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Abstract

We prove that, for any positive integers n; k and q; there exists an integer R such that, if M

is a matroid with no MðKnÞ- or U2;qþ2-minor, then either M has a collection of k disjoint

cocircuits or M has rank at most R: Applied to the class of cographic matroids, this result

implies the edge-disjoint version of the Erdös–Pósa Theorem.
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1. Introduction

A rank-r matroid can have at most r pairwise disjoint cocircuits. There are,
however, matroids with arbitrarily large rank but with no two disjoint cocircuits. For
example, for any positive integer n; MðKnÞ; the cycle matroid of the complete graph
on n vertices, does not contain a pair of disjoint cocircuits. Also, for positive integers
r and n; if nX2r � 1; then Ur;n; the rank-r uniform matroid with n elements, does not

contain a pair of disjoint cocircuits. We prove the following theorem.

Theorem 1.1. For any positive integers n; k and q; there exists an integer R such that, if

M is a matroid with no MðKnÞ- or U2;qþ2-minor, then either M has a collection of k

disjoint cocircuits or M has rank at most R:
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Note that, for a prime power q; U2;qþ2 is the smallest line that is not GFðqÞ-
representable. The motivation for this theorem is to gain insight into minor-closed
classes of GFðqÞ-representable matroids that omit a given clique. Let Hðn; qÞ denote
the class of GFðqÞ-representable matroids with no MðKnÞ-minor. Note that the class
of cographic matroids is contained in Hð5; qÞ; we expect that, for any n and q; the
class Hðn; qÞ behaves, qualitatively, much like the class of cographic matroids.
Applied to the class of cographic matroids, Theorem 1.1 implies the edge-disjoint

version of the Erdös–Pósa Theorem [1]. (Note that, for a matroid M; a basis of Mn is
a minimum cardinality set of elements that intersects each circuit of M:)

Theorem 1.2 (Erdös–Pósa). For any integer k there exists an integer R such that, if G

is a graph, then either G has a collection of k edge-disjoint circuits or there exists a set

of R edges that intersects all circuits of G:

2. Preliminaries

We assume that the reader is familiar with standard definitions in matroid theory.
We use the notation of Oxley [4], with the exception that we denote the simple
matroid canonically associated with the matroid M by siðMÞ:

For any positive integer q we define UðqÞ to be the class of matroids with no U2;qþ2-

minor. It is well-known that a simple rank-r GFðqÞ-representable matroid has at most
qr�1
q�1

elements; Kung [3] showed that the same bound holds for matroids in UðqÞ:

Lemma 2.1. For any integer qX2 and any simple rank-r matroid MAUðqÞ; we have

jEðMÞjpqr�1
q�1

:

The simple matroids in Uð1Þ have no circuits, so Theorem 1.1 is trivial when q ¼ 1:
The rank-deficiency of a set A of elements of a matroid M is defined as rðMÞ �

rMðAÞ: The following proposition is elementary; we omit the proof.

Proposition 2.2. Let M be a matroid and let X and Y be disjoint subsets of EðMÞ:
Then, rðM=XÞ � rM=X ðY ÞprðMÞ � rMðYÞ: Moreover, equality holds if and only if

XDclMðYÞ:

We call a matroid M round if each cocircuit of M is spanning. Equivalently, M is
round if and only if M does not contain a pair of disjoint cocircuits. Note that, for a
simple graph G; MðGÞ is round if and only if G is a clique. The property of
roundness is, however, more common in matroids; for example, projective
geometries and uniform matroids Ur;n with nX2r � 1 are round.

The following properties of round matroids are straightforward.

(i) If M is round and eAEðMÞ; then M=e is round.
(ii) If N is a spanning minor of M and N is round, then M is round.

(iii) If M is round, then siðMÞ is round.

J.F. Geelen et al. / Journal of Combinatorial Theory, Series B 87 (2003) 270–279 271



From these properties it easily follows that:

(iv) If N ¼ M \ D=C is a minor of M where D is coindependent and N is round,
then siðM=CÞ is round.

Throughout most of this paper, when we take minors we typically only use
contraction and simplification. There is one situation, however, in which we delete a
cocircuit.

Lemma 2.3. Let qX2 be an integer, let MAUðqÞ; and let C be a minimum-sized

cocircuit of M: Then, for any cocircuit C0 of M \ C; we have jC0jXjCj=q:

Proof. Set F ¼ EðMÞ � ðC,C0Þ: Then F is a flat of M; with rank-deficiency 2;
contained in EðMÞ � C: Now, siðM=FÞ is a line with at most q þ 1 points. Thus,
there are at most q þ 1 hyperplanes containing F ; one of which is EðMÞ � C: Let the
others be H1;H2;y;Hq0 : Then q0pq; and fH1 � F ;H2 � F ;y;Hq0 � Fg is a

partition of C: So, since C is a cocircuit of minimum size, we have

Xq0

i¼1

ðjCj þ jC0j � jHi � F jÞ ¼
Xq0

i¼1

jEðMÞ � HijXq0jCj:

That is, q0jCj þ q0jC0j � jCjXq0jCj; so that jC0jXjCj=q: &

3. Round minors

In this section we prove a weaker version of Theorem 1.1.

Lemma 3.1. There exists an integer-valued function f1ðk; n; qÞ such that, for

any integers kX1; nX1 and qX2; if MAUðqÞ is a matroid with rank at least

f1ðk; n; qÞ; then either M has k disjoint cocircuits or M has a round minor with rank at

least n:

Let GðMÞ denote the maximum rank-deficiency among all cocircuits of M: Thus,
GðMÞ ¼ 0 if and only if M is round. We will prove Lemma 3.1 as a corollary of the
following lemma.

Lemma 3.2. There exists an integer-valued function h1ðk; n; qÞ such that, for any

integers kX1; nX1 and qX2; if MAUðqÞ is a matroid with rank at least h1ðk; n; qÞ;
then either

(i) GðMÞXk; or

(ii) M has a round minor with rank at least n:

In its turn, Lemma 3.2 follows easily from the next lemma.
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Lemma 3.3. There exists an integer-valued function h2ðn; t; qÞ such that, for any

integers nX1; tX1; and qX2; if MAUðqÞ is a matroid with rank at least h2ðn; t; qÞ and

GðMÞ ¼ t; then M has a minor N with rðNÞXn and GðNÞoGðMÞ:

Proof. Let h2ðn; t; qÞ ¼ tqn2 þ n: Now, let MAUðqÞ be a matroid with
rðMÞXh2ðn; t; qÞ and GðMÞ ¼ t40: We first find a minor N of M with
GðNÞoGðMÞ; we then show that the minor has rank at least n:

Let fC1;C2;y;Ckg denote the set of cocircuits of M whose rank-deficiency is
exactly t: For iAf1; 2;y; kg; set Di ¼ EðMÞ � clðCiÞ; Xi ¼ Ci,Di; and Gi ¼
EðMÞ � Xi: Let X ¼ fx1; x2;y; xpg be a minimal cover of ðX1;X2;y;XkÞ; that is,

X is minimal with respect to the property that each Xi contains at least one member
of X : Consider the minor N ¼ M=X of M: Note that, for CDEðNÞ; C is a cocircuit
of N if and only if it is a cocircuit of M: Then, by Proposition 2.2, GðNÞpGðMÞ:
Suppose that GðNÞ ¼ GðMÞ; and let C be a cocircuit of N with rank-deficiency t:
Thus, CAfC1;C2;y;Ckg; say C ¼ Ci: Since X is a cover of ðX1;y;XkÞ there exists
xAX such that xAXi: Clearly xeCi; so xADi: But then xeclðCiÞ; so, by Proposition
2.2, the rank-deficiency of Ci in N is strictly less than its rank-deficiency in M: This
shows that GðNÞoGðMÞ:

It remains to show that N has sufficiently large rank. If pptqn2

then

rðNÞXrðMÞ � pXn: Thus, we may assume that pXtqn2

:
By the minimality of X ; for each iAf1; 2;y; pg there exists jAf1; 2;y; kg such

that X-Xj ¼ fxig: By possibly reordering ðX1;y;XkÞ; we may assume that, for

iAf1;y; pg; X-Xi ¼ fxig: Now, it may be the case that the Di ¼ Dj for distinct

i; jAf1;y; pg: Suppose that D1 ¼ ? ¼ Da; where 2papp: Since M is not round,
D1 contains a cocircuit. Thus, the rank-deficiency of D1 is at most t: Now, C1;y;Ca

are cocircuits disjoint from D1 and x1;y; xa is a system of distinct representatives of
C1;y;Ca: So the rank-deficiency of D1 is at least a; hence apt: That is, among
ðD1;y;DpÞ no set is repeated more than t times. By possibly reordering, we may

assume that D1;y;Db are distinct and that bXp=tXqn2

: For i; jAf1;y; bg; it is easy
to show that CiaDj :

For iAf1;y; bg; the element xiAX either belongs to Ci or to Di: If xiACi; set
Fi ¼ ðEðMÞ � DiÞ: Since ðX � xiÞDGi; we have XDFi: On the other hand, if xiADi;
set Fi ¼ ðEðMÞ � CiÞ; again Fi contains X : Now, by the discussion above, flats
ðF1;y;FbÞ are distinct. So ðF1 � X ;F2 � X ;y;Fb � XÞ are distinct flats of N: Let

m ¼ rðNÞ: The number of distinct flats of a rank-m matroid in UðqÞ is at most qm2

:

Therefore, qm2

XbXqn2

; and, hence, rðNÞ ¼ mXn; as required. &

Lemma 3.2 follows easily by successively applying Lemma 3.3.

Proof of Lemma 3.1. Let f1ð1; n; qÞ ¼ 1 and, for kAf2; 3;yg; we recursively define
f1ðk; n; qÞ ¼ h1ðf1ðk � 1; n; qÞ; n; qÞ: We prove the result by induction on k: The case
when k ¼ 1 is trivial, as a matroid with non-zero rank has at least one cocircuit.
Suppose that k41 and that the result holds for smaller values of k: Let MAUðqÞ be
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a matroid with rank at least f1ðk; n; qÞ: We may assume that M does not contain a
round minor with rank at least n: Then, by Lemma 3.2, M has a cocircuit C1 with
rank-deficiency at least f1ðk � 1; n; qÞ: Thus, M=C1 has rank at least f1ðk � 1; n; qÞ:
Moreover, M=C1 has no round minor with rank at least n: Then, by the induction
hypothesis, M=C1 contains k � 1 disjoint cocircuits ðC2;y;CkÞ: But then
ðC1;y;CkÞ are disjoint cocircuits of M; as required. &

4. Building density

By the density of a matroid M we mean jEðMÞj=rðMÞ: The next task is to show
that, given a round matroid with sufficiently large rank, we can find a round minor
that is dense.

Lemma 4.1. There exists an integer-valued function f2ðl; qÞ such that, for any integers

lX1 and qX2; if MAUðqÞ is a round matroid with rank at least f2ðl; qÞ; then M has a

simple round minor N with jEðNÞj4lrðNÞ:

To facilitate induction, we prove a stronger version of Lemma 4.1.

Lemma 4.2. There exists an integer-valued function h3ðl; k; qÞ such that, for any

integers lX1; kX1 and qX2; if MAUðqÞ is a round matroid with rank at least

h3ðl; k; qÞ; then M has a simple round minor N with jEðNÞj4lðrðNÞ � lÞ and

rðNÞXk:

Proof. Let h3ð1; k; qÞ ¼ k; and, for l41; we recursively define

h3ðl; k; qÞ ¼ f1ðqðl� 1Þ; h3ðl� 1; k; qÞ; qÞ þ 1:

The proof is by induction on l: The result is trivial when l ¼ 1: Suppose that l41
and that the result holds for smaller values of l:

Let MAUðqÞ be a round matroid with rank at least h3ðl; k; qÞ; and let C be a
minimum-size cocircuit of M: By Lemma 3.1, either

(a) M \ C has qðl� 1Þ disjoint cocircuits, or
(b) M \ C has a round minor N1 with rðN1ÞXh3ðl� 1; k; qÞ:

First consider case (a); that is, M \ C has disjoint cocircuits C1;y;Ct; where t ¼
qðl� 1Þ: By Lemma 2.3, jCijXrðMÞ=q: Therefore,

jEðMÞjXjCj þ jC1j þ?þ jCtjXrðMÞ þ qðl� 1ÞrðMÞ=q ¼ lrðMÞ:
In this case the result is satisfied by choosing N ¼ M:

Now consider case (b); that is, M \ C has a round minor N1 with rðN1ÞXh3ðl�
1; k; qÞ: By the induction hypothesis, N1 has a simple round minor N2 such that
jEðN2Þj4ðl� 1ÞðrðN2Þ � ðl� 1ÞÞ and rðN2ÞXk: Now, N2 is a minor of M \ C; so
there exists an independent set I and coindependent set J of M \ C such that N2 ¼
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ðM \ CÞ \ J=I : Now, define N ¼ siðM=IÞ: Since M is round, N is round. Let C0 ¼
C-EðNÞ: Note that, C0 is a spanning cocircuit of N; thus, rðNÞ ¼ rðN2Þ þ 14k:
Now,

jEðNÞjX jC0j þ jEðN2Þj

4 rðNÞ þ ðl� 1ÞðrðN2Þ � ðl� 1ÞÞ

¼ rðNÞ þ ðl� 1ÞðrðNÞ � lÞ

X lðrðNÞ � lÞ

as required. &

Proof of Lemma 4.1. Let f2ðl; qÞ ¼ h3ðlþ 1; ðlþ 1Þ2; qÞ: Now, let MAUðqÞ be a
round matroid with rank at least f2ðl; qÞ: By Lemma 4.2, M has a simple round

minor N with rðNÞXðlþ 1Þ2 and

jEðNÞj4ðlþ 1ÞðrðNÞ � ðlþ 1ÞÞ

¼ lrðNÞ þ ðrðNÞ � ðlþ 1Þ2Þ

X lrðNÞ

as required. &

Let e be an element of a simple matroid M: Define dMðeÞ ¼ jEðMÞj �
jEðsiðM=eÞÞj: A rank-2 flat with at least 3 elements is called a long line. Obviously
dMðeÞX1; since we lose e in the contraction. We also lose elements on long lines
through e: If L is a long line containing e; then the elements L � feg are represented
by a single element of siðM=eÞ: If MAUðqÞ; then 3pjLjpq þ 1: We let cMðeÞ denote
the number of long lines through e: Then,

ðdMðeÞ � 1Þ=qpcMðeÞpðdMðeÞ � 1Þ=2:

Lemma 4.3. If M is a simple matroid such that jEðMÞj4lrðMÞ; then there exists a

subset X of EðMÞ such that dsiðM=XÞðeÞ4l for each eAEðsiðM=X ÞÞ:

Proof. Choose XDEðMÞ maximal such that jEðsiðM=XÞÞj4lrðsiðM=XÞÞ and let
N ¼ siðM=XÞ: By the maximality of X ; we have jEðsiðN=eÞÞjplrðsiðN=eÞÞ for any
eAEðNÞ: Now,

dNðeÞ ¼ jEðNÞj � jEðsiðN=eÞÞj

4 lrðNÞ � lrðsiðN=eÞÞ

¼ l

as required. &

J.F. Geelen et al. / Journal of Combinatorial Theory, Series B 87 (2003) 270–279 275



5. Nests

In order to extract a specific clique minor from a sufficiently large round matroid,
we go through an intermediate class of matroids called nests. We use the following
lemma to recognize cliques; the result is well known but we include the proof for
completeness.

Lemma 5.1. Let M be a matroid with ground set B,H where B ¼ fb1;y; bng is a

basis of M; H ¼ fhij: 1piojpng is a hyperplane of M disjoint from B; and

fbi; hij; bjg is a triangle of M for each ioj: Then M is isomorphic to MðKnþ1Þ:

Proof. Construct a complete graph G with vertex set V ¼ fv0;y; vng and edges
labeled by B,H where biAB labels the edge incident with v0 and vi and hijAH labels

the edge incident with vi and vj: We claim that M ¼ MðGÞ; they clearly have the

same rank. Consider a spanning tree T of G: If there exists an edge hijAT-H such

that vi has degree-one in T then ðT � fhijgÞ,fbig is a spanning tree of G and

rMððT � fhijgÞ,fbigÞ ¼ rMðTÞ: By repeatedly applying such changes, we see that

rMðTÞ ¼ rMðBÞ: Thus, T is a basis of M: Now, consider a circuit C of G; and let X

be the set of edges in B that are incident with a vertex of C � v0 in G: Note that

CDclMðXÞ: If B-Ca| then jX jojCj; so C is dependent in M: On the other hand, if
CDH then, since jCj ¼ jX j and CDH-clMðXÞ; we see that C is dependent in M:
Hence, M ¼ MðGÞ as required. &

A nest is a matroid that contains a basis B ¼ fb1;y; bng such that, for any
integers i; j where 1piojpn; the pair ðbi; bjÞ spans a long line in

siðM=fb1;y; bi�1gÞ; the elements of B are called joints. The main result of this
section is that large nests contain big cliques; to prove this we use an elegant method
introduced by Kung [2].

Lemma 5.2. There exists an integer-valued function h4ðn; qÞ such that, for any integers

nX1 and qX2; if MAUðqÞ is a nest with rank at least h4ðn; qÞ; then M contains an

MðKnÞ-minor.

Proof. Let h4ðn; qÞ ¼ qn�2: Let MAUðqÞ be a simple nest with rank tXh4ðn; qÞ; let
B ¼ fb1;y; btg be the set of joints of M; and, for each pair of integers i; j where
1piojpt; let eij be an element of M such that fbi; bj; eijg is a triangle of

M=fb1;y; bi�1g:

5.2.1. For each kAf1;y; tg; e1k;y; ek�1;keclMðfb1;y; bk�1gÞ; and the set

fe1k;y; ek�1;kg,fbkg is independent in M:

Let iAf1;y; k � 1g: By the definition of eik we see that eikeclMðfb1;y; bigÞ but
that eikAclMðfb1;y; big,fbkgÞ: Then, since B is a basis, we see that
eikeclMðfb1;y; bk�1gÞ; as claimed. For the second part, we prove by induction
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on iAf1;y; k � 1g that clMðfe1k;y; eikg,fbkgÞ ¼ clMðfb1;y; big,fbkgÞ: The
case that i ¼ 1 is trivial; suppose that i41 and that clMðfe1k;y; ei�1;kg,fbkgÞ ¼
clMðfb1;y; bi�1g,fbkgÞ: By the definition of eik we readily see that eikeclM
ðfb1;y; bi�1g,fbkgÞ but eikAclMðfb1;y; big,fbkgÞ: Thus, clMðfb1;y; big
,fbkgÞ ¼ clMðfb1;y; bi�1g,feik; bkgÞ: However, clMðfe1k;y; ei�1;kg,fbkgÞ ¼
clMðfb1;y; bi�1g,fbkgÞ; so clMðfe1k;y; eikg,fbkgÞ ¼ clMðfb1;y; big,fbkgÞ; as
required. This proves 5.2.1.

Note that, for each kAf1;y; tg; the restriction of M to clMðfb1;y; bkgÞ is a nest.
Let X ¼ fb1;y; bn�2g; our next objective is to make the flat spanned by X dense.
We define a maximal sequence of matroids ðNt;Nt�1;y;NkÞ such that Nt ¼ M and,
for each iAfk þ 1;y; tg; Ni�1 ¼ siðNi=aÞ for some aAEðNiÞ � clðfb1;y; bi�1gÞ such

that there exists bAclMðX,fagÞ � clðfb1;y; bi�1gÞ with clNi
ða; bÞ-clNi

ðXÞ ¼ |:
(That is, to obtain Ni�1 from Ni we look for a point aeclðfb1;y; bi�1gÞ to contract
that throws a new point into the flat spanned by X :) Note that,

n � 2pjclNt
ðXÞjojclNt�1

ðX Þjo?ojclNk
ðXÞjpqn�2 � 1:

So n � 2 þ t � kpqn�2 � 1: Hence, as tXqn�2; we have kXn � 1:
Let N denote the restriction of Nk to X,fbkg; let H denote the hyperplane of N

spanned by X ; and let B0 ¼ fe1k;y; en�2;k; bkg: By 5.2.1, B0 is disjoint from H and B0

is a basis of N: Moreover, by the maximality of the sequence ðNt;y;NkÞ; for each
pair ða; bÞ of distinct elements in B0 there exists an element cAH such that fa; b; cg is
a triangle. So, by Lemma 5.1, N contains an MðKnÞ-minor. &

6. Building a nest

In this section we prove that round matroids with large rank contain large nests.

Lemma 6.1. There exists an integer-valued function f3ðn; qÞ such that, for any integers

nX1 and qX2; if MAUðqÞ is a round matroid with rank at least f3ðn; qÞ; then M

contains a nest of rank n as a minor.

We require the following technical lemma.

Lemma 6.2. There exists an integer-valued function h5ðk; qÞ such that, for any integers

kX1 and qX2; if MAUðqÞ is a round matroid with rank at least h5ðk; qÞ and B is a

basis of M; then there exists a simple round minor N of M; a ðk þ 1Þ-element set

B0DB-EðNÞ; and an element eAB0 such that, for each element xAB0 � feg; the pair

fe; xg spans a long line in N:

Proof. Let l ¼ qðk � 1Þ þ ðq�1Þðk�1Þ
4 qkþ3; let h5ðk; qÞ ¼ qf2ðl;qÞ; let MAUðqÞ be a

round matroid with rank at least h5ðk; qÞ; and let B be a basis of M:
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Consider any minor N of M: When constructing siðNÞ we keep a single
representative of each parallel class of N; in this proof, we choose siðNÞ to contain as
many elements of B as possible.

We say that a set XDEðMÞ dominates M if each element in EðMÞ � X is on a long
line containing at least 2 elements of X : We claim that:

6.2.1. There exists a simple round minor N1 of M such that BDEðN1Þ and B

dominates N1: (Note that B need not be a basis in N1:)

Indeed, let N1 be a minimal minor of M such that N1 is simple and round and
BDEðN1Þ: Now, consider any element fAEðN1Þ � B: Certainly, siðN1=f Þ is simple
and round. Then, by the minimality of N1; f is on a long line that contains at least 2
elements of B: That is, B dominates N1; this proves 6.2.1.

Now, jBj ¼ rðMÞ and BDEðN1Þ; so rðN1ÞXlogqðrðMÞÞXf2ðl; qÞ: Note that, by

our convention on simplification, for any set XDEðN1Þ; B-EðsiðN1=XÞÞ dominates
siðN1=XÞ: By Lemma 4.1, there exists a simple minor N2 of N1 such that
jEðN2Þj4lrðN2Þ: We may assume that N2 ¼ siðN1=XÞ for some X1DEðN1Þ: Thus,
N2 is round and B-EðN2Þ dominates N2: Now, by Lemma 4.3, there exists
X2DEðN2Þ such that dsiðN2=X2ÞðeÞ4l for all eAEðsiðN2=X2ÞÞ: Let N3 ¼ siðN2=X2Þ;
note that N3 is round and B-EðN3Þ dominates N3: Now, each element e of N3 is on
at least l=q long lines. Let B3 ¼ B-EðN3Þ and let W3 ¼ EðN3Þ � B3: We may
assume that, for each eAB3; there are at most k � 1 long lines of N3 through e that
contain another point of B3 (since, otherwise, the result is clearly true). Since B3

dominates N3; we have:

6.2.2. jW3jpðk�1Þðq�1Þ
2

jB3j:

Let L denote the set of long lines in N3 that contain at most one element of B3:
Thus, jLjXðl=q � ðk � 1ÞÞjB3j: Therefore, there exists an element wAW3 that is on

at least 2jLj
jW3jX

4ðl=q�ðk�1ÞÞ
ðk�1Þðq�1Þ Xqkþ2 lines in L: Let X denote the set of all elements of B3

that are on lines of L containing w: Now jX jXqkþ2 so rN3
ðX ÞXk þ 2: Then, there

exists a ðk þ 1Þ-element subset B0 of X such that B0,fwg is independent. Let eAB0;
let w0 be an element of N3 such that fe;w;w0g is a triangle, and let N ¼ siðN3=w0Þ:
Now, it is straightforward to check that e; B0; and N have the desired properties. &

Proof of Lemma 6.1. We let f3ð1; qÞ ¼ 1 and, for nX2; we recursively define

f3ðn; qÞ ¼ h5ðqf3ðn�1;qÞþ1; qÞ: We will prove the stronger result that, for any integers
nX1 and qX2; if MAUðqÞ is a round matroid with rank at least f3ðn; qÞ and B is a
basis of M; then M contains a rank-n minor that is a nest whose joints are contained
in B:

The proof is by induction on n: The case that n ¼ 1 is trivial; suppose that k41
and that the result holds when n ¼ k � 1: Now, consider the case that n ¼ k: Let
MAUðqÞ be a round matroid with rank at least f3ðn; qÞ and let B is a basis of M: By
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Lemma 6.2, there exists a simple round minor N1 of M; a set B0DB-EðN1Þ with

cardinality ðqf3ðn�1;qÞþ1 þ 1Þ; and an element eAB0 such that, for each element xAB0 �
feg; the pair fe; xg spans a long line in N1: Note that rN1

ðB0ÞXf3ðn � 1; qÞ þ 1; so
there exists an f3ðn � 1; qÞ-element set B1DB0 � feg such that B1,feg is
independent. By contraction and simplification, we can construct a simple round
minor N2 of N1 such that B1,feg is a basis of N2: Now let N3 ¼ siðN2=eÞ: Note that,
N3 is round, B1 is a basis of N3; and rðN3ÞXf3ðn � 1; qÞ: Then, by the induction
hypothesis, N3 contains a rank-ðn � 1Þ minor N4 that is a nest whose joints are
contained in B1: We may assume that N4 ¼ siðM=ðX,fegÞÞ for some set XDEðMÞ:
Observe that siðM=XÞ is a rank-n nest whose joints are contained in B: &

Theorem 1.1 is an immediate consequence of Lemmas 3.1, 5.2, and 6.1.
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