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BRIDGING SEPARATIONS IN MATROIDS∗

JIM GEELEN† , PETR HLINĚNÝ‡ , AND GEOFF WHITTLE‡

Abstract. Let (X1, X2) be an exact k-separation of a matroid N . If M is a matroid that
contains N as a minor and the k-separation (X1, X2) does not extend to a k-separation in M , then
we say that M bridges the k-separation (X1, X2) in N . One would hope that a minor minimal bridge
for (X1, X2) would not be much larger than N . Unfortunately there are instances in which one can
construct arbitrarily large minor-minimal bridges. We restrict our attention to the class of matroids
representable over a fixed finite field and show that here minor-minimal bridges are bounded in size.

Key words. matroids, connectivity, blocking sequences

AMS subject classification. 05B35

DOI. 10.1137/S089548010139638X

1. Introduction. Seymour’s Decomposition Theorem [4] states that any regular
matroid can be obtained from graphic matroids, cographic matroids, and copies of
R10 using 1-, 2-, and 3-sums. The main step in the proof of this remarkable theorem
is to prove that

(1) If M is a 3-connected regular matroid that is neither graphic nor cographic,
then M contains a minor isomorphic to R10 or R12.

The matroids R10 and R12 are particular 3-connected regular matroids that are neither
graphic nor cographic. It is easy to handle the regular matroids containing R10.

(2) If M is a 3-connected regular matroid that contains R10 as a minor, then
M = R10.

Somewhat more complicated structures arise when considering R12. Let N be a
matroid with an exact k-separation (X1, X2), and let M be a matroid containing N
as a minor. If there exists a k-separation (Y1, Y2) of M where X1 ⊆ Y1 and X2 ⊆ Y2,
then we say that the k-separation (X1, X2) of N is induced in M . If (X1, X2) is not
induced in M , then we say that M bridges the k-separation (X1, X2) in N .

(3) R12 has a 3-separation (X1, X2) such that |X1|, |X2| = 6. Moreover, if M is a
regular matroid that contains R12 as a minor, then the 3-separation (X1, X2)
of R12 is induced in M .

The proof of (2), and of results like (2), is reduced to an elementary finite case
check by Seymour’s Splitter Theorem [4]. However, there is no satisfactory analogue
of Seymour’s Splitter Theorem that can be applied to prove results like (3). We
are interested in minor-minimal matroids that bridge the k-separation (X1, X2) in
N . Unfortunately, in some cases such matroids are arbitrarily large. Nevertheless,
Seymour [4] and Geelen, Gerards, and Kapoor [1] have shown that such matroids
are highly structured (see Theorem 3.4). The main result of this paper is that when

∗Received by the editors October 12, 2001; accepted for publication (in revised form) August 10,
2004; published electronically April 8, 2005.

http://www.siam.org/journals/sidma/18-3/39638.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo N2L 3G1,

ON, Canada (jfgeelen@math.uwaterloo.ca).
‡School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

(hlineny@member.ams.org, whittle@mcs.vuw.ac.nz). Current address of Petr Hliněný: Department
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BRIDGING SEPARATIONS IN MATROIDS 639

we restrict our attention to matroids over a fixed finite field, the situation improves
significantly.

Theorem 1.1. For any finite field F and integer k there exists an integer n such
that if (X1, X2) is an exact k-separation in an F-representable matroid N and M is a
minor-minimal F-representable matroid that bridges the k-separation (X1, X2) in N ,
then |E(M)| ≤ |E(N)| + n.

We actually prove a stronger result, Theorem 7.1, that gives an explicit bound on
n. This reduces the proof of (3) to a finite case check. Of course this is not practical as
the number n is quite large. Nevertheless, we hope to use these results in subsequent
papers to obtain excluded minor characterizations.

For 1- and 2-separations we obtain stronger results that are independent of rep-
resentation. The first of these follows readily from results of Lemos and Oxley [3].

Theorem 1.2. If (X1, X2) is a separation in a matroid N and M is a minor-
minimal matroid that bridges the separation (X1, X2) in N , then |E(M)| ≤ |E(N)|+
2.

Theorem 1.3. If (X1, X2) is an exact 2-separation in a matroid N and M is a
minor-minimal matroid that bridges the 2-separation (X1, X2) in N , then |E(M)| ≤
|E(N)| + 5.

There is no analogue of Theorems 1.2 and 1.3 for 3-separations. Nevertheless,
while there may be arbitrarily large minor-minimal bridging matroids, we can bound
the branch-width of such matroids. (Branch-width is defined in section 8.)

Theorem 1.4. Let (X1, X2) be an exact k-separation in matroid N with branch-
width n. If M is a minor-minimal matroid that bridges the k-separation (X1, X2) in
N , then M has branch-width at most n + k.

Let (M1,M2, . . .) be an infinite sequence of matroids each of which is representable
over the same finite field and each with branch-width at most n. In [2] it is proved
that there exists i < j such that Mi is isomorphic to a minor of Mj . Combining this
with Theorem 1.4, we can obtain a result similar to Theorem 1.1. However, there are
two differences. First, in Theorem 1.1 we keep N as a minor while the other approach
keeps a minor isomorphic to N . More importantly, we obtain an explicit upper-bound
on the size of M , which cannot be done using the methods in [2].

2. Tutte’s Linking Theorem. Let M be a matroid. For any subset A of E(M)
we let

λM (A) := rM (A) + rM (E(M) −A) − rM (E(M));

λM is the connectivity function of M . For sets A,B ⊆ E(M), we have
(i) λM (A) = λM (E(M) −A),
(ii) λM (A) ≤ λM (A ∪ {e}) + 1 for each e ∈ E(M), and
(iii) λM (A) + λM (B) ≥ λM (A ∪B) + λM (A ∩B).

If (X1, X2) is a partition of E(M) such that |X1|, |X2| ≥ k and λM (X1) < k, then
we call (X1, X2) a k-separation of M . If, in addition, λM (X1) = k − 1, then we call
(X1, X2) an exact k-separation of M .

Let N be a minor of M and let (X1, X2) be an exact k-separation of N . We let
κM (X1, X2) = min (λM (A) : X1 ⊆ A ⊆ E(M) − X2). Thus, M bridges (X1, X2)
if and only if κM (X1, X2) ≥ k. Note that if M ′ is a minor of M and X1, X2 ⊆
E(M ′), then κM ′(X1, X2) ≤ κM (X1, X2). The following theorem provides a good
characterization for κ(X1, X2); this theorem is in fact a generalization of Menger’s
theorem.
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640 JIM GEELEN, PETR HLINĚNÝ, AND GEOFF WHITTLE

Theorem 2.1 (Tutte’s Linking Theorem [5]). Let M be a matroid and let X1, X2

be disjoint subsets of E(M). Then, there exists a minor M ′ of M such that E(M ′) =
X1 ∪X2 and λM ′(X1) = κM (X1, X2).

We obtain the following easy corollary.
Corollary 2.2. Let N be a matroid with an exact k-separation (X1, X2), and

let M be a minor-minimal matroid that bridges the k-separation (X1, X2) in N . For
any e ∈ E(M) − E(N) either

1. κM\e(X1, X2) < k and N is not a minor of M/e, or
2. κM/e(X1, X2) < k and N is not a minor of M\e.

By Corollary 2.2, there exists a unique partition (S, T ) of E(M)−E(N) such that
N = M\S/T . However, any minor can be obtained by contracting an independent
set and deleting a coindependent set.

Corollary 2.3. Let N be a matroid with an exact k-separation (X1, X2), and
let M be a minor-minimal matroid that bridges the k-separation (X1, X2) in N . If
N = M\S/T , then S is coindependent and T is independent.

We also require the following technical lemma.
Lemma 2.4. Let M be a matroid, let (Y1, Y2) be a partition of E(M), and let

X1 ⊆ Y1 and X2 ⊆ Y2. If κM (X1, Y2) = λM (Y2) and κM (Y1, X2) = λM (Y1), then
κM (X1, X2) = λM (Y1).

Proof. Let Y be a set such that λM (Y ) = κM (X1, X2) and X1 ⊆ Y ⊆ E(M)−X2.
By submodularity, we have

κM (X1, X2) = λM (Y )

≥ λM (Y ∩ Y1) + λM (Y ∪ Y1) − λM (Y1)

≥ κM (X1, Y2) + κM (Y1, X2) − λM (Y1)

= λM (Y2) + λM (Y1) − λM (Y1)

= λM (Y2)

≥ κM (X1, X2).

Thus, κM (X1, X2) = λM (Y1), as required.

3. Blocking sequences. In this section we review results from [1], but we use
slightly different notation; similar results are given in [4]. Let N be a minor of a
matroid M , and let X = E(N). Then there exists a coindependent set S and an
independent set T such that N = M\S/T . Therefore, there exists a basis B of M
such that T ⊆ B ⊆ E(M) − S. For any subset Y of E(M), we define

M [Y,B] := M\(E(M) − (Y ∪B))/(B − Y ).

Thus M [Y,B] is the minor of M on ground set Y obtained by contracting only ele-
ments of B and deleting only elements of E(M) −B. In particular, N = M [X,B].

Let (X1, X2) be an exact k-separation in N . A sequence v1, . . . , vp ∈ E(M) is a
blocking sequence for the k-separation (X1, X2) of N , with respect to B, if

1.(a) λM [X∪{v1},B](X1) ≥ k,
(b) λM [X∪{vp},B](X1 ∪ {vp}) ≥ k,
(c) for all i ∈ {1, . . . , p− 1}, we have λM [X∪{vi,vi+1},B](X1 ∪ {vi}) ≥ k, and

2. no proper subsequence of v1, . . . , vp satisfies 1.
If there is a blocking sequence for (X1, X2), then M clearly bridges (X1, X2). The

converse is also true and is proved in [1, Theorem 4.14].
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BRIDGING SEPARATIONS IN MATROIDS 641

Theorem 3.1. Let B be a basis of the matroid M , let N = M [X,B], and let
(X1, X2) be an exact k-separation of N . Then, M bridges the k-separation (X1, X2)
in N if and only if there exists a blocking sequence for (X1, X2) with respect to B.

The following propositions give additional properties of blocking sequences; the
first follows easily from the definitions, while the second is proved in [1, Proposi-
tion 4.15].

Proposition 3.2. Let B be a basis of the matroid M , let N = M [X,B], and let
v1, . . . , vp be a blocking sequence, with respect to B, for an exact k-separation (X1, X2)
of N . Now, let i, j ∈ Z, where 0 ≤ i < j − 1 ≤ p; let Y1 ⊆ X1 ∪ {v1, . . . , vi}, where
X1 ∪{vi} ⊆ Y1; and let Y2 ⊆ X2 ∪{vj , . . . , vp}, where X2 ∪{vj} ⊆ Y2. Then, (Y1, Y2)
is an exact k-separation in M [Y1 ∪ Y2, B], and vi+1, . . . , vj−1 is a blocking sequence
for this exact k-separation with respect to B.

Proposition 3.3. Let B be a basis of the matroid M , let N = M [X,B], and let
v1, . . . , vp be a blocking sequence, with respect to B, for an exact k-separation (X1, X2)
of N . Then, the sequence v1, . . . , vp alternates between elements of B and E(M)−B.

In summary, we obtain the following theorem.
Theorem 3.4. Let N be a matroid with an exact k-separation (X1, X2), and let

M be a minor-minimal matroid that bridges the k-separation (X1, X2) of N . Then
there exists a unique partition (S, T ) of E(M)−E(N) such that N = M\S/T . More-
over, there exists an ordering v1, . . . , vp of the elements in E(M) − E(N) that alter-
nates between elements of S and T such that, for each i ∈ {1, . . . , p},

(i) if vi ∈ S, then (X1 ∪ {v1, . . . , vi−1}, X2 ∪ {vi+1, . . . , vp}) is a k-separation in
M\vi, and

(ii) if vi ∈ T , then (X1 ∪ {v1, . . . , vi−1}, X2 ∪ {vi+1, . . . , vp}) is a k-separation in
M/vi.

4. Guts and coguts elements. We let clM (X) denote the closure of the set X
in a matroid M . The coclosure of X, denoted cl∗M (X), is the closure of X in M∗. If
e �∈ X, it is easy to show that e ∈ cl∗M (X) if and only if e �∈ clM (E(M) − (X ∪ {e})).
The following proposition is well known and straightforward.

Proposition 4.1. Let M be a matroid, let X ⊆ E(M), and let e ∈ E(M) −X.
Then

(i) λM/e(X) < λM (X) if and only if e ∈ clM (X) and e is not a loop;
(ii) dually, λM\e(X) < λM (X) if and only if e ∈ cl∗M (X) and e is not a coloop.
Let (X1, X2) be an exact k-separation of M . An element e is in the guts of

(X1, X2) if e ∈ clM (X1 − {e}) and e ∈ clM (X2 − {e}). Similarly, e is in the coguts of
(X1, X2) if e ∈ cl∗M (X1 −{e}) and e ∈ cl∗M (X2 −{e}). Equivalently, e is in the coguts
of (X1, X2) if e �∈ clM (X1 − {e}) and e �∈ clM (X2 − {e}).

The following proposition is also well known.
Proposition 4.2. Let M be a matroid, let (X1, X2) be a partition of E(M), and

let e ∈ X2. Then
(i) λM (X1) < λM (X1 ∪ {e}) if and only if e ∈ clM (X2 − {e}) and e �∈ clM (X1),

and
(ii) λM (X1) = λM (X1 ∪{e}) if and only if e is either in the guts or in the coguts

of (X1, X2).
The following technical lemma is crucial.
Lemma 4.3. Let (X1, X2) be an exact k-separation of a matroid N , and let M be

a minor-minimal matroid bridging the k-separation (X1, X2) of N . Moreover, let B
be a basis of a matroid M such that N = M [X1 ∪X2, B], let v1, . . . , vp be a blocking
sequence for (X1, X2) with respect to B, and let M ′ = M [X1∪X2∪{v2, . . . , vp−1}, B].
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642 JIM GEELEN, PETR HLINĚNÝ, AND GEOFF WHITTLE

If p ≥ 2k + 2, then there exists i ∈ {2, 3, . . . , p− 1} such that κM ′\vi
(X1, X2) = k − 1

and κM ′/vi
(X1, X2) = k − 1.

Proof. Given disjoint subsets A1, A2 of E(M), we let �M (A1, A2) = rM (A1) +
rM (A2)− rM (A1 ∪A2). Thus, if (A1, A2) is a partition of E(M), then �M (A1, A2) =
λM (A1). Moreover, it is straightforward to see that �M (A1, A2) ≤ κM (A1, A2). We
prove the stronger result that if p ≥ 2(k − �M (X1, X2)) + 2, then there exists i ∈
{2, . . . , p − 1} such that κM ′\vi

(X1, X2) = k − 1 and κM ′/vi
(X1, X2) = k − 1. By

Proposition 3.2 and Lemma 2.4, we may assume that p = 2(k − �M (X1, X2)) + 2.
Note that �M (X1, X2) ≤ k − 1, so p ≥ 4.

By duality, we may assume that v1 ∈ B; thus, by Proposition 3.3, v2 �∈ B and
vp �∈ B. Since N is a minor of M ′\v2, we have κM ′\v2

(X1, X2) = k − 1. Suppose
that κM ′/v2

(X1, X2) < k − 1. Then there exists a (k − 1)-separation (Y1, Y2) of
M ′/v2 such that X1 ⊆ Y1 and X2 ⊆ Y2. Note that λM (Y1 ∪ {v2}) ≤ λM/v2

(Y1) + 1
and κM (X1, X2) = k, so (Y1 ∪ {v2}, Y2) is a k-separation of M ′. Therefore, by the
definition of a blocking sequence, v3 ∈ Y1. Similarly, we see that v4, . . . , vp−1 ∈ Y1.
Thus, Y1 = X1 ∪ {v3, . . . , vp−1} and Y2 = X2.

By Proposition 4.2, v2 ∈ clM ′(X2). Therefore, v2 ∈ clM (X2 ∪ {v1}). Now, by
Proposition 3.2, (X1 ∪ {v1}, X2 ∪ {v3, . . . , vp}) is a k-separation in M\v2. Thus,
by Proposition 4.1, v2 �∈ clM (X1 ∪ {v1}). Similarly, (X1, X2 ∪ {v2, v3, . . . , vp}) is a
k-separation in M/v1. Thus, by Proposition 4.1, v1 ∈ clM (X1). Let X ′

1 = X1 ∪
{v2}, X = X1 ∪ X2, and X ′ = X ∪ {v2}. Since v2 �∈ clM (X1 ∪ {v1}), we have
rM (X ′

1) = rM (X1) + 1 and, since v1 ∈ clM (X1) and v2 ∈ clM (X2 ∪ {v1}), we have
rM (X ′) = rM (X). Hence, �M (X ′

1, X2) > �M (X1, X2). Moreover, by Proposition 3.2,
v3, . . . , vp is a blocking sequence for the k-separation (X ′

1, X2) in M [X ′, B]. Now let
M ′′ = M [X ′ ∪ {v4, . . . , vp−1}, B]. Inductively, we find i ∈ {4, 5, . . . , p− 1} such that
κM ′′\vi

(X ′
1, X2) = k − 1 and κM ′′/vi

(X ′
1, X2) = k − 1. Now, the result follows by

Lemma 2.4.

5. Bridging 1- and 2-separations. In this section we prove Theorems 1.2
and 1.3.

Proof of Theorem 1.2. Let X = E(N), let B be a basis of M such that N =
M [X,B], and let v1, . . . , vp be a blocking sequence for the separation (X1, X2) with
respect to B. Suppose that p ≥ 3, and let M ′ = M [X ∪ {v2}]. By the definition of a
blocking sequence, (X1 ∪ {v2}, X2) and (X1, X2 ∪ {v2}) are both separations of M ′.
Hence, N is a minor of both M ′\v2 and M ′/v2. But then N is a minor of both M\v2

and M/v2. So by Corollary 2.2, we obtain a contradiction.
To prove Theorem 1.3 we require the following key lemma, whose proof we leave

as an exercise.
Lemma 5.1. Let N be a minor of a matroid M , let (X1, X2) be an exact 2-

separation of N , and suppose that λM (X1) = λM (X2) = 1. If N ′ is a minor of M
such that E(N ′) = X1 ∪X2 and λN ′(X1) = 1, then N ′ = N .

Proof of Theorem 1.3. Let X = E(N), let B be a basis of M such that N =
M [X,B], and let v1, . . . , vp be a blocking sequence for the separation (X1, X2) with
respect to B. Suppose that p ≥ 6. By Proposition 3.2, we may assume that p = 6.
Let M ′ = M [X ∪ {v2, v3, v4, v5}, B]. By Lemma 4.3, there exists i ∈ {2, 3, 4, 5} such
that κM ′\vi

(X1, X2) = 1 and κM ′/vi
(X1, X2) = 1. Then, by Tutte’s Linking Theorem

and Lemma 5.1, N is a minor of both M ′\vi and M ′/vi. But then N is a minor of
both M\vi and M/vi, contradicting Corollary 2.2.

6. Bridging larger separations. In this section we give examples showing that
there is no analogue of Theorems 1.2 and 1.3 for 3-separations. The same examples

D
ow

nl
oa

de
d 

10
/1

1/
13

 to
 1

29
.9

7.
91

.3
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



BRIDGING SEPARATIONS IN MATROIDS 643

also show that there is no analogue of Theorem 1.1 for infinite fields. In particular,
we prove the following proposition.

Proposition 6.1. For any infinite field F and integer n, there exist F-represent-
able matroids N and M such that N has an exact 3-separation (X,Y ), M is a minor-
minimal matroid bridging this separation in N , and |E(M)| ≥ |E(N)| + n.

Let p ≥ n/2 be an integer and let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 y2 x3 x4 v1 v2 · · · vp−1 vp

x1 0 0 −1 1 0 0 · · · 0 1
x2 0 0 −1 1 0 0 · · · 0 0
y3 1 1 0 1 1 1 · · · 1 1
y4 1 1 1 0 0 0 · · · 0 0
u1 1 0 1 0 α1 0 · · · 0 0

u2 0 0 1 0 α2 α3 0
. . . 0

...
...

...
...

... 0
. . .

. . .
. . .

...
...

...
...

...
... 0

. . .
. . .

. . .
...

up 0 0 1 0 0 · · · 0 α2p−2 α2p−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let U = {u1, . . . , up} and V = {v1, . . . , vp}, and let D = A[U ∪ {y3}, V ∪ {x3}]
(that is, D is the submatrix of A with rows indexed by U ∪{y3} and columns indexed
by V ∪ {x3}). Now, choose α1, . . . , α2p−1 ∈ F so that each subdeterminant of D is
nonzero unless it is identically zero as a polynomial in α1, . . . , α2p−1.

Now, let M be the matroid represented over F by [I|A], let B = U∪{x1, x2, y3, y4},
let X = {x1, x2, x3, x4}, let Y = {y1, y2, y3, y4}, and let N = M [B,X ∪Y ]. Note that
|E(M)| ≥ |E(N)|+n. Also, it is routine to check that (X,Y ) is an exact 3-separation
in N , and that u1, v1, . . . , up, vp is a blocking sequence for (X,Y ) with respect to
B. Thus, M bridges the 3-separation (X,Y ) in N ; it remains to prove that M is
minor-minimal with this property.

Claim. M is a minor-minimal matroid that bridges the 3-separation (X,Y ) of N .
Proof. Suppose, for a contradiction, that there is a proper minor M ′ of M that

bridges the 3-separation (X,Y ) of N . Since M ′ is a minor of M , there exists a basis
B′ of M such that M ′ = M [B′, E(M ′)]. Since N is a minor of M ′, we may assume
without loss of generality that E(N)∩B′ = {x1, x2, y3, y4}. Since u1, v1, . . . , up, vp is
a blocking sequence with respect to B and M ′ is a proper minor of M , we see that
B �= B′. Now, since B′ is a basis of M , A[B − B′, B′ − B] is nonsingular. Note
that B − B′ ⊆ U and B′ − B ⊆ V . By our choice of α1, . . . , α2p−1, we see that
A[(B − B′) ∪ {y3}, (B′ − B) ∪ {x3}] is nonsingular. Hence, (B′ − {y3}) ∪ {x3} is a
basis of M . So, {x1, x2, x3, y4} is a basis of M [B′, E(N)] = N . However, from A we
can see that {x1, x2, x3, y4} is not a basis of M [B,E(N)] = N . This contradiction
completes the proof.

7. Representation over finite fields. The difficulty when we go from 2-
separations to 3-separations is that the analogue of Lemma 5.1 fails. Let N be a
minor of a matroid M , let (X1, X2) be an exact 3-separation of N , and suppose that
λM (X1) = λM (X2) = 2. If N ′ is a minor of M such that E(N ′) = X1 ∪ X2 and
λN ′(X1) = 2, then it need not be the case that N ′ = N . Lemma 5.1 essentially says
that there is a unique way to compose two matroids at given points, but it is well
known that there is no bound on the number of ways to compose two matroids along
given lines. However, over a finite field, lines have bounded length, and hence there
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644 JIM GEELEN, PETR HLINĚNÝ, AND GEOFF WHITTLE

is a bound on the number of ways to compose two representations along given lines.
Similarly, there is also a bound on the number of ways to compose two representations
on subspaces of any fixed dimension.

Throughout the remainder of this section we let F be a fixed finite field with q
elements and we let V (r,F) denote a vector space over F with rank r. Thus, the
number of points in V (r,F) is qr. We let n(r, q) denote the number of ordered bases
of V (r,F). It is straightforward to see that

n(r, q) = (qr − 1)(qr − q) · · · (qr − qr−1).

Let V1 and V2 be two rank-k subspaces of V (r,F). Then the number of invertible linear
transformations from V1 to V2 is n(k, q). The following theorem is a strengthening of
Theorem 1.1. (Sharper bounds can be obtained by using projective equivalence.)

Theorem 7.1. Let F be a finite field with q elements. If (X1, X2) is an ex-
act k-separation in an F-representable matroid N and M is a minor-minimal F-
representable matroid that bridges the k-separation (X1, X2) in N , then |E(M)| ≤
|E(N)| + (2k + 1)n(k − 1, q).

To make the proof of Theorem 7.1 rigorous, we need to be particular about the
way we define representations. A configuration over F is a set of labelled elements
in the vector space V (r,F), for some integer r, where all labels are distinct, but a
vector may receive more than one label. Two configurations are isomorphic if one
can be obtained from the other by relabelling. Formally, a configuration is a pair
(E,V), where E is a finite set and V = V (r,F), with a function ψ from E to the set
of vectors in V. Let L : V → V be a linear transformation. We let L(E,V) denote
the configuration obtained by applying L to V and relabelling accordingly. That is,
in L(E,V) an element e ∈ E labels the vector L(ψ(e)). If L is invertible, then we call
(E,V) and L(E,V) equivalent.

We associate a matroid M with a configuration (E,V) in the natural way. That
is, E is the ground set of M and for a set X of elements, rM (X) is the rank of X in V.
Thus, a matroid M is representable over a field F if it is induced by a configuration
over F in this way. Note that equivalent configurations represent the same matroid.

The notion of minors extends naturally to configurations. Let (E,V) be a con-
figuration, let D and C be disjoint subsets of E, and let L : V → V be a linear
transformation whose kernel is the subspace spanned by C. We let (E,V)\D/C de-
note the configuration L(E − (D ∪ C),V); we call any such configuration a minor
of (E,V). Obviously, if (E,V) is a representation of M , then (E,V)\D/C is a rep-
resentation of M\D/C. Note that L is not uniquely defined, so (E,V)\D/C is not
uniquely determined by D and C; but all such configurations are equivalent. When
it is necessary to distinguish the particular linear transformation used, we say that L
projects (E,V) onto (E,V)\D/C.

Proof of Theorem 7.1. Let X = E(N), let E = E(M), let B be a basis of M
such that N = M [X,B], and let v1, . . . , vp be a blocking sequence for the separation
(X1, X2) with respect to B. Let n = n(k − 1, q), and suppose that p > n(2k + 1).
By Proposition 3.2, we may assume that p = n(2k + 1) + 1. For i ∈ {0, . . . , n}
let ui = vi(2k+1)+1 and, for i �= 0, let Wi = {v(i−1)(2k+1)+2, . . . , vi(2k+1)}. Thus
({u0},W1, {u1}, . . . ,Wn, {un}) is a partition of {v1, . . . , vp}. Now let E′ = E −
{u0, . . . , un} and let M ′ = M [E′, B]. For each i ∈ {0, . . . , n}, let Li = X1 ∪ (W1 ∪
· · · ∪Wi) and Ri = X2 ∪ (Wi+1 ∪ · · · ∪Wn). Thus, (Li, Ri) is a k-separation in M ′

for each i ∈ {0, . . . , n}. By Proposition 3.2 and Lemma 4.3, there exists xi ∈ Wi such
that κM ′\xi

(Li−1, Ri) = k − 1 and κM ′/xi
(Li−1, Ri) = k − 1 for each i ∈ {1, . . . , n}.
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BRIDGING SEPARATIONS IN MATROIDS 645

Consider a configuration (E′,V) representing M ′ over F. For any A ⊆ V let 〈A〉
denote the span of A. Then, for i ∈ {0, . . . , n}, let Vi denote 〈Li〉 ∩ 〈Ri〉; thus Vi is
a subspace of rank k − 1. Now let Di = Wi − B and Ci = Wi ∩ B. Note that N is
a minor of M ′\Di/Ci, so λM ′\Di/Ci

(Ri) = k − 1. Note that, since λM ′(Ri) = k − 1,
〈Ci〉 intersects 〈Ri〉 trivially. Choose a linear transformation Li such that the kernel
of Li is 〈Ci〉 and Li acts as the identity on 〈Ri〉. Thus Li projects (E′,V) onto
(E′,V)\Di/Ci. Let πi be the restriction of Li to Vi−1. Note that πi is an invertible
linear transformation from Vi−1 to Vi. Now let L = LnLn−1 · · · L0. Thus, L(X,V ) is
a configuration representing N .

Recall that κM ′\xi
(Li−1, Ri) = k − 1 and κM ′/xi

(Li−1, Ri) = k − 1. Therefore,
there exists a partition (D′

i, C
′
i) such that λM ′\D′

i
/C′

i
(Ri) = k− 1 and xi is in exactly

one of Di and D′
i. Choose a linear transformation L′

i such that the kernel of L′
i is 〈C ′

i〉
and L′

i acts as the identity on Ri. Thus L′
i projects (E′,V) onto (E′,V)\D′

i/C
′
i. Let

π′
i be the restriction of L′

i to Vi−1. Note that π′
i is an invertible linear transformation

from Vi−1 to Vi. Now, for i ∈ {0, . . . , n} we let σi = (π′
n · · ·π′

i+1)(πi · · ·π1). So σi

is an invertible linear transformation from V0 to Vn−1. The number of such distinct
transformations is n = n(k − 1, q). Therefore, there exists i > j such that σi = σj .
Since each of these linear transformations is invertible, we see that π′

iπ
′
i−1 · · ·π′

j+1 =
πiπi−1 · · ·πj+1; therefore

πn · · ·πi+1π
′
i · · ·π′

j+1πj · · ·π1 = πnπn−1 · · ·π1.

Let

L′ = Ln · · · Li+1L′
i · · · L′

j+1Lj · · · L1.

Now, L′(X,V) is equivalent to L(X,V), which is a representation of N . It follows
that M ′\xi and M ′/xi both contain N as a minor. But then M\xi and M/xi both
contain N as a minor, contradicting the minimality of M .

8. Branch-width. A tree is cubic if all vertices have degree 1 or 3; the vertices
with degree 1 are the leaves. A branch-decomposition of a matroid M on a finite
ground set E is a cubic tree such that E labels a set of the leaves of T . (No leaf
gets more than one label, but there may be unlabelled leaves.) The set displayed by
a given subtree of T is the set of elements of E that label leaves of that subtree.
A set of elements A of E is displayed by an edge e of T if it is displayed by one of
the two components of T\e; the width λ(e) of the edge e of T is λM (A) + 1. The
width of a branch-decomposition is the maximum of the widths of its edges, and the
branch-width of M is the minimum among the widths of its branch-decompositions.

Let T be a branch-decomposition of M and let e be an edge of width k in T . There
are two subsets A and B of E that are displayed by e. These two sets partition E,
and, if |A|, |B| ≥ k, then (A,B) is a k-separation of M ; we say that such k-separations
are displayed by T .

Lemma 8.1. Let (X1, X2) be an exact k-separation in a matroid N and let M
be a minor-minimal matroid that bridges the k-separation (X1, X2) in N . If N has a
branch-decomposition of width n that displays (X1, X2), then M has branch-width at
most n + 1.

Proof. Let X = E(N), let B be a basis of M such that N = M [X,B], and
let v1, . . . , vp be a blocking sequence for the separation (X1, X2) with respect to B.
By duality we may assume that v1 �∈ B. Let T be a width-n branch-decomposition
of N that displays (X1, X2) and let e = ab be the edge of T that displays X1 and
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646 JIM GEELEN, PETR HLINĚNÝ, AND GEOFF WHITTLE

X2. Now let Ta and Tb be the components of T − e containing a and b, respectively.
We construct a tree-decomposition T ′ of M as follows. Connect Ta to Tb with a path
P = (a, x1, . . . , xp, b), and for each i ∈ {i, . . . , p} add a leaf, labelled vi, adjacent to xi.
Note that e has width k ≤ n in T and, by Proposition 3.2, each edge of P has width
k+1 in T ′. The edges of T ′ incident with any of v1, . . . , vp all have width 2. Consider
any other edge f of T ′. By symmetry we may assume that f is an edge of Ta. Let A
and B be the sets displayed by f in T ′, where A ⊆ X1. Note that A is displayed by
f in T , so λN (A) ≤ n. By Proposition 3.2, λN (X1) = λM\v1

(X1). Therefore, since
A ⊆ X1, λN (A) = λM\v1

(A). Thus λM (A) ≤ λM\v1
(A) + 1 = λN (A) + 1 ≤ n + 1.

Therefore, T ′ has width at most n + 1, as required.
Theorem 1.4 follows immediately from Lemma 8.1 and the next lemma.
Lemma 8.2. Let N be a matroid with branch-width n and let (X1, X2) be a

k-separation of N . Then, there exists a branch-decomposition of N that displays
(X1, X2) and that has width at most n + k − 1.

Proof. Let T be a width-n branch-decomposition of N . We may assume that T
has some unlabelled leaf r. Let s be the neighbor of r in T . Construct two copies T1

and T2 of T − r such that for each vertex v of T the corresponding copies are labelled
v1 and v2. Now construct a cubic tree T ′ by connecting T1 and T2 with the edge
s1s2. We now make T ′ into a new branch-decomposition of N as follows. For each
i ∈ {1, 2} and e ∈ Xi, if e labels the leaf x in T , then we label the leaf xi with e in
T ′. Therefore, X1 and X2 are displayed by s1s2 in T ′.

Consider an edge f of T − r. Let A be the set that is displayed by the component
of T −f that does not contain s. Thus A∩X1 and A∩X2 are displayed by the copies
of f in T ′. Now, λN (A ∩ Xi) ≤ λN (A) + λN (Xi) ≤ n + (k − 1) for each i ∈ {1, 2}.
Therefore, T ′ has width at most n + k − 1, as required.
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