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Abstract. We prove that if G is a simple graph such that the
signed-graph odd-G contains no odd-Kn+1-minor, then G is 2n−1-
colourable.

1. Introduction

We prove the following theorem.

Theorem 1.1. For any simple graph G and n ∈ N, if odd-G has no
odd-Kn+1-minor, then G is 2n−1-colourable.

We assume that the reader is familiar with sign-graphs, however, the
basic definitions can be found in Section 2. Theorem 1.1 generalizes
the following result of Wagner [5]: For any simple graph G and n ∈ N,
if G has no Kn+1-minor, then G is 2n−1-colourable.

Theorem 1.1 provides evidence for the following strengthening of
Hadwiger’s Conjecture [4]; this strengthening was conjectured by Ger-
ards and Seymour.

Conjecture 1.2. For any simple graph G and n ∈ N, if odd-G has no
odd-Kn+1-minor, then G is n-colourable.

Conjecture 1.2 has been verified for n = 3, by Catlin [1], and for
n = 4, by Guenin [3].

Geelen et al. [2] strengthen Theorem 1.1 by reducing 2n−1 to
O(n

√
log n). The proof in this paper is considerably simpler and is

a straightforward extension of Wagner’s original proof.
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2. Signed-graphs

A signed-graph is a pair (G, Σ) consisting of a graph G with a signa-
ture Σ ⊆ E(G); the edges in Σ are odd and the other edges are even.
For a graph G we let odd-G denote the signed-graph (G, E(G)).

For X ⊆ V (G), we let δG(X) denote the cut induced by X; that
is, the set of all edges with exactly one end in X. Two signatures
Σ1, Σ2 ⊆ E(G) are equivalent if the symmetric difference of Σ1 and Σ2

is a cut in G. The operation of replacing a signature in a signed graph
with an equivalent signature is called re-signing.

A minor of a signed graph (G, Σ) is any signed graph that can be
obtained from (G, Σ) by any sequence of the following operations: re-
signing, deleting vertices or edges, and contracting even edges.

In this paper we are primarily interested in identifying odd-Kn-
minors in odd-graphs. The following lemma provides a more tangible
description of an odd-Kn-minor; the result is well-known so we skip the
elimentary proof.

Lemma 2.1. Let G be a simple graph. Then, odd-G has an odd-Kn-
minor if and only if there exist vertex disjoint trees (T1, . . . , Tn) in G
and a set X ⊆ V (G) such that

• E(Ti) ⊆ δG(X) for each i ∈ {1, . . . , n}, and
• for each 1 ≤ i < j ≤ n there exists an edge uv ∈ E(G)− δG(X)

with u ∈ V (Ti) and v ∈ V (Tj).

3. The main theorem

An apex vertex in a graph is a vertex that is adjacent to all other
vertices. If v is an apex vertex of a graph G and G−v has a Kn-minor,
then G clearly has a Kn+1-minor. The analogous result for signed
graphs is less obvious.

Lemma 3.1. Let G be a graph, let v be an apex vertex of G, and
let H = G − v. If odd-H has an odd-Kn-minor, then odd-G has an
odd-Kn+1.

Proof. By Lemma 2.1, There exist vertex disjoint trees (T1, . . . , Tn) in
H and a set X ⊆ V (H) such that

(1) E(Ti) ⊆ δG(X) for each i ∈ {1, . . . , n}, and
(2) for each 1 ≤ i < j ≤ n there exists an edge uv ∈ E(G)− δG(X)

with u ∈ V (Ti) and v ∈ V (Tj).

Consider distinct i, j ∈ {1, . . . , n}. By (2), we can not have V (Ti) ⊆ X
and V (Tj)−X = ∅. Therefore, by possibly replacing X with V (H)−X,
we may assume that V (Ti) −X 6= ∅ for each i ∈ {1, . . . , n}. Let Tn+1
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be the tree in G consisting of the single vertex v. Now, by Lemma 2.1,
odd-G has an odd-Kn+1-minor. �

We are now ready to prove Theorem 1.1; for convenience we restate
it here in the contrapositive.

Theorem 3.2. For any simple graph G and n ∈ N, if G is not 2n−1-
colourable, then odd-G has an odd-Kn+1-minor,

Proof. The result is immediate when n = 1. We assume that the result
holds for n = k − 1 ≥ 1 and consider the case that n = k.

Let G be a simple graph that is not 2n−1-colourable. We lose no
generality in assuming that G is connected. Let v ∈ V (G) and let T
be a breadth-first tree of G grown from v. Now, for each i ∈ N let Vi ⊆
V (G) be the set of vertices at distance i from v in T and let Hi be the
subgraph of G induced by Vi. Let C∗ = E(G)− (E(H1)∪E(H2)∪· · · ).
Since C∗ is a cut, the restriction of G to C∗ is 2-colourable. Then,
since G is not 2n−1-colourable, G − C∗ is not 2n−2-colourable. The
components of G−C∗ are (H0, H1, . . .), so there exists i ∈ N such that
Hi is not 2n−2-colourable. By the induction hypothesis odd-Hi has an
odd-Kn-minor. Let G′ be obtained by adding an apex vertex to Hi;
note that odd-G′ is a minor of odd-G. By Lemma 3.1, odd-G′ has an
odd-Kn+1-minor, and, hence, so does odd-G. �
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