ACADEMIC PRESS

Disjoint cocircuits in matroids with large rank ${ }^{\text {is }}$

James F. Geelen, ${ }^{\text {a }}$ A.M.H. Gerards, ${ }^{\text {b,c }}$ and Geoff Whittle ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada ${ }^{\mathrm{b}}$ CWI, Amsterdam, The Netherlands
${ }^{c}$ Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
${ }^{\mathrm{d}}$ School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

Received 21 March 2002

Abstract

We prove that, for any positive integers n, k and q, there exists an integer R such that, if M is a matroid with no $M\left(K_{n}\right)$ - or $U_{2, q+2}$-minor, then either M has a collection of k disjoint cocircuits or M has rank at most R. Applied to the class of cographic matroids, this result implies the edge-disjoint version of the Erdös-Pósa Theorem. (C) 2002 Elsevier Science (USA). All rights reserved.

AMS 1991 subject classifications: 05B35

1. Introduction

A rank-r matroid can have at most r pairwise disjoint cocircuits. There are, however, matroids with arbitrarily large rank but with no two disjoint cocircuits. For example, for any positive integer $n, M\left(K_{n}\right)$, the cycle matroid of the complete graph on n vertices, does not contain a pair of disjoint cocircuits. Also, for positive integers r and n, if $n \geqslant 2 r-1$, then $U_{r, n}$, the rank- r uniform matroid with n elements, does not contain a pair of disjoint cocircuits. We prove the following theorem.

Theorem 1.1. For any positive integers n, k and q, there exists an integer R such that, if M is a matroid with no $M\left(K_{n}\right)$ - or $U_{2, q+2}$-minor, then either M has a collection of k disjoint cocircuits or M has rank at most R.

[^0]Note that, for a prime power $q, U_{2, q+2}$ is the smallest line that is not $\operatorname{GF}(q)$ representable. The motivation for this theorem is to gain insight into minor-closed classes of $\operatorname{GF}(q)$-representable matroids that omit a given clique. Let $\mathscr{H}(n, q)$ denote the class of $\operatorname{GF}(q)$-representable matroids with no $M\left(K_{n}\right)$-minor. Note that the class of cographic matroids is contained in $\mathscr{H}(5, q)$; we expect that, for any n and q, the class $\mathscr{H}(n, q)$ behaves, qualitatively, much like the class of cographic matroids. Applied to the class of cographic matroids, Theorem 1.1 implies the edge-disjoint version of the Erdös-Pósa Theorem [1]. (Note that, for a matroid M, a basis of M^{*} is a minimum cardinality set of elements that intersects each circuit of M.)

Theorem 1.2 (Erdös-Pósa). For any integer k there exists an integer R such that, if G is a graph, then either G has a collection of k edge-disjoint circuits or there exists a set of R edges that intersects all circuits of G.

2. Preliminaries

We assume that the reader is familiar with standard definitions in matroid theory. We use the notation of Oxley [4], with the exception that we denote the simple matroid canonically associated with the matroid M by $\operatorname{si}(M)$.
For any positive integer q we define $\mathscr{U}(q)$ to be the class of matroids with no $U_{2, q+2^{-}}$ minor. It is well-known that a simple rank- $r \operatorname{GF}(q)$-representable matroid has at most $\frac{q^{r}-1}{q-1}$ elements; Kung [3] showed that the same bound holds for matroids in $\mathscr{U}(q)$.

Lemma 2.1. For any integer $q \geqslant 2$ and any simple rank-r matroid $M \in \mathscr{U}(q)$, we have $|E(M)| \leqslant \frac{q^{r}-1}{q-1}$.

The simple matroids in $\mathscr{U}(1)$ have no circuits, so Theorem 1.1 is trivial when $q=1$.
The rank-deficiency of a set A of elements of a matroid M is defined as $r(M)-$ $r_{M}(A)$. The following proposition is elementary; we omit the proof.

Proposition 2.2. Let M be a matroid and let X and Y be disjoint subsets of $E(M)$. Then, $r(M / X)-r_{M / X}(Y) \leqslant r(M)-r_{M}(Y)$. Moreover, equality holds if and only if $X \subseteq \operatorname{cl}_{M}(Y)$.

We call a matroid M round if each cocircuit of M is spanning. Equivalently, M is round if and only if M does not contain a pair of disjoint cocircuits. Note that, for a simple graph $G, M(G)$ is round if and only if G is a clique. The property of roundness is, however, more common in matroids; for example, projective geometries and uniform matroids $U_{r, n}$ with $n \geqslant 2 r-1$ are round.

The following properties of round matroids are straightforward.
(i) If M is round and $e \in E(M)$, then M / e is round.
(ii) If N is a spanning minor of M and N is round, then M is round.
(iii) If M is round, then $\operatorname{si}(M)$ is round.

From these properties it easily follows that:
(iv) If $N=M \backslash D / C$ is a minor of M where D is coindependent and N is round, then $\operatorname{si}(M / C)$ is round.

Throughout most of this paper, when we take minors we typically only use contraction and simplification. There is one situation, however, in which we delete a cocircuit.

Lemma 2.3. Let $q \geqslant 2$ be an integer, let $M \in \mathscr{U}(q)$, and let C be a minimum-sized cocircuit of M. Then, for any cocircuit C^{\prime} of $M \backslash C$, we have $\left|C^{\prime}\right| \geqslant|C| / q$.

Proof. Set $F=E(M)-\left(C \cup C^{\prime}\right)$. Then F is a flat of M, with rank-deficiency 2 , contained in $E(M)-C$. Now, $\operatorname{si}(M / F)$ is a line with at most $q+1$ points. Thus, there are at most $q+1$ hyperplanes containing F, one of which is $E(M)-C$. Let the others be $H_{1}, H_{2}, \ldots, H_{q^{\prime}}$. Then $q^{\prime} \leqslant q$, and $\left\{H_{1}-F, H_{2}-F, \ldots, H_{q^{\prime}}-F\right\}$ is a partition of C. So, since C is a cocircuit of minimum size, we have

$$
\sum_{i=1}^{q^{\prime}}\left(|C|+\left|C^{\prime}\right|-\left|H_{i}-F\right|\right)=\sum_{i=1}^{q^{\prime}}\left|E(M)-H_{i}\right| \geqslant q^{\prime}|C| .
$$

That is, $q^{\prime}|C|+q^{\prime}\left|C^{\prime}\right|-|C| \geqslant q^{\prime}|C|$, so that $\left|C^{\prime}\right| \geqslant|C| / q$.

3. Round minors

In this section we prove a weaker version of Theorem 1.1.
Lemma 3.1. There exists an integer-valued function $f_{1}(k, n, q)$ such that, for any integers $k \geqslant 1, n \geqslant 1$ and $q \geqslant 2$, if $M \in \mathscr{U}(q)$ is a matroid with rank at least $f_{1}(k, n, q)$, then either M has k disjoint cocircuits or M has a round minor with rank at least n.

Let $\Gamma(M)$ denote the maximum rank-deficiency among all cocircuits of M. Thus, $\Gamma(M)=0$ if and only if M is round. We will prove Lemma 3.1 as a corollary of the following lemma.

Lemma 3.2. There exists an integer-valued function $h_{1}(k, n, q)$ such that, for any integers $k \geqslant 1, n \geqslant 1$ and $q \geqslant 2$, if $M \in \mathscr{U}(q)$ is a matroid with rank at least $h_{1}(k, n, q)$, then either
(i) $\Gamma(M) \geqslant k$, or
(ii) M has a round minor with rank at least n.

In its turn, Lemma 3.2 follows easily from the next lemma.

Lemma 3.3. There exists an integer-valued function $h_{2}(n, t, q)$ such that, for any integers $n \geqslant 1, t \geqslant 1$, and $q \geqslant 2$, if $M \in \mathscr{U}(q)$ is a matroid with rank at least $h_{2}(n, t, q)$ and $\Gamma(M)=t$, then M has a minor N with $r(N) \geqslant n$ and $\Gamma(N)<\Gamma(M)$.

Proof. Let $h_{2}(n, t, q)=t q^{n^{2}}+n$. Now, let $M \in \mathscr{U}(q)$ be a matroid with $r(M) \geqslant h_{2}(n, t, q)$ and $\Gamma(M)=t>0$. We first find a minor N of M with $\Gamma(N)<\Gamma(M)$; we then show that the minor has rank at least n.

Let $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ denote the set of cocircuits of M whose rank-deficiency is exactly t. For $i \in\{1,2, \ldots, k\}$, set $D_{i}=E(M)-\operatorname{cl}\left(C_{i}\right), X_{i}=C_{i} \cup D_{i}$, and $G_{i}=$ $E(M)-X_{i}$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ be a minimal cover of $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$; that is, X is minimal with respect to the property that each X_{i} contains at least one member of X. Consider the minor $N=M / X$ of M. Note that, for $C \subseteq E(N), C$ is a cocircuit of N if and only if it is a cocircuit of M. Then, by Proposition $2.2, \Gamma(N) \leqslant \Gamma(M)$. Suppose that $\Gamma(N)=\Gamma(M)$, and let C be a cocircuit of N with rank-deficiency t. Thus, $C \in\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$, say $C=C_{i}$. Since X is a cover of $\left(X_{1}, \ldots, X_{k}\right)$ there exists $x \in X$ such that $x \in X_{i}$. Clearly $x \notin C_{i}$, so $x \in D_{i}$. But then $x \notin \mathrm{cl}\left(C_{i}\right)$, so, by Proposition 2.2, the rank-deficiency of C_{i} in N is strictly less than its rank-deficiency in M. This shows that $\Gamma(N)<\Gamma(M)$.

It remains to show that N has sufficiently large rank. If $p \leqslant t q^{n^{2}}$ then $r(N) \geqslant r(M)-p \geqslant n$. Thus, we may assume that $p \geqslant t q^{n^{2}}$.

By the minimality of X, for each $i \in\{1,2, \ldots, p\}$ there exists $j \in\{1,2, \ldots, k\}$ such that $X \cap X_{j}=\left\{x_{i}\right\}$. By possibly reordering $\left(X_{1}, \ldots, X_{k}\right)$, we may assume that, for $i \in\{1, \ldots, p\}, X \cap X_{i}=\left\{x_{i}\right\}$. Now, it may be the case that the $D_{i}=D_{j}$ for distinct $i, j \in\{1, \ldots, p\}$. Suppose that $D_{1}=\cdots=D_{a}$, where $2 \leqslant a \leqslant p$. Since M is not round, D_{1} contains a cocircuit. Thus, the rank-deficiency of D_{1} is at most t. Now, C_{1}, \ldots, C_{a} are cocircuits disjoint from D_{1} and x_{1}, \ldots, x_{a} is a system of distinct representatives of C_{1}, \ldots, C_{a}. So the rank-deficiency of D_{1} is at least a; hence $a \leqslant t$. That is, among $\left(D_{1}, \ldots, D_{p}\right)$ no set is repeated more than t times. By possibly reordering, we may assume that D_{1}, \ldots, D_{b} are distinct and that $b \geqslant p / t \geqslant q^{n^{2}}$. For $i, j \in\{1, \ldots, b\}$, it is easy to show that $C_{i} \neq D_{j}$.

For $i \in\{1, \ldots, b\}$, the element $x_{i} \in X$ either belongs to C_{i} or to D_{i}. If $x_{i} \in C_{i}$, set $F_{i}=\left(E(M)-D_{i}\right)$. Since $\left(X-x_{i}\right) \subseteq G_{i}$, we have $X \subseteq F_{i}$. On the other hand, if $x_{i} \in D_{i}$, set $F_{i}=\left(E(M)-C_{i}\right)$; again F_{i} contains X. Now, by the discussion above, flats $\left(F_{1}, \ldots, F_{b}\right)$ are distinct. So $\left(F_{1}-X, F_{2}-X, \ldots, F_{b}-X\right)$ are distinct flats of N. Let $m=r(N)$. The number of distinct flats of a rank- m matroid in $\mathscr{U}(q)$ is at most $q^{m^{2}}$. Therefore, $q^{m^{2}} \geqslant b \geqslant q^{n^{2}}$, and, hence, $r(N)=m \geqslant n$; as required.

Lemma 3.2 follows easily by successively applying Lemma 3.3.

Proof of Lemma 3.1. Let $f_{1}(1, n, q)=1$ and, for $k \in\{2,3, \ldots\}$, we recursively define $f_{1}(k, n, q)=h_{1}\left(f_{1}(k-1, n, q), n, q\right)$. We prove the result by induction on k. The case when $k=1$ is trivial, as a matroid with non-zero rank has at least one cocircuit. Suppose that $k>1$ and that the result holds for smaller values of k. Let $M \in \mathscr{U}(q)$ be
a matroid with rank at least $f_{1}(k, n, q)$. We may assume that M does not contain a round minor with rank at least n. Then, by Lemma 3.2, M has a cocircuit C_{1} with rank-deficiency at least $f_{1}(k-1, n, q)$. Thus, M / C_{1} has rank at least $f_{1}(k-1, n, q)$. Moreover, M / C_{1} has no round minor with rank at least n. Then, by the induction hypothesis, M / C_{1} contains $k-1$ disjoint cocircuits $\left(C_{2}, \ldots, C_{k}\right)$. But then $\left(C_{1}, \ldots, C_{k}\right)$ are disjoint cocircuits of M, as required.

4. Building density

By the density of a matroid M we mean $|E(M)| / r(M)$. The next task is to show that, given a round matroid with sufficiently large rank, we can find a round minor that is dense.

Lemma 4.1. There exists an integer-valued function $f_{2}(\lambda, q)$ such that, for any integers $\lambda \geqslant 1$ and $q \geqslant 2$, if $M \in \mathscr{U}(q)$ is a round matroid with rank at least $f_{2}(\lambda, q)$, then M has a simple round minor N with $|E(N)|>\lambda r(N)$.

To facilitate induction, we prove a stronger version of Lemma 4.1.
Lemma 4.2. There exists an integer-valued function $h_{3}(\lambda, k, q)$ such that, for any integers $\lambda \geqslant 1, k \geqslant 1$ and $q \geqslant 2$, if $M \in \mathscr{U}(q)$ is a round matroid with rank at least $h_{3}(\lambda, k, q)$, then M has a simple round minor N with $|E(N)|>\lambda(r(N)-\lambda)$ and $r(N) \geqslant k$.

Proof. Let $h_{3}(1, k, q)=k$, and, for $\lambda>1$, we recursively define

$$
h_{3}(\lambda, k, q)=f_{1}\left(q(\lambda-1), h_{3}(\lambda-1, k, q), q\right)+1
$$

The proof is by induction on λ. The result is trivial when $\lambda=1$. Suppose that $\lambda>1$ and that the result holds for smaller values of λ.

Let $M \in \mathscr{U}(q)$ be a round matroid with rank at least $h_{3}(\lambda, k, q)$, and let C be a minimum-size cocircuit of M. By Lemma 3.1, either
(a) $M \backslash C$ has $q(\lambda-1)$ disjoint cocircuits, or
(b) $M \backslash C$ has a round minor N_{1} with $r\left(N_{1}\right) \geqslant h_{3}(\lambda-1, k, q)$.

First consider case (a); that is, $M \backslash C$ has disjoint cocircuits C_{1}, \ldots, C_{t}, where $t=$ $q(\lambda-1)$. By Lemma 2.3, $\left|C_{i}\right| \geqslant r(M) / q$. Therefore,

$$
|E(M)| \geqslant|C|+\left|C_{1}\right|+\cdots+\left|C_{t}\right| \geqslant r(M)+q(\lambda-1) r(M) / q=\lambda r(M) .
$$

In this case the result is satisfied by choosing $N=M$.
Now consider case (b); that is, $M \backslash C$ has a round minor N_{1} with $r\left(N_{1}\right) \geqslant h_{3}(\lambda-$ $1, k, q)$. By the induction hypothesis, N_{1} has a simple round minor N_{2} such that $\left|E\left(N_{2}\right)\right|>(\lambda-1)\left(r\left(N_{2}\right)-(\lambda-1)\right)$ and $r\left(N_{2}\right) \geqslant k$. Now, N_{2} is a minor of $M \backslash C$, so there exists an independent set I and coindependent set J of $M \backslash C$ such that $N_{2}=$
$(M \backslash C) \backslash J / I$. Now, define $N=\operatorname{si}(M / I)$. Since M is round, N is round. Let $C^{\prime}=$ $C \cap E(N)$. Note that, C^{\prime} is a spanning cocircuit of N, thus, $r(N)=r\left(N_{2}\right)+1>k$. Now,

$$
\begin{aligned}
|E(N)| & \geqslant\left|C^{\prime}\right|+\left|E\left(N_{2}\right)\right| \\
& >r(N)+(\lambda-1)\left(r\left(N_{2}\right)-(\lambda-1)\right) \\
& =r(N)+(\lambda-1)(r(N)-\lambda) \\
& \geqslant \lambda(r(N)-\lambda)
\end{aligned}
$$

as required.
Proof of Lemma 4.1. Let $f_{2}(\lambda, q)=h_{3}\left(\lambda+1,(\lambda+1)^{2}, q\right)$. Now, let $M \in \mathscr{U}(q)$ be a round matroid with rank at least $f_{2}(\lambda, q)$. By Lemma $4.2, M$ has a simple round minor N with $r(N) \geqslant(\lambda+1)^{2}$ and

$$
\begin{aligned}
|E(N)| & >(\lambda+1)(r(N)-(\lambda+1)) \\
& =\lambda r(N)+\left(r(N)-(\lambda+1)^{2}\right) \\
\quad \geqslant & \lambda r(N)
\end{aligned}
$$

as required.
Let e be an element of a simple matroid M. Define $\delta_{M}(e)=|E(M)|-$ $|E(\operatorname{si}(M / e))|$. A rank-2 flat with at least 3 elements is called a long line. Obviously $\delta_{M}(e) \geqslant 1$, since we lose e in the contraction. We also lose elements on long lines through e. If L is a long line containing e, then the elements $L-\{e\}$ are represented by a single element of $\operatorname{si}(M / e)$. If $M \in \mathscr{U}(q)$, then $3 \leqslant|L| \leqslant q+1$. We let $\ell_{M}(e)$ denote the number of long lines through e. Then,

$$
\left(\delta_{M}(e)-1\right) / q \leqslant \ell_{M}(e) \leqslant\left(\delta_{M}(e)-1\right) / 2 .
$$

Lemma 4.3. If M is a simple matroid such that $|E(M)|>\lambda r(M)$, then there exists a subset X of $E(M)$ such that $\delta_{\mathrm{si}(M / X)}(e)>\lambda$ for each $e \in E(\operatorname{si}(M / X))$.

Proof. Choose $X \subseteq E(M)$ maximal such that $|E(\operatorname{si}(M / X))|>\lambda r(\operatorname{si}(M / X))$ and let $N=\operatorname{si}(M / X)$. By the maximality of X, we have $|E(\operatorname{si}(N / e))| \leqslant \lambda r(\operatorname{si}(N / e))$ for any $e \in E(N)$. Now,

$$
\begin{aligned}
\delta_{N}(e) & =|E(N)|-|E(\mathrm{si}(N / e))| \\
& >\lambda r(N)-\lambda r(\mathrm{si}(N / e)) \\
& =\lambda
\end{aligned}
$$

as required.

5. Nests

In order to extract a specific clique minor from a sufficiently large round matroid, we go through an intermediate class of matroids called nests. We use the following lemma to recognize cliques; the result is well known but we include the proof for completeness.

Lemma 5.1. Let M be a matroid with ground set $B \cup H$ where $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis of $M, H=\left\{h_{i j}: 1 \leqslant i<j \leqslant n\right\}$ is a hyperplane of M disjoint from B, and $\left\{b_{i}, h_{i j}, b_{j}\right\}$ is a triangle of M for each $i<j$. Then M is isomorphic to $M\left(K_{n+1}\right)$.

Proof. Construct a complete graph G with vertex set $V=\left\{v_{0}, \ldots, v_{n}\right\}$ and edges labeled by $B \cup H$ where $b_{i} \in B$ labels the edge incident with v_{0} and v_{i} and $h_{i j} \in H$ labels the edge incident with v_{i} and v_{j}. We claim that $M=M(G)$; they clearly have the same rank. Consider a spanning tree T of G. If there exists an edge $h_{i j} \in T \cap H$ such that v_{i} has degree-one in T then $\left(T-\left\{h_{i j}\right\}\right) \cup\left\{b_{i}\right\}$ is a spanning tree of G and $r_{M}\left(\left(T-\left\{h_{i j}\right\}\right) \cup\left\{b_{i}\right\}\right)=r_{M}(T)$. By repeatedly applying such changes, we see that $r_{M}(T)=r_{M}(B)$. Thus, T is a basis of M. Now, consider a circuit C of G, and let X be the set of edges in B that are incident with a vertex of $C-v_{0}$ in G. Note that $C \subseteq \mathrm{cl}_{M}(X)$. If $B \cap C \neq \emptyset$ then $|X|<|C|$, so C is dependent in M. On the other hand, if $C \subseteq H$ then, since $|C|=|X|$ and $C \subseteq H \cap \operatorname{cl}_{M}(X)$, we see that C is dependent in M. Hence, $M=M(G)$ as required.

A nest is a matroid that contains a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ such that, for any integers i, j where $1 \leqslant i<j \leqslant n$, the pair $\left(b_{i}, b_{j}\right)$ spans a long line in $\operatorname{si}\left(M /\left\{b_{1}, \ldots, b_{i-1}\right\}\right)$; the elements of B are called joints. The main result of this section is that large nests contain big cliques; to prove this we use an elegant method introduced by Kung [2].

Lemma 5.2. There exists an integer-valued function $h_{4}(n, q)$ such that, for any integers $n \geqslant 1$ and $q \geqslant 2$, if $M \in \mathscr{U}(q)$ is a nest with rank at least $h_{4}(n, q)$, then M contains an $M\left(K_{n}\right)$-minor .

Proof. Let $h_{4}(n, q)=q^{n-2}$. Let $M \in \mathscr{U}(q)$ be a simple nest with rank $t \geqslant h_{4}(n, q)$, let $B=\left\{b_{1}, \ldots, b_{t}\right\}$ be the set of joints of M, and, for each pair of integers i, j where $1 \leqslant i<j \leqslant t$, let $e_{i j}$ be an element of M such that $\left\{b_{i}, b_{j}, e_{i j}\right\}$ is a triangle of $M /\left\{b_{1}, \ldots, b_{i-1}\right\}$.
5.2.1. For each $k \in\{1, \ldots, t\}, e_{1 k}, \ldots, e_{k-1, k} \notin \operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{k-1}\right\}\right)$, and the set $\left\{e_{1 k}, \ldots, e_{k-1, k}\right\} \cup\left\{b_{k}\right\}$ is independent in M.

Let $i \in\{1, \ldots, k-1\}$. By the definition of $e_{i k}$ we see that $e_{i k} \notin \mathrm{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}\right\}\right)$ but that $e_{i k} \in \mathrm{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}\right\} \cup\left\{b_{k}\right\}\right)$. Then, since B is a basis, we see that $e_{i k} \notin \mathrm{cl}_{M}\left(\left\{b_{1}, \ldots, b_{k-1}\right\}\right)$, as claimed. For the second part, we prove by induction
on $i \in\{1, \ldots, k-1\}$ that $\operatorname{cl}_{M}\left(\left\{e_{1 k}, \ldots, e_{i k}\right\} \cup\left\{b_{k}\right\}\right)=\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}\right\} \cup\left\{b_{k}\right\}\right)$. The case that $i=1$ is trivial; suppose that $i>1$ and that $\mathrm{cl}_{M}\left(\left\{e_{1 k}, \ldots, e_{i-1, k}\right\} \cup\left\{b_{k}\right\}\right)=$ $\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i-1}\right\} \cup\left\{b_{k}\right\}\right)$. By the definition of $e_{i k}$ we readily see that $e_{i k} \notin \mathrm{cl}_{M}$ $\left(\left\{b_{1}, \ldots, b_{i-1}\right\} \cup\left\{b_{k}\right\}\right) \quad$ but $\quad e_{i k} \in \operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}\right\} \cup\left\{b_{k}\right\}\right)$. Thus, $\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}\right\}\right.$ $\left.\cup\left\{b_{k}\right\}\right)=\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i-1}\right\} \cup\left\{e_{i k}, b_{k}\right\}\right)$. However, $\quad \operatorname{cl}_{M}\left(\left\{e_{1 k}, \ldots, e_{i-1, k}\right\} \cup\left\{b_{k}\right\}\right)=$ $\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i-1}\right\} \cup\left\{b_{k}\right\}\right)$, so $\operatorname{cl}_{M}\left(\left\{e_{1 k}, \ldots, e_{i k}\right\} \cup\left\{b_{k}\right\}\right)=\operatorname{cl}_{M}\left(\left\{b_{1}, \ldots, b_{i}\right\} \cup\left\{b_{k}\right\}\right)$; as required. This proves 5.2.1.

Note that, for each $k \in\{1, \ldots, t\}$, the restriction of M to $\mathrm{cl}_{M}\left(\left\{b_{1}, \ldots, b_{k}\right\}\right)$ is a nest. Let $X=\left\{b_{1}, \ldots, b_{n-2}\right\}$; our next objective is to make the flat spanned by X dense. We define a maximal sequence of matroids $\left(N_{t}, N_{t-1}, \ldots, N_{k}\right)$ such that $N_{t}=M$ and, for each $i \in\{k+1, \ldots, t\}, N_{i-1}=\operatorname{si}\left(N_{i} / a\right)$ for some $a \in E\left(N_{i}\right)-\operatorname{cl}\left(\left\{b_{1}, \ldots, b_{i-1}\right\}\right)$ such that there exists $b \in \operatorname{cl}_{M}(X \cup\{a\})-\operatorname{cl}\left(\left\{b_{1}, \ldots, b_{i-1}\right\}\right)$ with $\operatorname{cl}_{N_{i}}(a, b) \cap \mathrm{cl}_{N_{i}}(X)=\emptyset$. (That is, to obtain N_{i-1} from N_{i} we look for a point $a \notin \mathrm{cl}\left(\left\{b_{1}, \ldots, b_{i-1}\right\}\right)$ to contract that throws a new point into the flat spanned by X.) Note that,

$$
n-2 \leqslant\left|\mathrm{cl}_{N_{t}}(X)\right|<\left|\mathrm{cl}_{N_{t-1}}(X)\right|<\cdots<\left|\mathrm{cl}_{N_{k}}(X)\right| \leqslant q^{n-2}-1
$$

So $n-2+t-k \leqslant q^{n-2}-1$. Hence, as $t \geqslant q^{n-2}$, we have $k \geqslant n-1$.
Let N denote the restriction of N_{k} to $X \cup\left\{b_{k}\right\}$, let H denote the hyperplane of N spanned by X, and let $B^{\prime}=\left\{e_{1 k}, \ldots, e_{n-2, k}, b_{k}\right\}$. By 5.2.1, B^{\prime} is disjoint from H and B^{\prime} is a basis of N. Moreover, by the maximality of the sequence $\left(N_{t}, \ldots, N_{k}\right)$, for each pair (a, b) of distinct elements in B^{\prime} there exists an element $c \in H$ such that $\{a, b, c\}$ is a triangle. So, by Lemma $5.1, N$ contains an $M\left(K_{n}\right)$-minor.

6. Building a nest

In this section we prove that round matroids with large rank contain large nests.
Lemma 6.1. There exists an integer-valued function $f_{3}(n, q)$ such that, for any integers $n \geqslant 1$ and $q \geqslant 2$, if $M \in \mathscr{U}(q)$ is a round matroid with rank at least $f_{3}(n, q)$, then M contains a nest of rank n as a minor.

We require the following technical lemma.

Lemma 6.2. There exists an integer-valued function $h_{5}(k, q)$ such that, for any integers $k \geqslant 1$ and $q \geqslant 2$, if $M \in \mathscr{U}(q)$ is a round matroid with rank at least $h_{5}(k, q)$ and B is a basis of M, then there exists a simple round minor N of M, a $(k+1)$-element set $B^{\prime} \subseteq B \cap E(N)$, and an element $e \in B^{\prime}$ such that, for each element $x \in B^{\prime}-\{e\}$, the pair $\{e, x\}$ spans a long line in N.

Proof. Let $\lambda=q(k-1)+\frac{(q-1)(k-1)}{4} q^{k+3}$, let $h_{5}(k, q)=q^{f_{2}(\lambda, q)}$, let $M \in \mathscr{U}(q)$ be a round matroid with rank at least $h_{5}(k, q)$, and let B be a basis of M.

Consider any minor N of M. When constructing $\operatorname{si}(N)$ we keep a single representative of each parallel class of N; in this proof, we choose $\operatorname{si}(N)$ to contain as many elements of B as possible.

We say that a set $X \subseteq E(M)$ dominates M if each element in $E(M)-X$ is on a long line containing at least 2 elements of X. We claim that:
6.2.1. There exists a simple round minor N_{1} of M such that $B \subseteq E\left(N_{1}\right)$ and B dominates N_{1}. (Note that B need not be a basis in N_{1}.)

Indeed, let N_{1} be a minimal minor of M such that N_{1} is simple and round and $B \subseteq E\left(N_{1}\right)$. Now, consider any element $f \in E\left(N_{1}\right)-B$. Certainly, si $\left(N_{1} / f\right)$ is simple and round. Then, by the minimality of N_{1}, f is on a long line that contains at least 2 elements of B. That is, B dominates N_{1}; this proves 6.2.1.

Now, $|B|=r(M)$ and $B \subseteq E\left(N_{1}\right)$, so $r\left(N_{1}\right) \geqslant \log _{q}(r(M)) \geqslant f_{2}(\lambda, q)$. Note that, by our convention on simplification, for any set $X \subseteq E\left(N_{1}\right), B \cap E\left(\mathrm{si}\left(N_{1} / X\right)\right)$ dominates $\operatorname{si}\left(N_{1} / X\right)$. By Lemma 4.1, there exists a simple minor N_{2} of N_{1} such that $\left|E\left(N_{2}\right)\right|>\lambda r\left(N_{2}\right)$. We may assume that $N_{2}=\operatorname{si}\left(N_{1} / X\right)$ for some $X_{1} \subseteq E\left(N_{1}\right)$. Thus, N_{2} is round and $B \cap E\left(N_{2}\right)$ dominates N_{2}. Now, by Lemma 4.3, there exists $X_{2} \subseteq E\left(N_{2}\right)$ such that $\delta_{\mathrm{si}\left(N_{2} / X_{2}\right)}(e)>\lambda$ for all $e \in E\left(\operatorname{si}\left(N_{2} / X_{2}\right)\right)$. Let $N_{3}=\operatorname{si}\left(N_{2} / X_{2}\right)$; note that N_{3} is round and $B \cap E\left(N_{3}\right)$ dominates N_{3}. Now, each element e of N_{3} is on at least λ / q long lines. Let $B_{3}=B \cap E\left(N_{3}\right)$ and let $W_{3}=E\left(N_{3}\right)-B_{3}$. We may assume that, for each $e \in B_{3}$, there are at most $k-1$ long lines of N_{3} through e that contain another point of B_{3} (since, otherwise, the result is clearly true). Since B_{3} dominates N_{3}, we have:

6.2.2. $\left|W_{3}\right| \leqslant \frac{(k-1)(q-1)}{2}\left|B_{3}\right|$.

Let L denote the set of long lines in N_{3} that contain at most one element of B_{3}. Thus, $|L| \geqslant(\lambda / q-(k-1))\left|B_{3}\right|$. Therefore, there exists an element $w \in W_{3}$ that is on at least $\frac{2|L|}{\left|W_{3}\right|} \geqslant \frac{4(\lambda / q-(k-1))}{(k-1)(q-1)} \geqslant q^{k+2}$ lines in L. Let X denote the set of all elements of B_{3} that are on lines of L containing w. Now $|X| \geqslant q^{k+2}$ so $r_{N_{3}}(X) \geqslant k+2$. Then, there exists a $(k+1)$-element subset B^{\prime} of X such that $B^{\prime} \cup\{w\}$ is independent. Let $e \in B^{\prime}$, let w^{\prime} be an element of N_{3} such that $\left\{e, w, w^{\prime}\right\}$ is a triangle, and let $N=\operatorname{si}\left(N_{3} / w^{\prime}\right)$. Now, it is straightforward to check that e, B^{\prime}, and N have the desired properties.

Proof of Lemma 6.1. We let $f_{3}(1, q)=1$ and, for $n \geqslant 2$, we recursively define $f_{3}(n, q)=h_{5}\left(q^{f_{3}(n-1, q)+1}, q\right)$. We will prove the stronger result that, for any integers $n \geqslant 1$ and $q \geqslant 2$, if $M \in \mathscr{U}(q)$ is a round matroid with rank at least $f_{3}(n, q)$ and B is a basis of M, then M contains a rank- n minor that is a nest whose joints are contained in B.

The proof is by induction on n. The case that $n=1$ is trivial; suppose that $k>1$ and that the result holds when $n=k-1$. Now, consider the case that $n=k$. Let $M \in \mathscr{U}(q)$ be a round matroid with rank at least $f_{3}(n, q)$ and let B is a basis of M. By

Lemma 6.2, there exists a simple round minor N_{1} of M, a set $B^{\prime} \subseteq B \cap E\left(N_{1}\right)$ with cardinality $\left(q^{f_{3}(n-1, q)+1}+1\right)$, and an element $e \in B^{\prime}$ such that, for each element $x \in B^{\prime}-$ $\{e\}$, the pair $\{e, x\}$ spans a long line in N_{1}. Note that $r_{N_{1}}\left(B^{\prime}\right) \geqslant f_{3}(n-1, q)+1$, so there exists an $f_{3}(n-1, q)$-element set $B_{1} \subseteq B^{\prime}-\{e\}$ such that $B_{1} \cup\{e\}$ is independent. By contraction and simplification, we can construct a simple round minor N_{2} of N_{1} such that $B_{1} \cup\{e\}$ is a basis of N_{2}. Now let $N_{3}=\operatorname{si}\left(N_{2} / e\right)$. Note that, N_{3} is round, B_{1} is a basis of N_{3}, and $r\left(N_{3}\right) \geqslant f_{3}(n-1, q)$. Then, by the induction hypothesis, N_{3} contains a rank- $(n-1)$ minor N_{4} that is a nest whose joints are contained in B_{1}. We may assume that $N_{4}=\operatorname{si}(M /(X \cup\{e\}))$ for some set $X \subseteq E(M)$. Observe that $\operatorname{si}(M / X)$ is a rank- n nest whose joints are contained in B.

Theorem 1.1 is an immediate consequence of Lemmas 3.1, 5.2, and 6.1.

References

[1] P. Erdös, L. Pósa, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen 9 (1962) 3-12.
[2] J.P.S. Kung, The long-line graph of a combinatorial geometry. I. Excluding $M\left(K_{4}\right)$ and the $(q+2)$ point line as minors, Quart. J. Math. Oxford 39 (1988) 223-234.
[3] J.P.S. Kung, Extremal matroid theory, in: N. Robertson, P.D. Seymour (Eds.), Graph Structure Theory, Amer. Math. Soc., Providence, RI, 1993, pp. 21-62.
[4] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.

[^0]: ${ }^{t}$ This research was supported by grants from the Natural Sciences and Engineering Research Council of Canada and from the Marsden Fund of New Zealand.

 E-mail addresses: jfgeelen@math.uwaterloo.ca (J.F. Geelen), bert.gerards@cwi.nl (A.M.H. Gerards), geoff.whittle@vuw.ac.nz (G. Whittle).

