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1. INTRODUCTION

The class of circle graphs is closed with respect to vertex-minors and hence also pivot-
minors. (Definitions are postponed until Section 2.) Bouchet [5] gave the following
characterization of circle graphs; the graphs Ws, W7, and BW3 are defined in Figure 1.
All graphs in this paper are simple; graphs have no loops and no parallel edges.

Theorem 1.1 (Bouchet). A graph is a circle graph if and only it has no vertex-minor
that is isomorphic to W5, W7, or BWa.

As a corollary to Bouchet’s theorem we prove the following result.

Theorem 1.2. A graph is a circle graph if and only it has no pivot-minor that is
isomorphic to any of the graphs depicted in Figure 2.

In addition we prove the following related theorem.

Theorem 1.3. Let G be a class of graphs closed under vertex-minors. If the excluded
vertex-minors for G each have at most k vertices, then the excluded pivot-minors for
G each have at most 2k —1 vertices.

The bounds in Theorem 1.3 are not tight enough to be of practical use in proving
Theorem 1.2. We show that the excluded pivot-minors can be determined from the
excluded vertex-minors by a simple inductive search. Before we discuss this method
further, we will briefly discuss the motivation.

De Fraysseix [7] showed that bipartite circle graphs are fundamental graphs of
planar graphs. It is then straightforward to show that Theorem 1.2 is a generalization
of Kuratowski’s Theorem. In fact, Theorem 1.2 applied to bipartite circle graphs is
equivalent to the following result, initially due to Tutte [12]: a binary matroid is the
cycle matroid of a planar graph if and only if it does not contain a minor isomorphic
to F7, M(Ks), M(K33), or to the dual of any of these matroids. The fundamental
graphs of matroids are bipartite and it is straightforward to verify that a pivot-minor of
a fundamental graph of a binary matroid (or graph) is a fundamental graph of a minor
of the given matroid (or graph). Finally, the graphs Hy, H>, and BWj are fundamental
graphs of the matroids M (K3 3), M(K5), and F7 respectively. (See Figure 3 for drawings
of Hy and Hj.)

The primary motivation for Theorem 1.2 is as a step toward characterizing PU-
orientable graphs (defined in Section 2). Bipartite PU-orientable graphs are the

FIGURE 1. W5, W7, and BWj: Excluded vertex-minors for circle graphs.
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FIGURE 2. Excluded pivot-minors for circle graphs.

FIGURE 3. H;, H», and Q3.

fundamental graphs of regular matroids. Seymour’s decomposition Theorem [11]
provides a good characterization and a recognition algorithm for regular matroids and
we hope to obtain similar results for PU-orientable graphs. Bouchet [2] proved that
circle graphs admit PU-orientations and we hope that the class of circle graphs will
play a central role in a decomposition theorem for PU-orientable graphs. The class
of PU-orientable graphs is closed under pivot-minors but not under vertex-minors,
and hence it is desirable to have the excluded pivot-minors for the class of circle
graphs. Although the class of PU-orientable graphs is not closed under local comple-
mentation, Bouchet’s theorem does imply the following curious connection between
PU-orientability and circle graphs: a graph is a circle graph if and only if every locally
equivalent graph is PU-orientable.

We prove Theorem 1.2 by studying the graphs that are pivot-minor-minimal
while containing a vertex-minor isomorphic to one of W5, Wy, or BW3. We require
the following two lemmas that are proved in Section 3. The proofs are direct but
inelegant. These facts are transparent in the context of isotropic systems; see
Bouchet [3]. However, the direct proofs are shorter than the requisite introduction to
isotropic systems.

Journal of Graph Theory DOI 10.1002/jgt
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Lemma 1.4 (Bouchet [3,(9,2)]). Let H be a vertex-minor of a graph G, let ve
V(G)—V(H), and let w be a neighbor of v. Then H is a vertex-minor of one of the
graphs G —v, (G*xv)—v, and (G X vw)—v.

Note that the vertex w in Lemma 1.4 is an arbitrary neighbor of v. Indeed, if w; and
wy are neighbors of v, then G x vw| = (G X vwy) X wiwy; see [8, Proposition 2.5]. (This
fact is elementary and has been known for more than 20 years, but we could not find
an earlier reference.) Therefore, (G x vw;)—v is pivot-equivalent to (G X vw;) —v. We
let G /v denote the graph (G x vw)— v for some neighbor w of v; if v has no neighbors
then we let G/v denote G —v. Thus, G /v is well defined up to pivot-equivalence and,
hence, also up to local equivalence.

Let H be a graph. A graph G is called H-unique if G contains H as a vertex-minor
and, for each vertex v € V(G), at most one of the graphs G —v, (G *v)—v, and G/v has
a vertex-minor isomorphic to H. Note that if G is a graph that is pivot-minor-minimal
with the property that it has a vertex-minor isomorphic to H, then G is H-unique.

Lemma 1.5. Ler G be an H-unique graph and let G’ be a vertex-minor of G that
contains H as a vertex-minor. Then G’ is H-unique.

As an immediate corollary to Lemma 1.5 we obtain the following result.

Lemma 1.6. Let H be a graph and let k> |V (H)|. If there is no H-unique graph on
k vertices, then every H-unique graph has at most k — 1 vertices.

Using Lemma 1.6 and computer search we prove the following three results. The
computation takes less than 3 minutes on a SUN Workstation; we use the package
NAUTY for isomorphism-testing.

Lemma 1.7. Every Ws-unique graph is locally equivalent to a graph that is isomor-
phic to one of the 11 graphs depicted in Figure 4.

Lemma 1.8. If G is Wy-unique then either G is locally equivalent to W7 or G has
a vertex-minor isomorphic to Ws.

Lemma 1.9. If G is BWs-unique then either G is locally equivalent to BW3 or Q3,
or G has a vertex-minor isomorphic to Ws. (The graph Q3 is depicted in Figure 3.)

Theorem 1.1 and the above lemmas imply that every pivot-minor-minimal non-
circle-graph is locally equivalent to W7, BW3, O3, or to one of the 11 graphs depicted
in Figure 4. The number below each of the graphs is the number of pair-wise non-
isomorphic graphs that are locally equivalent to it; in total there are 4,239 such graphs.
In addition, there are 9+22+4 graphs locally equivalent to BW3, W7, and Q3. To
prove Theorem 1.2, it suffices to check which of these 4,274 graphs is a pivot-minor-
minimal non-circle-graph. This is also done by computer and takes less than 3 minutes.
This includes 2.5 minutes to generate the 4,274 graphs, 3 seconds to generate all circle
graphs up to 9 vertices, and 2seconds to test which of the 4,274 graphs is a pivot-
minor-minimal non-circle-graph.

In the context of delta-matroids, Theorem 1.2 is an excluded-minor characterization
for the class of even Eulerian delta-matroids. Using Lemmas 1.7, 1.8, and 1.9 one can
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FIGURE 4. Ws-unique graphs.

prove that all excluded-minors for the class of Eulerian delta-matroids have at most 10
elements. We discuss this further in Section 4.

We conclude the introduction by proving the following theorem that immediately
implies Theorem 1.3.

Theorem 1.10. Let H be a graph with |V(H)|=k. Then every H-unique graph has
at most 2K —1 vertices.

Proof. Let G be an H-unique graph. Up to local equivalence we may assume that
H is an induced subgraph of G.

Consider any vertex ve V(G)— V(H). Let G, denote the subgraph of G induced
by the vertex set V(H)U{v}. By Lemma 1.5, G, is H-unique. Note that G, —v=H
and, hence, (G, *v)—v# H. Therefore, v has at least two neighbors in V(H).

Now consider any two distinct vertices u,ve V(G)—V(H). Let G,, denote the
subgraph of G induced by the vertex set V(H)U{u,v}. By Lemma 1.5, G, is H-
unique. Note that G,,, —u —v= H. Suppose that # and v both have the same neighbors
among V(H). If u and v are adjacent, then G, xuv=G,, and, hence, both G, —u
and G, /u have H as a vertex-minor. If # and v are not adjacent, then G, xuxv=G,,
and, hence, both G, —u and (G, *u)—u have H as a vertex-minor. In either case we
contradict the fact that G, is H-unique, and hence u and v have distinct neighbors
among V(H).

In summary, each vertex in V(G)— V(H) has at least two neighbors in V(H) and no
two vertices in V(G)— V(H) have the same neighbors in V(H). Therefore, |V (G)| <
|[V(H)|+2k—(k+1)=2F—1. [ |

We remark that we can slightly improve the above bound to 2¥ —2k —1 when the
graph H has minimum degree at least 2 and H has no “twin” vertices. Two distinct
vertices u,ve V(H) are twins if Ng(u)—{v}=Ngy(v)—{u}; here Ny(v) denotes the
set of all neighbors of v.

Theorem 1.10 has an interesting consequence.

Theorem 1.11. Let G|, G2 be graphs. If G is a vertex-minor-minimal graph
containing both G1 and G, as vertex-minors, then

V(G)| SzIV(Gl)I +2\V(G2)| —2.

Journal of Graph Theory DOI 10.1002/jgt
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Proof. We claim that if a graph G has a vertex-minor isomorphic to H, then there
exists a set X of at most 2!V )l 1 vertices of G such that, for each vertex ve V(G)— X,
at least two of the graphs G —v, (Gxv)—v, and G/v have vertex-minors isomorphic
to H.

To prove the claim, we may assume that H is an induced subgraph of G. Let X be
the vertices of G such that at most one of the graphs G —v, (G*v)—v, and G /v has
vertex-minors isomorphic to H. Let G’ be the subgraph of G induced on V(H)UX.
Obviously G’ has a vertex-minor isomorphic to H and for each vertex v in X, at most
one of the graphs G’ —v, (G'*v)—v, and G'/v has vertex-minors isomorphic to H.
Therefore, G’ has a vertex-minor G” such that X CV(G”), and G” is H-unique. By
Theorem 1.10, |V(G")| <2!VUDI_1 and therefore |X|<2!VHI 1.

By the claim, for i € {1, 2}, there exists a set X; of at most 2IV(GII _ 1 vertices such
that for each vertex v in V(G)— X;, at least two of the graphs G —v, (G*v)—v, and
G /v have vertex-minors isomorphic to G;. If |V(G)| > 2IV(GDI L 2IV(GI 2 then there
exists a vertex v¢ X1 UX>. So at least one of the graphs G —v, (G*v)—v, and G/v
has both G| and G, as vertex-minors. [ |

An analogous statement for graph minors was conjectured by Lovész and Milgram
(see Ungar [13]) and the only known proofs are highly non-trivial and depend upon
the graph minors structure theorem of Robertson and Seymour [10].

2. DEFINITIONS

We assume that readers are familiar with elementary definitions in matroid theory
including cycle matroids, binary matroids, regular matroids, duality, and minors; see
Oxley [9]. However, all references to matroids are peripheral to the main results in the
paper.

All graphs in this paper are finite. The following definitions are mostly well known.

Circle graphs. A chord of a circle is a straight line segment whose two ends lie on
the circle. Let V be a finite set of chords of a circle; the infersection graph of V is the
graph G=(V, E) where uv e E if and only if the chords u and v intersect. A circle
graph is the intersection graph of a set of chords of a circle.

PU-orientable graphs. A principally unimodular matrix is a square matrix over
the reals such that each non-singular principal submatrix has determinant 1. Let
G =(V, E) be an orientation of a graph. The signed adjacency matrix of G isthe V x V
matrix (a,,) where a,, =1 when uv e E, a,,, =—1 when vu € E, and a,, =0 otherwise.
A graph G is PU-orientable if it admits an orientation whose signed adjacency matrix
is principally unimodular.

Local complementation and vertex-minors. Let v be a vertex of a graph G. The graph
G xv is the graph obtained from G by applying local complementation at v; that is, to
replace the subgraph induced on the neighbors of v in G with its complement graph.

If G’ can be obtained by a sequence of local complementations from G, then we say
that G and G’ are locally equivalent. A vertex-minor of G is an induced subgraph of
any graph that is locally equivalent to G. (An induced subgraph is one that is obtained
by vertex deletion.)

Journal of Graph Theory DOI 10.1002/jgt
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Pivot-minors. Let uv be an edge of a graph G. Let G x uv= G *u*v=*u; this opera-
tion is referred to as pivoting. It is straightforward to verify that G xuxvxu=Gxv*xu*v
and, hence, that pivoting is well defined. If G’ can be obtained by a sequence of pivots
from G, the we say that G and G’ are pivot equivalent. A pivot-minor of G is an
induced subgraph of any graph that is pivot equivalent to G.

Fundamental graphs. Let B be a basis of a matroid M. The fundamental graph of
M with respect to B is the graph with vertex set E(M) and edges uv where u € B,
veE(M)—B, and (B—{u})U{v} is a basis of M. Note that the fundamental graph
is bipartite. A fundamental graph of a graph G is a fundamental graph of the cycle
matroid of G.

3. VERTEX-MINORS

In this section we prove Lemmas 1.4 and 1.5. As noted in the introduction, these results
are easy in the context of isotropic systems [3], but the direct proofs given here avoid a
lengthy introduction to isotropic systems. We start by proving the following key lemma.

Lemma 3.1. Let G=(V,E) be a graph and let v,weV.

(D) If v2w and vw ¢ E, then (Gxw)—v, (Gxw=*v)—v, and (G*w)/v are locally
equivalent to G —v, (Gxv)—v, and G /v, respectively.

Q) If v£w and uve E, then (Gxw)—v, (Gxw*v)—v, and (G*xw)/v are locally
equivalent to G—v, G /v, and (G *v)—v, respectively.

B) If v=w, then (Gxw)—v, (Gxw)*v)—v, and (G*xw)/v are locally equivalent
to (Gxv)—v, G—v, and G /v, respectively.

Proof. We first consider the case that v£w. It is obvious that (G*w)—v=(G —v)*w
and hence that (G*w)—v is locally equivalent to G —v.

Suppose that vweE. Note that (Gxw*xv)—v=(Gxw*xv*w*xw)—v=((GxXvw)
—v)*xw=(G/v)*w and hence (Gxwx*v)—v is locally equivalent to G/v. Similarly,
(Gxw)/v=(Gxw)xvw)—v=(Gxwxw*v*xw)—v=((G*v)—v)*w and hence
(Gxw)/v is locally equivalent to (G *v)—v.

Now suppose that vw ¢ E. Note that (Gxw*v)—v=(Gxv*xw)—v=((G*v)—v)*
w and hence (G *xw*v)—v is locally equivalent to (G *v)—v. Let u be a neighbor of v.
Ifuw¢ E, then (G*w) X uv)—v=((G xuv)*w)—v=(G/v)*w and hence (G *xw)/v
is locally equivalent to G /v. Hence, we may assume that uw € E. Now (Gxw)/v=(G *
wkxuxvxu)—vand (Gxw*xu*xvku)—v is locally equivalent to (G xwku*xvw)—v=
(Gxwsuxwrw*kvxw)—v=(G xXuw xvw)—v=(G xuv)—v=G_G/v, as required.

Now suppose that v=w. Then (Gxw)—v=(G*v)—v and (Gxw*v)—v=G —v.
Moreover, if uv € E, then (Gxw)/v=((G*v) X uv)—v=(G *v*xvxu*xv)—v=_(G*u*
v)—v=((G xuv)—v)*u and hence (G *xw)—v is locally equivalent to G /v. ]

We now prove Lemma 1.4 which we restate here for convenience. This lemma
appeared in [3, (9.2)].

Journal of Graph Theory DOI 10.1002/jgt
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Lemma 3.2. Let H be a vertex-minor of a graph G and let ve V(G)—V (H). Then
H is a vertex-minor of one of the graphs G —v, (G*v)—v, and G/v.

Proof. If H is a vertex-minor of G, then there is a graph G’ that is locally equivalent
to G such that H is an induced subgraph of G. Now G’ — v contains H as a vertex-minor.
Since G is locally equivalent to G’ the result follows by Lemma 3.1. ]

Finally we now prove Lemma 1.5 which again we restate for convenience.

Lemma 3.3. Let G be an H-unique graph and let G’ be a vertex-minor of G that
contains H as a vertex-minor. Then G’ is H-unique.

Proof. By Lemma 3.1 every graph that is locally equivalent to G is H-unique. Then,
inductively, it suffices to consider the case that G’ =G —v for some vertex v. If G—v
is not H-unique, then there is a vertex w # v such that at least two of (G —v)—w,
(G —v)*xw)—w, and (G —v)/w contain H as a vertex-minor. But then at least two of
G—w, (Gxw)—w, and G/w contain H as a vertex-minor, contradicting the fact that
G is H-unique. ]

4. EULERIAN DELTA-MATROIDS

In this section we prove the following theorem.

Theorem 4.1. The excluded minors for the class of Eulerian delta-matroids have at
most 10 elements.

The class of Eulerian delta-matroids is contained in the class of binary delta-matroids.
Bouchet and Duchamp [6] determined the excluded minors for the class of binary
delta-matroids; the largest of these has four elements. Then to prove Theorem 4.1,
it suffices to consider binary delta-matroids. We give a terse introduction to binary
delta-matroids and to Eulerian delta matroids, for more detail the reader is referred to
Bouchet [1, 4].

Delta-matroids and minors. For sets X and Y, we let XAY denote the symmetric
difference of X and Y. A delta-matroid is a pair M =(V, F) of a finite set V and a non-
empty set F of subsets of V, satisfying the symmetric exchange axiom: if A, B € F and
x € AAB, then there is y € AAB such that AA{x, y} € F. The sets in F are called feasible
sets of M. For X CV, we abuse notation be letting MAX denote the set-system (V, F)
where ' ={FAX : F € F}. It is straightforward to verify that MAX is a delta-matroid.
Now let M\ X denote the set-system (V — X, F”) where F'={FCV —-X: FeF}. If
M\ X has at lease one feasible set, then M \ X is a delta-matroid. For any sets X,Y CV,
if (MAX)\Y has a feasible set, then we call it a minor of M. Two delta-matroids M,
M, are equivalent if My =MAX for some set X. A delta-matroid is even if its feasible
sets either all have even cardinality or all have odd cardinality.

Binary delta-matroids. Let A be a symmetric V x V matrix over the binary field
GF(2). For XCV, we let A[X] denote the principal submatrix of A induced by X.
A subset X of V is called feasible if A[X] is non-singular. By convention, A[{] is

Journal of Graph Theory DOI 10.1002/jgt
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non-singular. We let F4 denote the set of all feasible sets and let DM(A)=(V, F4).
Bouchet [4] proved that DM(A) is indeed a delta-matroid. A delta-matroid is binary if
it is equivalent to DM(A) for some symmetric matrix A over GF(2). We remark that
DM(A) is even if and only if the diagonal of A is zero.

Eulerian delta-matroids. Let G=(V,E) be a graph and let X CV. Let A(G, X)
denote the symmetric V x V matrix obtained from the adjacency matrix of G by
changing the diagonal entries indexed by X from O to 1. Thus, any symmetric binary
matrix can be written as A(G, X) for the appropriate choice of G and X. The binary
delta-matroid DM(A(G, X))AY is Eulerian if and only if G is a circle graph. This is
the most convenient definition for the purpose of proving Theorem 4.1, but Eulerian
delta-matroids arise more naturally in relation to euler tours in a connected 4-regular
graph; see Bouchet [1].

Bouchet and Duchamp [6] proved that the class of binary delta-matroids is minor-
closed. The class of Eulerian delta-matroids is also minor-closed, because the class of
circle graphs is closed under local complementation.

If ve X, then it is straightforward to prove that

DM(A(G, X))A{v} =DM(A(G *v, XANg(v))).
Similarly, if uv€ E and u, v ¢ X, then
DM(A(G, X)A{u, v}=DM(A(G X uv, X)).

The operations A(G, X)— A(G*x, XANg(v)), for veX, and A(G, X)— A(G X
uv, X), foruv € E and u, v¢ X, are referred to as elementary pivots. If DM(A(G 1, X1))=
DM(A(G3, X»))AY, then we can obtain A(G», X;) from A(G1, X1) via a sequence
of elementary pivots, implied by the uniqueness of binary representation for binary
delta-matroids; see Bouchet and Duchamp [6, Property 3.1].

Lemma 4.2. Let G=(V,E) be a graph, let XV, and let ve V. If DM(A(G, X))
is an excluded minor for the class of Eulerian delta-matroids, then at least two of the
graphs G —v, (G*v)—v, and G /v are circle graphs.

Proof. Suppose that veX. Then both DM(A(G, X))\{v} and (DM(A(G, X))A{v})\
{v} are Eulerian. Thus, G —v and (G *v)—v are both circle graphs, as required. Now
suppose that v ¢ X. Since G —v is a circle graph but G is not, Ng(v) #0; let w € Ng(v).
Now suppose that w ¢ X. Then DM(A(G, X))\ {v} and (DM(A(G, X))A{v, w})\ {v} are
both Eulerian. Thus, G —v and G /v are both circle graphs, as required. Finally suppose
that w € X. Now DM(A(G, X))A{w}=DM(A(G *w, XANg(w))) is an excluded minor
for the class of Eulerian delta-matroids and v € XANg(w). Then, by the first case in
the proof, (G*w)—v and ((G*w)*v)—v are both circle graphs. So, by Lemma 3.1,
G —v and G/v are both circle graphs. ]

Lemma 4.2 and Theorem 1.1 imply that, if DM(A(G, X)) is an excluded minor
for the class of Eulerian delta-matroids, then G is Ws-, W7-, or BW3-unique. Then
Theorem 4.1 follows immediately from Lemmas 1.7, 1.8 and 1.9.
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By computer search, we found 166 non-equivalent binary excluded minors for the
class of Eulerian delta-matroids. We list them in Figure 5. Combined with the 5 excluded
minors for the class of binary delta-matroids (see Bouchet and Duchamp [6]), we
conclude that there are exactly 171 excluded minors for the class of Eulerian delta-
matroids. This computation takes 14 minutes if the list of all W5-unique graphs is given.
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