

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series B

Journal of Combinatorial Theory, Series B 87 (2003) 270-279

http://www.elsevier.com/locate/jctb

Disjoint cocircuits in matroids with large rank $\stackrel{\text{\tiny{themselven}}}{\to}$

James F. Geelen,^a A.M.H. Gerards,^{b,c} and Geoff Whittle^d

^a Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada ^b CWI, Amsterdam, The Netherlands

^cDepartment of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands

^d School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

Received 21 March 2002

Abstract

We prove that, for any positive integers n, k and q, there exists an integer R such that, if M is a matroid with no $M(K_n)$ - or $U_{2,q+2}$ -minor, then either M has a collection of k disjoint cocircuits or M has rank at most R. Applied to the class of cographic matroids, this result implies the edge-disjoint version of the Erdös–Pósa Theorem. \bigcirc 2002 Elsevier Science (USA). All rights reserved.

AMS 1991 subject classifications: 05B35

1. Introduction

A rank-r matroid can have at most r pairwise disjoint cocircuits. There are, however, matroids with arbitrarily large rank but with no two disjoint cocircuits. For example, for any positive integer n, $M(K_n)$, the cycle matroid of the complete graph on n vertices, does not contain a pair of disjoint cocircuits. Also, for positive integers r and n, if $n \ge 2r - 1$, then $U_{r,n}$, the rank-r uniform matroid with n elements, does not contain a pair of disjoint cocircuits. We prove the following theorem.

Theorem 1.1. For any positive integers n, k and q, there exists an integer R such that, if M is a matroid with no $M(K_n)$ - or $U_{2,q+2}$ -minor, then either M has a collection of k disjoint cocircuits or M has rank at most R.

 $[\]dot{a}$ This research was supported by grants from the Natural Sciences and Engineering Research Council of Canada and from the Marsden Fund of New Zealand.

E-mail addresses: jfgeelen@math.uwaterloo.ca (J.F. Geelen), bert.gerards@cwi.nl (A.M.H. Gerards), geoff.whittle@vuw.ac.nz (G. Whittle).

Note that, for a prime power q, $U_{2,q+2}$ is the smallest line that is not GF(q)-representable. The motivation for this theorem is to gain insight into minor-closed classes of GF(q)-representable matroids that omit a given clique. Let $\mathscr{H}(n,q)$ denote the class of GF(q)-representable matroids with no $M(K_n)$ -minor. Note that the class of cographic matroids is contained in $\mathscr{H}(5,q)$; we expect that, for any n and q, the class $\mathscr{H}(n,q)$ behaves, qualitatively, much like the class of cographic matroids. Applied to the class of cographic matroids, Theorem 1.1 implies the edge-disjoint version of the Erdös–Pósa Theorem [1]. (Note that, for a matroid M, a basis of M^* is a minimum cardinality set of elements that intersects each circuit of M.)

Theorem 1.2 (Erdös–Pósa). For any integer k there exists an integer R such that, if G is a graph, then either G has a collection of k edge-disjoint circuits or there exists a set of R edges that intersects all circuits of G.

2. Preliminaries

We assume that the reader is familiar with standard definitions in matroid theory. We use the notation of Oxley [4], with the exception that we denote the simple matroid canonically associated with the matroid M by si(M).

For any positive integer q we define $\mathcal{U}(q)$ to be the class of matroids with no $U_{2,q+2}$ minor. It is well-known that a simple rank-r GF(q)-representable matroid has at most $\frac{q'-1}{a-1}$ elements; Kung [3] showed that the same bound holds for matroids in $\mathcal{U}(q)$.

Lemma 2.1. For any integer $q \ge 2$ and any simple rank-r matroid $M \in \mathcal{U}(q)$, we have $|E(M)| \le \frac{q^r-1}{a-1}$.

The simple matroids in $\mathcal{U}(1)$ have no circuits, so Theorem 1.1 is trivial when q = 1. The *rank-deficiency* of a set A of elements of a matroid M is defined as $r(M) - r_M(A)$. The following proposition is elementary; we omit the proof.

Proposition 2.2. Let M be a matroid and let X and Y be disjoint subsets of E(M). Then, $r(M/X) - r_{M/X}(Y) \leq r(M) - r_M(Y)$. Moreover, equality holds if and only if $X \subseteq cl_M(Y)$.

We call a matroid *M* round if each cocircuit of *M* is spanning. Equivalently, *M* is round if and only if *M* does not contain a pair of disjoint cocircuits. Note that, for a simple graph *G*, M(G) is round if and only if *G* is a clique. The property of roundness is, however, more common in matroids; for example, projective geometries and uniform matroids $U_{r,n}$ with $n \ge 2r - 1$ are round.

The following properties of round matroids are straightforward.

- (i) If M is round and $e \in E(M)$, then M/e is round.
- (ii) If N is a spanning minor of M and N is round, then M is round.
- (iii) If M is round, then si(M) is round.

From these properties it easily follows that:

(iv) If $N = M \setminus D/C$ is a minor of M where D is coindependent and N is round, then si(M/C) is round.

Throughout most of this paper, when we take minors we typically only use contraction and simplification. There is one situation, however, in which we delete a cocircuit.

Lemma 2.3. Let $q \ge 2$ be an integer, let $M \in \mathcal{U}(q)$, and let C be a minimum-sized cocircuit of M. Then, for any cocircuit C' of $M \setminus C$, we have $|C'| \ge |C|/q$.

Proof. Set $F = E(M) - (C \cup C')$. Then *F* is a flat of *M*, with rank-deficiency 2, contained in E(M) - C. Now, $\operatorname{si}(M/F)$ is a line with at most q + 1 points. Thus, there are at most q + 1 hyperplanes containing *F*, one of which is E(M) - C. Let the others be $H_1, H_2, \ldots, H_{q'}$. Then $q' \leq q$, and $\{H_1 - F, H_2 - F, \ldots, H_{q'} - F\}$ is a partition of *C*. So, since *C* is a cocircuit of minimum size, we have

$$\sum_{i=1}^{q'} (|C| + |C'| - |H_i - F|) = \sum_{i=1}^{q'} |E(M) - H_i| \ge q'|C|.$$

That is, $q'|C| + q'|C'| - |C| \ge q'|C|$, so that $|C'| \ge |C|/q$. \Box

3. Round minors

In this section we prove a weaker version of Theorem 1.1.

Lemma 3.1. There exists an integer-valued function $f_1(k, n, q)$ such that, for any integers $k \ge 1$, $n \ge 1$ and $q \ge 2$, if $M \in \mathcal{U}(q)$ is a matroid with rank at least $f_1(k, n, q)$, then either M has k disjoint cocircuits or M has a round minor with rank at least n.

Let $\Gamma(M)$ denote the maximum rank-deficiency among all cocircuits of M. Thus, $\Gamma(M) = 0$ if and only if M is round. We will prove Lemma 3.1 as a corollary of the following lemma.

Lemma 3.2. There exists an integer-valued function $h_1(k, n, q)$ such that, for any integers $k \ge 1$, $n \ge 1$ and $q \ge 2$, if $M \in \mathcal{U}(q)$ is a matroid with rank at least $h_1(k, n, q)$, then either

- (i) $\Gamma(M) \ge k$, or
- (ii) *M* has a round minor with rank at least *n*.

In its turn, Lemma 3.2 follows easily from the next lemma.

Lemma 3.3. There exists an integer-valued function $h_2(n, t, q)$ such that, for any integers $n \ge 1$, $t \ge 1$, and $q \ge 2$, if $M \in \mathcal{U}(q)$ is a matroid with rank at least $h_2(n, t, q)$ and $\Gamma(M) = t$, then M has a minor N with $r(N) \ge n$ and $\Gamma(N) < \Gamma(M)$.

Proof. Let $h_2(n, t, q) = tq^{n^2} + n$. Now, let $M \in \mathcal{U}(q)$ be a matroid with $r(M) \ge h_2(n, t, q)$ and $\Gamma(M) = t > 0$. We first find a minor N of M with $\Gamma(N) < \Gamma(M)$; we then show that the minor has rank at least n.

Let $\{C_1, C_2, ..., C_k\}$ denote the set of cocircuits of M whose rank-deficiency is exactly t. For $i \in \{1, 2, ..., k\}$, set $D_i = E(M) - cl(C_i)$, $X_i = C_i \cup D_i$, and $G_i = E(M) - X_i$. Let $X = \{x_1, x_2, ..., x_p\}$ be a minimal cover of $(X_1, X_2, ..., X_k)$; that is, X is minimal with respect to the property that each X_i contains at least one member of X. Consider the minor N = M/X of M. Note that, for $C \subseteq E(N)$, C is a cocircuit of N if and only if it is a cocircuit of M. Then, by Proposition 2.2, $\Gamma(N) \leq \Gamma(M)$. Suppose that $\Gamma(N) = \Gamma(M)$, and let C be a cocircuit of N with rank-deficiency t. Thus, $C \in \{C_1, C_2, ..., C_k\}$, say $C = C_i$. Since X is a cover of $(X_1, ..., X_k)$ there exists $x \in X$ such that $x \in X_i$. Clearly $x \notin C_i$, so $x \in D_i$. But then $x \notin cl(C_i)$, so, by Proposition 2.2, the rank-deficiency of C_i in N is strictly less than its rank-deficiency in M. This shows that $\Gamma(N) < \Gamma(M)$.

It remains to show that N has sufficiently large rank. If $p \le tq^{n^2}$ then $r(N) \ge r(M) - p \ge n$. Thus, we may assume that $p \ge tq^{n^2}$.

By the minimality of X, for each $i \in \{1, 2, ..., p\}$ there exists $j \in \{1, 2, ..., k\}$ such that $X \cap X_j = \{x_i\}$. By possibly reordering $(X_1, ..., X_k)$, we may assume that, for $i \in \{1, ..., p\}$, $X \cap X_i = \{x_i\}$. Now, it may be the case that the $D_i = D_j$ for distinct $i, j \in \{1, ..., p\}$. Suppose that $D_1 = \cdots = D_a$, where $2 \le a \le p$. Since M is not round, D_1 contains a cocircuit. Thus, the rank-deficiency of D_1 is at most t. Now, $C_1, ..., C_a$ are cocircuits disjoint from D_1 and $x_1, ..., x_a$ is a system of distinct representatives of $C_1, ..., C_a$. So the rank-deficiency of D_1 is at least a; hence $a \le t$. That is, among $(D_1, ..., D_p)$ no set is repeated more than t times. By possibly reordering, we may assume that $D_1, ..., D_b$ are distinct and that $b \ge p/t \ge q^{n^2}$. For $i, j \in \{1, ..., b\}$, it is easy to show that $C_i \ne D_j$.

For $i \in \{1, ..., b\}$, the element $x_i \in X$ either belongs to C_i or to D_i . If $x_i \in C_i$, set $F_i = (E(M) - D_i)$. Since $(X - x_i) \subseteq G_i$, we have $X \subseteq F_i$. On the other hand, if $x_i \in D_i$, set $F_i = (E(M) - C_i)$; again F_i contains X. Now, by the discussion above, flats $(F_1, ..., F_b)$ are distinct. So $(F_1 - X, F_2 - X, ..., F_b - X)$ are distinct flats of N. Let m = r(N). The number of distinct flats of a rank-m matroid in $\mathcal{U}(q)$ is at most q^{m^2} . Therefore, $q^{m^2} \ge b \ge q^{n^2}$, and, hence, $r(N) = m \ge n$; as required. \Box

Lemma 3.2 follows easily by successively applying Lemma 3.3.

Proof of Lemma 3.1. Let $f_1(1, n, q) = 1$ and, for $k \in \{2, 3, ...\}$, we recursively define $f_1(k, n, q) = h_1(f_1(k - 1, n, q), n, q)$. We prove the result by induction on k. The case when k = 1 is trivial, as a matroid with non-zero rank has at least one cocircuit. Suppose that k > 1 and that the result holds for smaller values of k. Let $M \in \mathcal{U}(q)$ be

a matroid with rank at least $f_1(k, n, q)$. We may assume that M does not contain a round minor with rank at least n. Then, by Lemma 3.2, M has a cocircuit C_1 with rank-deficiency at least $f_1(k-1, n, q)$. Thus, M/C_1 has rank at least $f_1(k-1, n, q)$. Moreover, M/C_1 has no round minor with rank at least n. Then, by the induction hypothesis, M/C_1 contains k-1 disjoint cocircuits $(C_2, ..., C_k)$. But then $(C_1, ..., C_k)$ are disjoint cocircuits of M, as required. \Box

4. Building density

By the *density* of a matroid M we mean |E(M)|/r(M). The next task is to show that, given a round matroid with sufficiently large rank, we can find a round minor that is dense.

Lemma 4.1. There exists an integer-valued function $f_2(\lambda, q)$ such that, for any integers $\lambda \ge 1$ and $q \ge 2$, if $M \in \mathcal{U}(q)$ is a round matroid with rank at least $f_2(\lambda, q)$, then M has a simple round minor N with $|E(N)| > \lambda r(N)$.

To facilitate induction, we prove a stronger version of Lemma 4.1.

Lemma 4.2. There exists an integer-valued function $h_3(\lambda, k, q)$ such that, for any integers $\lambda \ge 1$, $k \ge 1$ and $q \ge 2$, if $M \in \mathcal{U}(q)$ is a round matroid with rank at least $h_3(\lambda, k, q)$, then M has a simple round minor N with $|E(N)| > \lambda(r(N) - \lambda)$ and $r(N) \ge k$.

Proof. Let $h_3(1, k, q) = k$, and, for $\lambda > 1$, we recursively define

$$h_3(\lambda, k, q) = f_1(q(\lambda - 1), h_3(\lambda - 1, k, q), q) + 1.$$

The proof is by induction on λ . The result is trivial when $\lambda = 1$. Suppose that $\lambda > 1$ and that the result holds for smaller values of λ .

Let $M \in \mathcal{U}(q)$ be a round matroid with rank at least $h_3(\lambda, k, q)$, and let C be a minimum-size cocircuit of M. By Lemma 3.1, either

(a) $M \setminus C$ has $q(\lambda - 1)$ disjoint cocircuits, or

(b) $M \setminus C$ has a round minor N_1 with $r(N_1) \ge h_3(\lambda - 1, k, q)$.

First consider case (a); that is, $M \setminus C$ has disjoint cocircuits C_1, \ldots, C_t , where $t = q(\lambda - 1)$. By Lemma 2.3, $|C_i| \ge r(M)/q$. Therefore,

$$|E(M)| \ge |C| + |C_1| + \dots + |C_t| \ge r(M) + q(\lambda - 1)r(M)/q = \lambda r(M).$$

In this case the result is satisfied by choosing N = M.

Now consider case (b); that is, $M \setminus C$ has a round minor N_1 with $r(N_1) \ge h_3(\lambda - 1, k, q)$. By the induction hypothesis, N_1 has a simple round minor N_2 such that $|E(N_2)| \ge (\lambda - 1)(r(N_2) - (\lambda - 1))$ and $r(N_2) \ge k$. Now, N_2 is a minor of $M \setminus C$, so there exists an independent set I and coindependent set J of $M \setminus C$ such that $N_2 =$

 $(M \setminus C) \setminus J/I$. Now, define N = si(M/I). Since M is round, N is round. Let $C' = C \cap E(N)$. Note that, C' is a spanning cocircuit of N, thus, $r(N) = r(N_2) + 1 > k$. Now,

$$\begin{split} |E(N)| &\ge |C'| + |E(N_2)| \\ &> r(N) + (\lambda - 1)(r(N_2) - (\lambda - 1)) \\ &= r(N) + (\lambda - 1)(r(N) - \lambda) \\ &\ge \lambda(r(N) - \lambda) \end{split}$$

as required. \Box

Proof of Lemma 4.1. Let $f_2(\lambda, q) = h_3(\lambda + 1, (\lambda + 1)^2, q)$. Now, let $M \in \mathcal{U}(q)$ be a round matroid with rank at least $f_2(\lambda, q)$. By Lemma 4.2, M has a simple round minor N with $r(N) \ge (\lambda + 1)^2$ and

$$\begin{split} |E(N)| &> (\lambda+1)(r(N) - (\lambda+1)) \\ &= \lambda r(N) + (r(N) - (\lambda+1)^2) \\ &\geqslant \lambda r(N) \end{split}$$

as required. \Box

Let *e* be an element of a simple matroid *M*. Define $\delta_M(e) = |E(M)| - |E(\operatorname{si}(M/e))|$. A rank-2 flat with at least 3 elements is called a *long line*. Obviously $\delta_M(e) \ge 1$, since we lose *e* in the contraction. We also lose elements on long lines through *e*. If *L* is a long line containing *e*, then the elements $L - \{e\}$ are represented by a single element of $\operatorname{si}(M/e)$. If $M \in \mathcal{U}(q)$, then $3 \le |L| \le q + 1$. We let $\ell_M(e)$ denote the number of long lines through *e*. Then,

$$(\delta_M(e) - 1)/q \leq \ell_M(e) \leq (\delta_M(e) - 1)/2.$$

Lemma 4.3. If M is a simple matroid such that $|E(M)| > \lambda r(M)$, then there exists a subset X of E(M) such that $\delta_{si(M/X)}(e) > \lambda$ for each $e \in E(si(M/X))$.

Proof. Choose $X \subseteq E(M)$ maximal such that $|E(\operatorname{si}(M/X))| > \lambda r(\operatorname{si}(M/X))$ and let $N = \operatorname{si}(M/X)$. By the maximality of X, we have $|E(\operatorname{si}(N/e))| \leq \lambda r(\operatorname{si}(N/e))$ for any $e \in E(N)$. Now,

$$\delta_N(e) = |E(N)| - |E(\operatorname{si}(N/e))|$$

> $\lambda r(N) - \lambda r(\operatorname{si}(N/e))$
= λ

as required. \Box

275

5. Nests

In order to extract a specific clique minor from a sufficiently large round matroid, we go through an intermediate class of matroids called nests. We use the following lemma to recognize cliques; the result is well known but we include the proof for completeness.

Lemma 5.1. Let M be a matroid with ground set $B \cup H$ where $B = \{b_1, ..., b_n\}$ is a basis of M, $H = \{h_{ij}: 1 \le i < j \le n\}$ is a hyperplane of M disjoint from B, and $\{b_i, h_{ij}, b_i\}$ is a triangle of M for each i < j. Then M is isomorphic to $M(K_{n+1})$.

Proof. Construct a complete graph G with vertex set $V = \{v_0, ..., v_n\}$ and edges labeled by $B \cup H$ where $b_i \in B$ labels the edge incident with v_0 and v_i and $h_{ij} \in H$ labels the edge incident with v_i and v_j . We claim that M = M(G); they clearly have the same rank. Consider a spanning tree T of G. If there exists an edge $h_{ij} \in T \cap H$ such that v_i has degree-one in T then $(T - \{h_{ij}\}) \cup \{b_i\}$ is a spanning tree of G and $r_M((T - \{h_{ij}\}) \cup \{b_i\}) = r_M(T)$. By repeatedly applying such changes, we see that $r_M(T) = r_M(B)$. Thus, T is a basis of M. Now, consider a circuit C of G, and let X be the set of edges in B that are incident with a vertex of $C - v_0$ in G. Note that $C \subseteq cl_M(X)$. If $B \cap C \neq \emptyset$ then |X| < |C|, so C is dependent in M. On the other hand, if $C \subseteq H$ then, since |C| = |X| and $C \subseteq H \cap cl_M(X)$, we see that C is dependent in M. Hence, M = M(G) as required. \Box

A nest is a matroid that contains a basis $B = \{b_1, ..., b_n\}$ such that, for any integers i, j where $1 \le i < j \le n$, the pair (b_i, b_j) spans a long line in $si(M/\{b_1, ..., b_{i-1}\})$; the elements of B are called *joints*. The main result of this section is that large nests contain big cliques; to prove this we use an elegant method introduced by Kung [2].

Lemma 5.2. There exists an integer-valued function $h_4(n,q)$ such that, for any integers $n \ge 1$ and $q \ge 2$, if $M \in \mathcal{U}(q)$ is a nest with rank at least $h_4(n,q)$, then M contains an $M(K_n)$ -minor.

Proof. Let $h_4(n,q) = q^{n-2}$. Let $M \in \mathcal{U}(q)$ be a simple nest with rank $t \ge h_4(n,q)$, let $B = \{b_1, \ldots, b_t\}$ be the set of joints of M, and, for each pair of integers i, j where $1 \le i < j \le t$, let e_{ij} be an element of M such that $\{b_i, b_j, e_{ij}\}$ is a triangle of $M/\{b_1, \ldots, b_{i-1}\}$.

5.2.1. For each $k \in \{1, ..., t\}$, $e_{1k}, ..., e_{k-1,k} \notin cl_M(\{b_1, ..., b_{k-1}\})$, and the set $\{e_{1k}, ..., e_{k-1,k}\} \cup \{b_k\}$ is independent in M.

Let $i \in \{1, ..., k-1\}$. By the definition of e_{ik} we see that $e_{ik} \notin cl_M(\{b_1, ..., b_i\})$ but that $e_{ik} \in cl_M(\{b_1, ..., b_i\} \cup \{b_k\})$. Then, since *B* is a basis, we see that $e_{ik} \notin cl_M(\{b_1, ..., b_{k-1}\})$, as claimed. For the second part, we prove by induction

on $i \in \{1, ..., k - 1\}$ that $cl_M(\{e_{1k}, ..., e_{ik}\} \cup \{b_k\}) = cl_M(\{b_1, ..., b_i\} \cup \{b_k\})$. The case that i = 1 is trivial; suppose that i > 1 and that $cl_M(\{e_{1k}, ..., e_{i-1,k}\} \cup \{b_k\}) = cl_M(\{b_1, ..., b_{i-1}\} \cup \{b_k\})$. By the definition of e_{ik} we readily see that $e_{ik} \notin cl_M$ $(\{b_1, ..., b_{i-1}\} \cup \{b_k\})$ but $e_{ik} \in cl_M(\{b_1, ..., b_i\} \cup \{b_k\})$. Thus, $cl_M(\{b_1, ..., b_i\} \cup \{b_k\}) = cl_M(\{b_1, ..., b_{i-1}\} \cup \{e_{ik}, b_k\})$. However, $cl_M(\{e_{1k}, ..., e_{i-1,k}\} \cup \{b_k\}) = cl_M(\{b_1, ..., b_{i-1}\} \cup \{b_k\})$, so $cl_M(\{e_{1k}, ..., e_{ik}\} \cup \{b_k\}) = cl_M(\{b_1, ..., b_i\} \cup \{b_k\})$; as required. This proves 5.2.1.

Note that, for each $k \in \{1, ..., t\}$, the restriction of M to $cl_M(\{b_1, ..., b_k\})$ is a nest. Let $X = \{b_1, ..., b_{n-2}\}$; our next objective is to make the flat spanned by X dense. We define a maximal sequence of matroids $(N_t, N_{t-1}, ..., N_k)$ such that $N_t = M$ and, for each $i \in \{k + 1, ..., t\}$, $N_{i-1} = si(N_i/a)$ for some $a \in E(N_i) - cl(\{b_1, ..., b_{i-1}\})$ such that there exists $b \in cl_M(X \cup \{a\}) - cl(\{b_1, ..., b_{i-1}\})$ with $cl_{N_i}(a, b) \cap cl_{N_i}(X) = \emptyset$. (That is, to obtain N_{i-1} from N_i we look for a point $a \notin cl(\{b_1, ..., b_{i-1}\})$ to contract that throws a new point into the flat spanned by X.) Note that,

$$n-2 \leq |\operatorname{cl}_{N_t}(X)| < |\operatorname{cl}_{N_{t-1}}(X)| < \cdots < |\operatorname{cl}_{N_k}(X)| \leq q^{n-2} - 1.$$

So $n-2+t-k \leq q^{n-2}-1$. Hence, as $t \geq q^{n-2}$, we have $k \geq n-1$.

Let N denote the restriction of N_k to $X \cup \{b_k\}$, let H denote the hyperplane of N spanned by X, and let $B' = \{e_{1k}, \dots, e_{n-2,k}, b_k\}$. By 5.2.1, B' is disjoint from H and B' is a basis of N. Moreover, by the maximality of the sequence (N_t, \dots, N_k) , for each pair (a, b) of distinct elements in B' there exists an element $c \in H$ such that $\{a, b, c\}$ is a triangle. So, by Lemma 5.1, N contains an $M(K_n)$ -minor. \Box

6. Building a nest

In this section we prove that round matroids with large rank contain large nests.

Lemma 6.1. There exists an integer-valued function $f_3(n,q)$ such that, for any integers $n \ge 1$ and $q \ge 2$, if $M \in \mathcal{U}(q)$ is a round matroid with rank at least $f_3(n,q)$, then M contains a nest of rank n as a minor.

We require the following technical lemma.

Lemma 6.2. There exists an integer-valued function $h_5(k, q)$ such that, for any integers $k \ge 1$ and $q \ge 2$, if $M \in \mathcal{U}(q)$ is a round matroid with rank at least $h_5(k, q)$ and B is a basis of M, then there exists a simple round minor N of M, a (k + 1)-element set $B' \subseteq B \cap E(N)$, and an element $e \in B'$ such that, for each element $x \in B' - \{e\}$, the pair $\{e, x\}$ spans a long line in N.

Proof. Let $\lambda = q(k-1) + \frac{(q-1)(k-1)}{4}q^{k+3}$, let $h_5(k,q) = q^{f_2(\lambda,q)}$, let $M \in \mathcal{U}(q)$ be a round matroid with rank at least $h_5(k,q)$, and let B be a basis of M.

Consider any minor N of M. When constructing si(N) we keep a single representative of each parallel class of N; in this proof, we choose si(N) to contain as many elements of B as possible.

We say that a set $X \subseteq E(M)$ dominates M if each element in E(M) - X is on a long line containing at least 2 elements of X. We claim that:

6.2.1. There exists a simple round minor N_1 of M such that $B \subseteq E(N_1)$ and B dominates N_1 . (Note that B need not be a basis in N_1 .)

Indeed, let N_1 be a minimal minor of M such that N_1 is simple and round and $B \subseteq E(N_1)$. Now, consider any element $f \in E(N_1) - B$. Certainly, $\operatorname{si}(N_1/f)$ is simple and round. Then, by the minimality of N_1, f is on a long line that contains at least 2 elements of B. That is, B dominates N_1 ; this proves 6.2.1.

Now, |B| = r(M) and $B \subseteq E(N_1)$, so $r(N_1) \ge \log_q(r(M)) \ge f_2(\lambda, q)$. Note that, by our convention on simplification, for any set $X \subseteq E(N_1)$, $B \cap E(\operatorname{si}(N_1/X))$ dominates $\operatorname{si}(N_1/X)$. By Lemma 4.1, there exists a simple minor N_2 of N_1 such that $|E(N_2)| > \lambda r(N_2)$. We may assume that $N_2 = \operatorname{si}(N_1/X)$ for some $X_1 \subseteq E(N_1)$. Thus, N_2 is round and $B \cap E(N_2)$ dominates N_2 . Now, by Lemma 4.3, there exists $X_2 \subseteq E(N_2)$ such that $\delta_{\operatorname{si}(N_2/X_2)}(e) > \lambda$ for all $e \in E(\operatorname{si}(N_2/X_2))$. Let $N_3 = \operatorname{si}(N_2/X_2)$; note that N_3 is round and $B \cap E(N_3)$ dominates N_3 . Now, each element e of N_3 is on at least λ/q long lines. Let $B_3 = B \cap E(N_3)$ and let $W_3 = E(N_3) - B_3$. We may assume that, for each $e \in B_3$, there are at most k - 1 long lines of N_3 through e that contain another point of B_3 (since, otherwise, the result is clearly true). Since B_3 dominates N_3 , we have:

6.2.2.
$$|W_3| \leq \frac{(k-1)(q-1)}{2} |B_3|.$$

Let *L* denote the set of long lines in N_3 that contain at most one element of B_3 . Thus, $|L| \ge (\lambda/q - (k-1))|B_3|$. Therefore, there exists an element $w \in W_3$ that is on at least $\frac{2|L|}{|W_3|} \ge \frac{4(\lambda/q - (k-1))}{(k-1)(q-1)} \ge q^{k+2}$ lines in *L*. Let *X* denote the set of all elements of B_3 that are on lines of *L* containing *w*. Now $|X| \ge q^{k+2}$ so $r_{N_3}(X) \ge k+2$. Then, there exists a (k+1)-element subset *B'* of *X* such that $B' \cup \{w\}$ is independent. Let $e \in B'$, let *w'* be an element of N_3 such that $\{e, w, w'\}$ is a triangle, and let $N = \operatorname{si}(N_3/w')$. Now, it is straightforward to check that e, B', and *N* have the desired properties. \Box

Proof of Lemma 6.1. We let $f_3(1,q) = 1$ and, for $n \ge 2$, we recursively define $f_3(n,q) = h_5(q^{f_3(n-1,q)+1},q)$. We will prove the stronger result that, for any integers $n \ge 1$ and $q \ge 2$, if $M \in \mathcal{U}(q)$ is a round matroid with rank at least $f_3(n,q)$ and B is a basis of M, then M contains a rank-n minor that is a nest whose joints are contained in B.

The proof is by induction on *n*. The case that n = 1 is trivial; suppose that k > 1 and that the result holds when n = k - 1. Now, consider the case that n = k. Let $M \in \mathcal{U}(q)$ be a round matroid with rank at least $f_3(n, q)$ and let *B* is a basis of *M*. By

Lemma 6.2, there exists a simple round minor N_1 of M, a set $B' \subseteq B \cap E(N_1)$ with cardinality $(q^{f_3(n-1,q)+1} + 1)$, and an element $e \in B'$ such that, for each element $x \in B' - \{e\}$, the pair $\{e, x\}$ spans a long line in N_1 . Note that $r_{N_1}(B') \ge f_3(n-1,q) + 1$, so there exists an $f_3(n-1,q)$ -element set $B_1 \subseteq B' - \{e\}$ such that $B_1 \cup \{e\}$ is independent. By contraction and simplification, we can construct a simple round minor N_2 of N_1 such that $B_1 \cup \{e\}$ is a basis of N_2 . Now let $N_3 = \operatorname{si}(N_2/e)$. Note that, N_3 is round, B_1 is a basis of N_3 , and $r(N_3) \ge f_3(n-1,q)$. Then, by the induction hypothesis, N_3 contains a rank-(n-1) minor N_4 that is a nest whose joints are contained in B_1 . We may assume that $N_4 = \operatorname{si}(M/(X \cup \{e\}))$ for some set $X \subseteq E(M)$. Observe that $\operatorname{si}(M/X)$ is a rank-n nest whose joints are contained in B. \Box

Theorem 1.1 is an immediate consequence of Lemmas 3.1, 5.2, and 6.1.

References

- P. Erdös, L. Pósa, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen 9 (1962) 3–12.
- [2] J.P.S. Kung, The long-line graph of a combinatorial geometry. I. Excluding $M(K_4)$ and the (q+2)-point line as minors, Quart. J. Math. Oxford 39 (1988) 223–234.
- [3] J.P.S. Kung, Extremal matroid theory, in: N. Robertson, P.D. Seymour (Eds.), Graph Structure Theory, Amer. Math. Soc., Providence, RI, 1993, pp. 21–62.
- [4] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.