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Abstract

We prove that, for any positive integers 7, k and ¢, there exists an integer R such that, if M
is a matroid with no M(K,)- or U, 44 »-minor, then either M has a collection of k disjoint
cocircuits or M has rank at most R. Applied to the class of cographic matroids, this result
implies the edge-disjoint version of the Erdos—Pdsa Theorem.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

A rank-r matroid can have at most r pairwise disjoint cocircuits. There are,
however, matroids with arbitrarily large rank but with no two disjoint cocircuits. For
example, for any positive integer n, M(K,), the cycle matroid of the complete graph
on n vertices, does not contain a pair of disjoint cocircuits. Also, for positive integers
rand n, if n>2r — 1, then U,,, the rank-r uniform matroid with n elements, does not
contain a pair of disjoint cocircuits. We prove the following theorem.

Theorem 1.1. For any positive integers n, k and q, there exists an integer R such that, if
M is a matroid with no M(K,)- or U, 42-minor, then either M has a collection of k
disjoint cocircuits or M has rank at most R.
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Note that, for a prime power ¢, U 44» is the smallest line that is not GF(q)-
representable. The motivation for this theorem is to gain insight into minor-closed
classes of GF(g)-representable matroids that omit a given clique. Let #(n, ¢) denote
the class of GF(g)-representable matroids with no M (K,)-minor. Note that the class
of cographic matroids is contained in #(5, q); we expect that, for any n and ¢, the
class #(n,q) behaves, qualitatively, much like the class of cographic matroids.
Applied to the class of cographic matroids, Theorem 1.1 implies the edge-disjoint
version of the Erdés—Pdsa Theorem [1]. (Note that, for a matroid M, a basis of M* is
a minimum cardinality set of elements that intersects each circuit of M.)

Theorem 1.2 (Erdos—Posa). For any integer k there exists an integer R such that, if G
is a graph, then either G has a collection of k edge-disjoint circuits or there exists a set
of R edges that intersects all circuits of G.

2. Preliminaries

We assume that the reader is familiar with standard definitions in matroid theory.
We use the notation of Oxley [4], with the exception that we denote the simple
matroid canonically associated with the matroid M by si(M).

For any positive integer g we define %(g) to be the class of matroids with no Us 44»-
minor. It is well-known that a simple rank-r GF(g)-representable matroid has at most

‘g:ll elements; Kung [3] showed that the same bound holds for matroids in %(q).

Lemma 2.1. For any integer q=2 and any simple rank-r matroid M €U (q), we have
E(M)| <4,

The simple matroids in %(1) have no circuits, so Theorem 1.1 is trivial when ¢ = 1.
The rank-deficiency of a set A of elements of a matroid M is defined as r(M) —
ry(A4). The following proposition is elementary; we omit the proof.

Proposition 2.2. Let M be a matroid and let X and Y be disjoint subsets of E(M).
Then, r(M/X) —ryx(Y)<r(M) —ry(Y). Moreover, equality holds if and only if
XECIM(Y).

We call a matroid M round if each cocircuit of M is spanning. Equivalently, M is
round if and only if M does not contain a pair of disjoint cocircuits. Note that, for a
simple graph G, M(G) is round if and only if G is a clique. The property of
roundness is, however, more common in matroids; for example, projective
geometries and uniform matroids U, , with n>2r — 1 are round.

The following properties of round matroids are straightforward.

(i) If M is round and ee E(M), then M /e is round.
(ii) If N is a spanning minor of M and N is round, then M is round.
(iii) If M is round, then si(M) is round.



272 J.F. Geelen et al. | Journal of Combinatorial Theory, Series B 87 (2003) 270-279

From these properties it easily follows that:

(iv) If N=M\D/C is a minor of M where D is coindependent and N is round,
then si(M/C) is round.

Throughout most of this paper, when we take minors we typically only use
contraction and simplification. There is one situation, however, in which we delete a
cocircuit.

Lemma 2.3. Let g=2 be an integer, let M e€U(q), and let C be a minimum-sized
cocircuit of M. Then, for any cocircuit C' of M\ C, we have |C'|=|C|/q.

Proof. Set F = E(M) — (Cu(C’). Then F is a flat of M, with rank-deficiency 2,
contained in E(M) — C. Now, si(M/F) is a line with at most ¢ + 1 points. Thus,
there are at most ¢ + 1 hyperplanes containing F, one of which is E(M) — C. Let the
others be Hi,H,,...,Hy. Then ¢'<q, and {H,—F,H,—F,....Hy —F} is a
partition of C. So, since C is a cocircuit of minimum size, we have

q

q
> (CI+IC| = |H; = F|) :Z — Hi|>4|C|.
i=1 i=1

That is, ¢'|C| + ¢'|C'| — |C|=¢|C|, so that |C'|=|C|/q. O

3. Round minors
In this section we prove a weaker version of Theorem 1.1.

Lemma 3.1. There exists an integer-valued function fi(k,n,q) such that, for
any integers k=1, n=1 and q=2, if MeWU(q) is a matroid with rank at least
filk,n,q), then either M has k disjoint cocircuits or M has a round minor with rank at
least n.

Let I'(M) denote the maximum rank-deficiency among all cocircuits of M. Thus,
I'(M) =0 if and only if M is round. We will prove Lemma 3.1 as a corollary of the
following lemma.

Lemma 3.2. There exists an integer-valued function hy(k,n,q) such that, for any
integers k=1, n=1 and q=2, if M e (q) is a matroid with rank at least hy(k,n, q),
then either

i) I'(M)=k, or
(1) M has a round minor with rank at least n.

In its turn, Lemma 3.2 follows easily from the next lemma.
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Lemma 3.3. There exists an integer-valued function hy(n,t,q) such that, for any
integersn=1,t=1,and q=2, if M €U(q) is a matroid with rank at least hy(n, t, q) and
I'(M) =t, then M has a minor N with r(N)=n and I'(N)<I'(M).

Proof. Let hy(n,1,q) = tq" +n. Now, let Me%(g) be a matroid with
r(M)=hy(n,t,q) and I'(M)=1¢>0. We first find a minor N of M with
I'(N)<TI'(M); we then show that the minor has rank at least n.

Let {Cy, Cy, ..., Ci} denote the set of cocircuits of M whose rank-deficiency is
exactly ¢. For ie{l,2,...,k}, set D;=E(M)—cl(C;), X; = C;uD;, and G;=
E(M)— X;. Let X = {x1,x2, ..., X, } be a minimal cover of (X;, X, ..., Xi); that is,
X is minimal with respect to the property that each X; contains at least one member
of X. Consider the minor N = M /X of M. Note that, for C< E(N), C is a cocircuit
of N if and only if it is a cocircuit of M. Then, by Proposition 2.2, I'(N)<T'(M).
Suppose that I'(N) = I'(M), and let C be a cocircuit of N with rank-deficiency z.
Thus, Ce{Cy, C,, ..., Ci}, say C = C;. Since X is a cover of (X7, ..., X)) there exists
x€ X such that xe X;. Clearly x¢ C;, so xe D;. But then x¢cl(C;), so, by Proposition
2.2, the rank-deficiency of C; in N is strictly less than its rank-deficiency in M. This
shows that I'(N)<I'(M).

It remains to show that N has sufficiently large rank. If p<tq”2 then
r(N)=r(M) — p=n. Thus, we may assume that p>1g" .

By the minimality of X, for each ie{1,2,...,p} there exists je{1,2,...,k} such
that X nX; = {x;}. By possibly reordering (X, ..., X}), we may assume that, for
ie{l,...,p}, XnX; = {x;}. Now, it may be the case that the D; = D; for distinct
i,je{l,...,p}. Suppose that D; = --- = D,, where 2<a<p. Since M is not round,
D, contains a cocircuit. Thus, the rank-deficiency of D, is at most . Now, Cy, ..., C,
are cocircuits disjoint from D and xy, ..., x, is a system of distinct representatives of
Cy, ..., C,. So the rank-deficiency of D; is at least a; hence a<t. That is, among
(D1, ...,Dp) no set is repeated more than ¢ times. By possibly reordering, we may
assume that Dy, ..., Dy are distinct and that b>p/r=¢". Fori,je{l, ..., b}, it is easy
to show that C;#D;.

For ie{l,...,b}, the element x;e X either belongs to C; or to D;. If x;e C;, set
F, = (E(M) — D;). Since (X — x;) = G;, we have X = F;. On the other hand, if x; € D;,
set F; = (E(M)— C;); again F; contains X. Now, by the discussion above, flats
(F1, ..., Fp) are distinct. So (F} — X, F, — X, ..., F, — X) are distinct flats of N. Let
m = r(N). The number of distinct flats of a rank-m matroid in %(q) is at most ¢ .
Therefore, ¢ >=b>¢", and, hence, r(N) = m=>n; as required. [

Lemma 3.2 follows easily by successively applying Lemma 3.3.

Proof of Lemma 3.1. Let f;(1,n,¢q) = | and, for ke{2,3, ...}, we recursively define
filk,n,q) = (fi(k —1,n,q9),n,q). We prove the result by induction on k. The case
when k =1 is trivial, as a matroid with non-zero rank has at least one cocircuit.
Suppose that k> 1 and that the result holds for smaller values of k. Let M e%(q) be
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a matroid with rank at least f1(k,n,q). We may assume that M does not contain a
round minor with rank at least n. Then, by Lemma 3.2, M has a cocircuit C; with
rank-deficiency at least fi(k — 1,n,q). Thus, M/C; has rank at least fi(k — 1,n,q).
Moreover, M /C; has no round minor with rank at least n. Then, by the induction
hypothesis, M/C; contains k —1 disjoint cocircuits (C,...,C;). But then
(C, ..., Cy) are disjoint cocircuits of M, as required. [

4. Building density

By the density of a matroid M we mean |E(M)|/r(M). The next task is to show
that, given a round matroid with sufficiently large rank, we can find a round minor
that is dense.

Lemma 4.1. There exists an integer-valued function f(A, q) such that, for any integers
’z1and q=2,if M e (q) is a round matroid with rank at least f,(1, q), then M has a
simple round minor N with |[E(N)|> ir(N).

To facilitate induction, we prove a stronger version of Lemma 4.1.

Lemma 4.2. There exists an integer-valued function hs(,k,q) such that, for any
integers 2=1, k=1 and q=2, if Me%(q) is a round matroid with rank at least
hy(2,k,q), then M has a simple round minor N with |E(N)|>A(r(N)— 1) and
F(N)=k.

Proof. Let /3(1,k,q) =k, and, for 1> 1, we recursively define

hS(/lvkvq) :fl(Q()”_ 1)7h3</1_ 1’k7q)’q) + 1.

The proof is by induction on A. The result is trivial when A = 1. Suppose that 1>1
and that the result holds for smaller values of 4.

Let M e%(q) be a round matroid with rank at least /3(4,k,¢), and let C be a
minimum-size cocircuit of M. By Lemma 3.1, either

(a) M\ C has g(4 — 1) disjoint cocircuits, or
(b) M\ C has a round minor Ny with r(Ny)=h3(2 — 1,k,q).

First consider case (a); that is, M\ C has disjoint cocircuits Ci, ..., C;, where ¢ =
q(2—1). By Lemma 2.3, |C;|>r(M)/q. Therefore,

[E(M)|Z|Cl +|Ci| + -+ + |G| Zr(M) + q(2 — 1)r(M)/q = ir(M).
In this case the result is satisfied by choosing N = M.

Now consider case (b); that is, M\ C has a round minor Ny with r(Ny)=h;3(1 —
1,k,q). By the induction hypothesis, N has a simple round minor N, such that
|[E(N2)|> (42— 1)(r(N2) — (A —1)) and r(N2)=k. Now, N is a minor of M\ C, so
there exists an independent set 7 and coindependent set J of M\ C such that N, =
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(M\C)\J/I. Now, define N =si(M/I). Since M is round, N is round. Let C' =
CnE(N). Note that, C' is a spanning cocircuit of N, thus, r(N) = r(N;) + 1 >k.
Now,

[E(N)|= [C' + |E(N)]
> r(N)+ (2= 1)(r(N2) = (4 - 1))
=r(N)+ (A =1)(r(N) = 4)
= A(r(N) — 1)
as required. [

Proof of Lemma 4.1. Let f3(4,q) = hs(A+1,(A+ 1)*,q). Now, let Me%(q) be a
round matroid with rank at least f(4,¢). By Lemma 4.2, M has a simple round

minor N with r(N)> (/4 + 1)* and
[EWN)| >4+ D(r(N) = (44 1))
—ir( )+ (r(N) = (A + 1))
Ar(N)
as required. [

Let ¢ be an element of a simple matroid M. Define dy(e) =|E(M)| —
|E(si(M/e))|. A rank-2 flat with at least 3 elements is called a long line. Obviously
ou(e)=1, since we lose e in the contraction. We also lose elements on long lines
through e. If L is a long line containing e, then the elements L — {e} are represented

by a single element of si(M/e). If M eU(q), then 3<|L|<qg+ 1. We let £y/(e) denote
the number of long lines through e. Then,

(Oule) = 1)/q</ule)<(du(e) —1)/2.

Lemma 4.3. If M is a simple matroid such that |E(M)|>r(M), then there exists a
subset X of E(M) such that 6 x)(e) >/ for each ec E(si(M/X)).

Proof. Choose X = E(M) maximal such that |E(si(M/X))|>Ar(si(M/X)) and let
N =si(M/X). By the maximality of X, we have |E(si(N/e))|<Ar(si(N/e)) for any
ecE(N). Now,

on(e) =|E(N)| — |E(si(N/e))|
> Ar(N) — Ar(si(N/e))
=/

as required. [
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5. Nests

In order to extract a specific clique minor from a sufficiently large round matroid,
we go through an intermediate class of matroids called nests. We use the following
lemma to recognize cliques; the result is well known but we include the proof for
completeness.

Lemma 5.1. Let M be a matroid with ground set Bo H where B={by, ...,b,} is a
basis of M, H = {h;j: 1<i<j<n} is a hyperplane of M disjoint from B, and
{bi, hj, b;} is a triangle of M for each i<j. Then M is isomorphic to M (K,41).

Proof. Construct a complete graph G with vertex set V' = {vy, ...,v,} and edges
labeled by Bu H where b; € B labels the edge incident with vy and v; and /;;€ H labels
the edge incident with v; and v;. We claim that M = M (G); they clearly have the
same rank. Consider a spanning tree 7" of G. If there exists an edge ;€T N H such
that v; has degree-one in 7' then (7 — {h;})u{b;} is a spanning tree of G and
ru((T —{hi})u{bi}) = ru(T). By repeatedly applying such changes, we see that
ru(T) = ry(B). Thus, T is a basis of M. Now, consider a circuit C of G, and let X
be the set of edges in B that are incident with a vertex of C — vy in G. Note that
Ccely(X). If BAC#0 then | X|<|C|, so C is dependent in M. On the other hand, if
C< H then, since |C| = |X| and C< H ncly(X), we see that C is dependent in M.
Hence, M = M(G) as required. [

A nest is a matroid that contains a basis B = {by,...,b,} such that, for any
integers i,j where 1<i<j<n, the pair (b;b;) spans a long line in
si(iM/{by, ...,bi_1}); the elements of B are called joints. The main result of this
section is that large nests contain big cliques; to prove this we use an elegant method
introduced by Kung [2].

Lemma 5.2. There exists an integer-valued function hy(n, q) such that, for any integers
nz1and q=2, if Me(q) is a nest with rank at least hy(n,q), then M contains an
M(K,)-minor.

Proof. Let /4(n,q) = ¢"~2. Let M e?(q) be a simple nest with rank ¢>/4(n, q), let
B={by,...,b,} be the set of joints of M, and, for each pair of integers 7,j where
I<i<j<t, let e; be an element of M such that {b;,b;,e;} is a triangle of
M/{by,....bi_1}.

5.2.1. For each ke{l,....t}, e, ...,ex—ixtclu({b1,...,bk—1}), and the set
{eiks .- ex—1k } W {bx} is independent in M.

Let ie{l, ...,k — 1}. By the definition of e; we see that ey ¢cly ({b1, ..., b;}) but
that execly({b1,...,b;i} U{br}). Then, since B is a basis, we see that
extcly({b1,...,br_1}), as claimed. For the second part, we prove by induction
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on ie{l,....,k—1} that cly({ew, ...,ex}u{br}) = clar({b1, ...,y u{bi}). The
case that i =1 is trivial; suppose that i>1 and that cly/({eix, ...,ei1} U {br}) =
cly({b1,...,bi-1}u{bi}). By the definition of ey we readily see that ey é¢cly
({b1,...,bi-1yui{br}) but egeclyy({b1,....,bi}u{br}). Thus, cly({b,...,bi}
u{br}) =cly({bi, ..., bim1 Y u{ew,br}). However, cly({ew,....,eim1xtu{bi}) =
cly({b1, ..., bic1}u{br}), so cly({ewk, .., e} u{br}) = clyr({b1, ..., b} U {br}); as
required. This proves 5.2.1.

Note that, for each ke {1, ..., ¢}, the restriction of M to cly ({1, ..., bx}) is a nest.
Let X = {by, ..., b,_2}; our next objective is to make the flat spanned by X dense.
We define a maximal sequence of matroids (N, N,_1, ..., Ni) such that N, = M and,
foreachie{k +1,...,t}, N;i_y = si(N;/a) for some ae E(N;) — cl({by, ..., b;i_1 }) such
that there exists becly (X u{a}) —cl({b,...,bi_1}) with cly,(a,b)cly,(X) = 0.
(That is, to obtain N;_; from N; we look for a point a¢cl({by, ..., b;—1 }) to contract
that throws a new point into the flat spanned by X.) Note that,

n—2<cly, (X)| <lcly, , (X)| < - <|cly, (X)|<qg" > — 1.

Son—2+1t—k<q"?—1. Hence, as t>¢"2, we have k=>n — 1.

Let N denote the restriction of Ny to X u{bi}, let H denote the hyperplane of N
spanned by X, and let B' = {ei, ..., en—24, bk }. By 5.2.1, B is disjoint from H and B’
is a basis of N. Moreover, by the maximality of the sequence (N, ..., Ni), for each
pair (a,b) of distinct elements in B’ there exists an element ce H such that {a, b, ¢} is
a triangle. So, by Lemma 5.1, N contains an M(K,)-minor. O

6. Building a nest
In this section we prove that round matroids with large rank contain large nests.

Lemma 6.1. There exists an integer-valued function f3(n, q) such that, for any integers
n=l and q=2, if MeU(q) is a round matroid with rank at least f3(n,q), then M
contains a nest of rank n as a minor.

We require the following technical lemma.

Lemma 6.2. There exists an integer-valued function hs(k,q) such that, for any integers
k=1 and ¢=2, if Me(q) is a round matroid with rank at least hs(k,q) and B is a
basis of M, then there exists a simple round minor N of M, a (k + 1)-element set
B =BNE(N), and an element ec B' such that, for each element xe B' — {e}, the pair
{e, x} spans a long line in N.

Proof. Let /= g(k — 1) +Y=DEUGS et his(k,q) = ¢PU9), let MelU(q) be a
round matroid with rank at least /s(k, ¢), and let B be a basis of M.
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Consider any minor N of M. When constructing si(N) we keep a single
representative of each parallel class of N; in this proof, we choose si(N) to contain as
many elements of B as possible.

We say that a set X < E(M) dominates M if each element in E(M) — X is on a long
line containing at least 2 elements of X. We claim that:

6.2.1. There exists a simple round minor Ny of M such that BSE(N,) and B
dominates Ny. (Note that B need not be a basis in Ny.)

Indeed, let Ny be a minimal minor of M such that N; is simple and round and
B< E(N)). Now, consider any element f'e E(N;) — B. Certainly, si(N,/f) is simple
and round. Then, by the minimality of Ny, f is on a long line that contains at least 2
elements of B. That is, B dominates Ni; this proves 6.2.1.

Now, |B| = r(M) and BSE(Ny), so r(N)=log,(r(M))>=/f2(4,¢). Note that, by
our convention on simplification, for any set X < E(N;), BN E(si(N;/X)) dominates
si(N;/X). By Lemma 4.1, there exists a simple minor N, of N; such that
|E(N2)| > Ar(N2). We may assume that N, = si(N;/X) for some X; < E(N,). Thus,
N, is round and BN E(N,) dominates N,. Now, by Lemma 4.3, there exists
X EE(Nz) such that 5si(N3/X2)(e)>/1 for all EGE(Si(Nz/Xz)). Let N5 = Si(Nz/Xz);
note that Ns is round and B E(N3) dominates N3. Now, each element e of N is on
at least /g long lines. Let By = BN E(N3) and let W3 = E(N3) — B;. We may
assume that, for each ee Bj, there are at most & — 1 long lines of N3 through e that
contain another point of B3 (since, otherwise, the result is clearly true). Since Bj;
dominates N3, we have:

6.2.2. | W3 <Nl gy

Let L denote the set of long lines in N3 that contain at most one element of Bj.
Thus, |L|>(1/q — (k — 1))|Bs|. Therefore, there exists an element we W3 that is on

at least %2%2%” lines in L. Let X denote the set of all elements of Bj

that are on lines of L containing w. Now |X|>¢**? so ry,(X)>=k + 2. Then, there
exists a (k + 1)-element subset B’ of X such that B'u{w} is independent. Let e€ B,
let w' be an element of N3 such that {e,w,w'} is a triangle, and let N = si(N3/w').
Now, it is straightforward to check that e, B', and N have the desired properties. [

Proof of Lemma 6.1. We let f3(l,q) =1 and, for n>2, we recursively define
f3(n,q) = hs(¢""=19+1 ¢). We will prove the stronger result that, for any integers
n=1and ¢=2, if Me%(q) is a round matroid with rank at least f3(n,¢) and B is a
basis of M, then M contains a rank-n minor that is a nest whose joints are contained
in B.

The proof is by induction on n. The case that n = 1 is trivial;, suppose that k> 1
and that the result holds when n = k — 1. Now, consider the case that n = k. Let
M e (q) be a round matroid with rank at least f3(n, ¢) and let B is a basis of M. By
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Lemma 6.2, there exists a simple round minor N; of M, a set B’ BnE(N;) with
cardinality (¢*"~"9*! 4 1), and an element e€ B such that, for each element xe B’ —
{e}, the pair {e,x} spans a long line in N;. Note that ry,(B)=f3(n—1,¢4) + 1, so
there exists an f3(n—1,g9)-element set B =B — {e} such that Bjyu{e} is
independent. By contraction and simplification, we can construct a simple round
minor N, of N; such that By U {e} is a basis of N>. Now let N3 = si(N,/e). Note that,
N3 is round, B is a basis of N3, and r(N3)>=f3(n — 1,¢). Then, by the induction
hypothesis, N3 contains a rank-(n — 1) minor N4 that is a nest whose joints are
contained in B;. We may assume that Ny = si(M /(X u{e})) for some set X = E(M).
Observe that si(M/X) is a rank-n nest whose joints are contained in B. O

Theorem 1.1 is an immediate consequence of Lemmas 3.1, 5.2, and 6.1.

References

[1] P. Erdoés, L. Posa, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen 9
(1962) 3-12.

[2] J.P.S. Kung, The long-line graph of a combinatorial geometry. I. Excluding M (K4) and the (g + 2)-
point line as minors, Quart. J. Math. Oxford 39 (1988) 223-234.

[3] J.P.S. Kung, Extremal matroid theory, in: N. Robertson, P.D. Seymour (Eds.), Graph Structure
Theory, Amer. Math. Soc., Providence, RI, 1993, pp. 21-62.

[4] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.



	Disjoint cocircuits in matroids with large rank
	Introduction
	Erd—s-Pœsa
	Preliminaries
	Round minors
	Building density
	Nests
	Building a nest
	References


