is sequentially 4-connected. Consider the case that Ac & Bc and Ab & Cb are
both triangles. Now, since (Ab , Ac) is a nonsequential 4-separation of
M"a, b, Ab and Ac must both have rank 3. Therefore M has rank 4.
However, any 3-connected matroid of rank 3 is sequentially 4-connected,
so M�y is sequentially 4-connected, as required. Now, by symmetry, we
may assume that Ac & Bc is not a triangle.

By 6.1.7, (Ab & Ba) _ [a, b] is a cocircuit. Thus (Ab & Ba) _ [b] is a
triad of M"a. So, since (Ac , Ab) is not a sequential 3-separation of M"a,
Ab & Cb is not a triangle. Therefore, by 6.1.7 and symmetry, (Ac & Ca) _

[a, c] is a cocircuit. Similarly, Ac & Bc is not a triangle and (Bc & Cb) _

[b, c] is a cocircuit.
Suppose that M�y is not sequentially 4-connected and let (Q, Q$) be a

nonsequential 3-separation of M�y. Since [a, b, c] is a triangle, we may
assume without loss of generality that a, b, c # Q. We may also assume that
Q is closed and coclosed in M�y. Therefore, Q does not cross any of
Ab & Ba , Ab & Cb , or Ac & Bc . Moreover, |Q|�5, so, by symmetry, we
may assume that Ab & Ba �Q. Let z be the element in Ab & Bc & Cb . Now,
since there are no elements of M"a in the coguts of (Ab , Ac), z is in the
closure of Ab&[z]. Thus z is in the closure of Q in M�y. However, Q is
closed in M�y, so z # Q. Therefore, Q contains Bc & Cb . Thus, |Q$|�3. This
contradiction completes the proof. K

7. SEQUENTIAL 4-CONNECTIVITY

It follows from Theorem 5.1, Theorem 6.1 and the dual of Theorem 6.1
that Theorem 1.2 holds if M is internally 4-connected. The case when M is
not internally 4-connected is surprisingly straightforward.

Let M be a sequentially 4-connected matroid with a sequential 3-separation
(A, B), where |A|�4. Assume that the elements of A are ordered
(a1 , ..., ak). Let Ai denote [a1 , ..., a i], and let Bi denote [a i , ..., ak] _ B.
Note that, if i�3, then ai is either in the guts or the coguts of the 3-separation
(Ai , Bi+1).

Theorem 7.1. (i) For i�3, if ai is in the guts of (Ai , Bi+1) and M"ai

is 3-connected, then M"ai is sequentially 4-connected.

(ii) If A is coclosed and ak is in the guts of (A, B), then M"ak is
sequentially 4-connected.

(iii) If A is both closed and coclosed, then either M"ak or M�ak is
sequentially 4-connected.
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Proof. Consider part (i). Suppose that M"ai is not sequentially
4-connected, and let (X, Y ) be a non-sequential 3-separation in M"ai . We
first consider the case that i>3. Note that [a1 , a2 , a3] is either a triangle
or a triad. Therefore, we may assume that a1 , a2 , a3 # X. Moreover, for
j=4, ..., i&1, the element aj is either in the closure or coclosure of
[a1 , ..., a j&1]. Then, inductively, we may assume that a1 , ..., ai&1 # X.
However, ai # cl([a1 , ..., a i&1]), so that (X _ [ai], Y ) is a non-sequential
3-separation of M contradicting the fact that M is sequentially 4-connected.

Now consider the case where i=3. Since ai is in the guts of (A3 , B4), we
see that A3 is a triangle. Moreover, since M"a3 is 3-connected, [a1 , a2 , a4]
is either a triangle or a triad of M"a3 . Thus we may assume that a1 , a2 ,
a4 # X. However, a3 # cl([a1 , a2]), so that (X _ [a3], Y ) is a non-sequential
3-separation in M. This contradiction proves the claim.

Consider part (ii). By (i), it suffices to show that M"ak is 3-connected.
Suppose otherwise. Since ak is in the guts of (A, B), (Ak&1 , B) is a 2-separation
in M�ak . If si(M�ak) is not 3-connected, then co(M"ak) is 3-connected by
Bixby's theorem. If si(M�ak) is 3-connected, then Ak&1 is a parallel class in
M�ak with at least 3 elements, and again, by Bixby's theorem, co(M"ak) is
3-connected. Since M"ak is not 3-connected, ak is in a triad T. Moreover,
as ak # cl(Ak&1) and ak # cl(B), T contains an element of Ak&1 and an
element, say b, of B. Thus b is in the coclosure of A. This contradiction
completes the proof.

Now consider part (iii). Evidently ak is either in the guts or the coguts
of (A, B). In the former case, M"ak is sequentially 4-connected by part (ii).
In the latter case, M�ak is sequentially 4-connected by the dual of
part (ii). K

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We have already noted that if M is internally
4-connected, then the theorem follows from Theorem 5.1, Theorem 6.1, and
the dual of Theorem 6.1. Assume that the sequentially 4-connected matroid
M is not internally 4-connected and is not a wheel or a whirl. If M has a
sequential 3-separation (A, B) where |A|�4 and A is both closed and
coclosed, then it follows from Theorem 7.1(iii) that the theorem holds.

Assume that M has no such 3-separation. Let (A, B) be a sequential
3-separation of M, where |A|�4. By assumption A is either not closed or
not coclosed. This means that we can grow A by taking in elements from
the closure or the coclosure of A. Proceeding in this way we shall even-
tually obtain an ordering (e1 , ..., en) of E(M ) such that, for i=1, ..., n,
[e1 , ..., e i] is 3-separating. By Tutte's Wheels and Whirls Theorem, there
exists an element ei , such that either M"ei or M�ei is 3-connected. Note
that the order of [e1 , e2 , e3] does not matter, and we may reverse the
order of e1 , ..., en . Thus, we may assume that 3�i�n&3. By duality, we
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may assume that ei is in the guts of the 3-separation ([e1 , ..., ei], [ei+1 , ..., en]).
Therefore, M�ei is not 3-connected. Hence, M"ei is 3-connected. So, by
Theorem 7.1(ii), M"ei is sequentially 4-connected. K
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