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For each odd integer k ≥ 5, we prove that, if M is a simple
rank-r binary matroid with no odd circuit of length less than k
and with |M | > k2r−k+1, then M is isomorphic to a restriction
of the rank-r binary affine geometry; this bound is tight for all
r ≥ k− 1. We use this to give a simpler proof of the following
result of Govaerts and Storme: for each integer n ≥ 2, if M is a
simple rank-r binary matroid with no PG(n−1, 2)-restriction
and with |M | > (1 − 11

2n+2 )2r, then M has critical number at
most n− 1. That result is a geometric analogue of a theorem
of Andrásfai, Erdős and Sós in extremal graph theory.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Our main result is:

Theorem 1.1. For each odd integer k ≥ 5 and each integer r ≥ k − 1, if M is a simple
rank-r binary matroid with no odd circuit of length less than k and with |M | > k

2k−1 2r,
then M is isomorphic to a restriction of the rank-r binary affine geometry.

Examples showing that the bound is tight are given in Section 4. We will prove
Theorem 1.1 in Section 3. In the remainder of this introduction we discuss the motivation.
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We will call a matroid N -free if it has no restriction isomorphic to N . Bose and
Burton [3] proved the following theorem.

Theorem 1.2 (Bose–Burton Theorem). For all integers r and n with r ≥ n ≥ 2, if M is
a simple rank-r PG(n− 1, 2)-free binary matroid, then |M | ≤ (1 − 1

2n−1 )2r.

Note that, if F is a rank-(r−n+1) flat in PG(r−1, 2), then the matroid M = PG(r−
1, 2) \ F attains equality in the Bose–Burton Theorem. We will denote PG(r − 1, 2) \ F
by BB(r, n − 1). Note that BB(r, 1) is isomorphic to the affine geometry AG(r − 1, 2).
Bose and Burton proved that BB(r, n − 1) is the only matroid that attains equality in
their theorem, but the following result is considerably stronger.

The critical number of a simple rank-r binary matroid M is equal to the minimum
integer c such that M is isomorphic to a restriction of BB(r, c). Equivalently, c is the
minimum number of cocycles of M required to cover E(M). (Here by a cocycle we mean a
disjoint-union of cocircuits.) The following result was proved by Govaerts and Storme [4];
it is analogous to a theorem in extremal graph theory due to Andrásfai, Erdős and Sós [1].
We will review the related work in graph theory in the next section.

Theorem 1.3 (Geometric Andrásfai–Erdős–Sós Theorem). Let n ≥ 2 be an integer and
let ε = 3

2n+2 . Then, for each integer r ≥ n+ 2, if M is a simple rank-r PG(n− 1, 2)-free
binary matroid with |M | > (1 − 1

2n−1 − ε)2r, then M has critical number at most n− 1.

A simple binary matroid is called affine if it is isomorphic to a restriction of a binary
affine geometry; that is, the ground set is itself a cocycle. Note that the n = 2 instance
of the Geometric Andrásfai–Erdős–Sós Theorem is the same as the k = 5 instance of
Theorem 1.1, and both equivalent to the following result.

Theorem 1.4. For each integer r ≥ 4, if M is a simple rank-r triangle-free binary matroid
with |M | > 5

162r, then M is affine.

Govaerts and Storme prove the Geometric Andrásfai–Erdős–Sós Theorem by induc-
tion on n. The induction follows an existing method introduced by Beutelspacher [2],
but the base case (Theorem 1.4) requires some work. Our proof of Theorem 1.4 is a
little easier, though, Govaerts and Storme do prove a bit more; they characterize the
non-affine simple rank-r triangle-free binary matroids with 5

162r elements.

2. Connections with graph theory

The following result is a weak version of Turán’s Theorem [6].

Theorem 2.1. For all integers t and n with n ≥ t ≥ 2, if G is a simple n-vertex Kt-free
graph, then |E(M)| ≤ t−2(n).
t−1 2
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One natural class of Kt-free graphs is the class of (t − 1)-colourable graphs. The
stronger version of Turán’s Theorem amounts to saying that the densest Kt-free graphs
are all (t − 1)-colourable. One might hope that, for some ε > 0, all n-vertex Kt-free
graphs with at least ( t−2

t−1 − ε)
(
n
2
)

edges are (t− 1)-colourable. However, this is not true
as one can take the direct sum of a triangle-free graph with chromatic number t and
some sufficiently large and dense graph with chromatic number t− 1.

Andrásfai, Erdős and Sós [1] overcome this issue by considering minimum degree
instead of the number of edges. Note that, if G is an n-vertex graph with minimum
degree αn, then |E(G)| > α

(
n
2
)
.

Theorem 2.2 (Andrásfai–Erdős–Sós Theorem). Let t ≥ 3 be an integer and let ε =
1

(t−1)(3t−4) . Then, for each integer n ≥ t, if G is a simple n-vertex Kt-free graph with
minimum degree > ( t−2

t−1 − ε)n, then G is (t− 1)-colourable.

In some sense the geometric version is even nicer, since the Geometric Andrásfai–
Erdős–Sós Theorem implies the Bose–Burton Theorem, but it is not immediately evident
whether or not the Andrásfai–Erdős–Sós Theorem implies Turán’s Theorem.

The Andrásfai–Erdős–Sós Theorem is proved by induction on t; the base case is:

Theorem 2.3. For each integer n ≥ 5, if G is a simple n-vertex triangle-free graph with
minimum degree > 2

5n, then G is bipartite.

They prove the following strengthening.

Theorem 2.4. For each odd integer k ≥ 5 and each integer n ≥ k, if G is a simple
n-vertex graph with no odd-circuit of length less than k and with minimum degree > 2

kn,
then G is bipartite.

The above results on graphs bear a striking resemblance to the results in the introduc-
tion, where the role of “chromatic number” in graphs replaces “critical number” in the
geometric setting. It is well known that the critical number and the chromatic number
are related. For example, if G is a simple graph of chromatic number χ and M(G) has
critical number c ≥ 1, then

2c−1 < χ ≤ 2c.

In particular, G is bipartite if and only if M(G) is affine. Moreover, the characterization
of bipartite graphs using odd circuits is in fact a specialization of well-known result about
binary matroids; see Oxley [5, Proposition 9.4.1].

Theorem 2.5. A simple binary matroid is affine if and only if it does not contain a circuit
of odd size.
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3. The proofs

We start by proving Theorem 1.1, which we reformulate here for convenience; the
equivalence between these formulations requires Theorem 2.5.

Theorem 3.1. Let k ≥ 5 be an odd integer, let M be a simple rank-r binary matroid with
r ≥ k − 1, and let C be a circuit of size k in M . If M does not have an odd-circuit of
length < k, then |M | ≤ k

2k−1 2r.

Proof. We break the proof into three cases.

Case 1. r = k − 1.

Suppose, for a contradiction, that |M | > k = |C|. Let e ∈ E(M) − E(C). Since M

is simple and binary and since r(C) = r(M) there is a partition (C1, C2) of C with
|C1|, |C2| ≥ 2 such that C1∪{e} and C2∪{e} are both circuits. However, since C is odd,
one of C1 ∪ {e} and C2 ∪ {e} is odd. This contradicts that C is a smallest odd circuit
in M .

Case 2. r = k.

Suppose, for a contradiction, that |M | > |C|+ k. By Case 1, E(M)−C is a cocircuit
of M .

Claim. For each u1, u2 ∈ E(M) − C there exist v1, v2 ∈ C such that {u1, u2, v1, v2} is a
circuit.

Since M |(C∪{u1, u2}) is binary and has co-rank 2, its ground set partitions into three
series classes ({u1, u2}, C1, C2). Since C is odd, we may assume that |C1| is odd. Now
C1 ∪{u1, u2} is an odd circuit. Since C is an odd circuit of minimum size, |C1| = |C|− 2
and, hence, |C2| = 2. Now C2 ∪ {u1, u2} gives the required circuit.

Let u ∈ E(M) − C and let X = E(M) − (C ∪ {u}). By the claim, for each e ∈ X

there exists a two-element set Pe ⊆ C such that Pe ∪ {u, e} is a circuit. Moreover, since
M is binary, Pe �= Pf for distinct e, f ∈ X. Since |X| ≥ |C|, there exist e, f ∈ X such
that Pe and Pf are disjoint. Since M is binary, the symmetric difference Z of C, Pe, and
Pf can be partitioned into circuits. However Z is smaller than C and has odd size; this
contradicts that C is a minimum sized odd-circuit.

Case 3. r > k.

By Claim 1, clM (C) = C. By Claim 2, each parallel class of M/C has size at most k.
Moreover, M/C has rank r−k+1 and hence it has at most 2r−k+1−1 points. Therefore
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|M | ≤ k
(
2r−k+1 − 1

)
+ k = k

2k−1 2r,

as required. �
Now we prove the Geometric Andrásfai–Erdős–Sós Theorem from Theorem 1.4. This

proof is sketched in [4]; Govaerts and Storme attribute the method to Beutelspacher [2].
We reformulate the result here for convenience.

Theorem 3.2. For all integers r and n with r − 2 ≥ n ≥ 2, if M is a simple rank-r
PG(n − 1, 2)-free binary matroid with |M | > (1 − 11

2n+2 )2r, then M has critical number
at most n− 1.

Proof. Consider a counterexample (r, n,M) with n minimum. Thus M is a simple rank-r
PG(n − 1, 2)-free binary matroid with |M | > (1 − 11

2n+2 )2r and with critical number at
least n. By Theorem 1.4, n ≥ 3.

Consider M as a restriction of PG(r − 1, 2) and let B denote the set of points not
in M . Thus |B| < 11

2n+2 2r − 1.

Claim 1. There is a line l of PG(r − 1, 2) containing exactly one point of M .

If not, then B is a flat of PG(r−1, 2). Since M has critical number at least n, we have
rM (B) ≤ r(M) − n. So there is a rank-n flat F of PG(r − 1, 2) that is disjoint from B.
But then M |F is isomorphic to PG(n− 1, 2). This contradiction proves the claim.

Claim 2. There is a hyperplane H of PG(r − 1, 2), such that |B ∩H| ≥ 2r−n+1 − 1.

Let l be a line containing exactly one point in M , let p ∈ l ∩ E(M), and let H0 be a
hyperplane of M that does not contain p. Let X be the set of all points q ∈ H0 ∩E(M)
such that {p, q} spans a triangle in M . There are at most 2r−1 − 2 lines of PG(r − 1, 2)
that contain p and that contain at least one other point of M . Each of these lines contains
at most one point of M \ (X ∪ {p}), so

|M | ≤ 2r−1 − 1 + |X|.

Thus |X| > (1 − 11
2n+1 )2r−1. Since M is PG(n − 1, 2)-free, M |X is PG(n − 2, 2)-free.

Therefore, by the minimality of the counterexample, M |X has critical number ≤ n− 2.
Let F0 be a rank-(r − n + 1) flat in H0 that is disjoint from X and let F1 be the flat
spanned by F0 ∪ {p}. By definition, |F1 ∩B| ≥ 2r−n+1 − 1. We can extend F1 to obtain
the desired hyperplane; this proves the claim.

Let H be a hyperplane satisfying Claim 2.

Claim 3. There is a rank-(n− 1) flat F of PG(r − 1, 2) with F ⊆ H ∩ E(M).
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Suppose otherwise; thus M |(E(M) ∩ H) is PG(n − 2, 2)-free. Since M has critical
number ≥ n, M |(E(M) ∩ H) has critical number ≥ n − 1. Now, by the minimality of
our counterexample,

∣∣E(M) ∩H
∣∣ ≤

(
1 − 11

2n+1

)
2r−1.

Thus

|M | ≤
∣∣E(M) ∩H

∣∣ + 2r−1 ≤
(

1 − 11
2n+2

)
2r,

giving the required contradiction. This proves the claim.

Let F be such a flat. There are 2r−n flats of rank n in PG(r − 1, 2) that contain F

but are not contained in H. Since M is PG(n− 1, 2)-free, each of these flats contains a
point in B. Thus |B −H| ≥ 2r−n. Therefore

|B| ≥ 2r−n + 2r−n+1 − 1 = 12
2n+2 2r − 1.

This contradiction completes the proof. �
4. Extremal examples

Our constructions are based on the following result.

Lemma 4.1. Let M be a simple rank-r matroid, let v ∈ E(M) such that each line contain-
ing v has 3 points, and let N be the restriction of M to a hyperplane not containing v.
Then

(i) |M | = 2|N | + 1.
(ii) M \ v and N have same critical number.
(iii) For each odd integer k ≥ 3, if M \ v has an odd circuit of length ≤ k, then N has

an odd circuit of length ≤ k.
(iv) For each integer n ≥ 2, if M \ v has a PG(n − 1, 2)-restriction, then N has a

PG(n− 1, 2)-restriction.
(v) For each integer n ≥ 2, if N has a PG(n − 1, 2)-restriction, then M has a

PG(n, 2)-restriction.

Before we prove Lemma 4.1, we introduce some definitions. Note that M is defined,
up to isomorphism, from N . We say that M is a conical lift of N and that M \ e is a
doubling of N .

Proof of Lemma 4.1. Note that (i) is trivial. Moreover, since PG(n, 2) is a conical lift of
PG(n− 1, 2), (v) is also trivial.
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Consider M as a restriction of PG(r−1, 2) and let H be the hyperplane of PG(r−1, 2)
containing N . Let N̄ be the restriction of PG(r − 1, 2) to H − E(N) and let M̄ be the
restriction of PG(r − 1, 2) to E(PG(r − 1, 2) − E(M)) ∪ {v}. Note that M̄ is a conical
lift of N̄ . Hence (ii) follows from (v).

Now consider (iv). Suppose that N1 is a restriction of M \ v that is isomorphic to
PG(n−1, 2). Now (M/v)|E(N1) is also isomorphic to PG(n−1, 2). Since N is isomorphic
to the simplification of M/v, N has a restriction isomorphic to PG(n−1, 2), as required.

Finally, consider (iii). Let C be an odd circuit in M \ v. We may assume that C spans
v since otherwise the proof goes as the proof of (iv). Then there is an odd subset C ′ of
C such that C ′ ∪ {v} is a circuit in M . Thus C ′ is an odd circuit in M ′/v. Since N is
isomorphic to the simplification of M/v, N has an odd circuit of length |C ′| ≤ k. �

The following result shows that Theorem 1.1 is tight.

Theorem 4.2. For each odd integer k ≥ 5 and each integer r ≥ k − 1, there exists a
non-affine rank-r simple ( k

2k−1 2r)-element binary matroid with no odd circuit of length
less than k.

Proof. When r = k − 1, we take the circuit of length k. Then we construct examples in
higher rank by repeatedly doubling. �

The next result shows that the Geometric Andrásfai–Erdős–Sós Theorem is tight;
these examples were given in [4].

Theorem 4.3. For all integers n and r with r − 2 ≥ n ≥ 2, there is a simple rank-r
PG(n− 1, 2)-free binary matroid with critical number n and with (1− 11

2n+2 )2r elements.

Proof. For n = 2, the examples come from Theorem 4.2. Suppose that n ≥ 3 and
that there exists a simple rank-(r − 1) PG(n − 2, 2)-free binary matroid N with |N | =
(1 − 11

2n+1 )2r−1, and with critical number n− 1. Let H be a hyperplane in PG(r − 1, 2)
and construct a restriction M of PG(r− 1, 2) by taking a copy of N in H along with all
points outside H. Thus M is PG(n − 1, 2)-free, has critical number n, and has 2r−1 +
(1 − 11

2n+1 )2r−1 = (1 − 11
2n+2 )2r points. �
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