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Abstract

A t-design for quantum states is a finite set of quantum
states with the property of simulating the Haar-measure on
quantum states w.r.t. any test that uses at most t copies
of a state. We give efficient constructions for approximate
quantum t-designs for arbitrary t. We then show that an ap-
proximate 4-design provides a derandomization of the state-
distinction problem considered by Sen (quant-ph/0512085),
which is relevant to solving certain instances of the hidden
subgroup problem.

1 Introduction

t-wise independent and approximately t-wise indepen-
dent probability distributions have been extremely useful in
combinatorics and the theory of computing. In this paper,
we study their quantum counterparts, quantum t-designs.

Intuitively, a quantum t-design is a probability distri-
bution over quantum states which cannot be distinguished
from the uniform probability distribution over all quantum
states (the Haar measure) if we are given t copies of a state
from this probability distribution. More formally, we define

Definition 1 [Generalization of the definition in Ref. [18]]
A probability distribution over quantum states (pi, |φi〉) is
a complex projective (t, t)-design if

∑
i

pi(|φi〉〈φi|)⊗t =
∫
ψ

(|ψ〉〈ψ|)⊗tdψ,

where the integral over |ψ〉 on the right hand side is taken
over the Haar measure on the unit sphere in CN .

This definition of complex-projective (t, t)-designs, or
quantum t-designs has been previously studied in two con-
texts.
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In the context of quantum information theory, [3, 18, 11,
12, 5] have studied quantum 2-designs, giving constructions
of 2-designs with O(N2) states and applying them to var-
ious problems in quantum information. Hayashi et al. [9]
gave a construction of a t-design for arbitrary t with O(t)N

of states. This is efficient for a fixed dimensionN but ineffi-
cient when N is much larger than t. The N = 2 (one-qubit)
case was independently solved by Iblisdir and Roland [10].

Second, quantum t-designs are related to t-designs of
vectors on the unit sphere in RN , called spherical t-designs,
which have been studied in the mathematics literature since
a seminal paper by Delsarte, Goethals and Seidel [6]. An
inefficient construction of an exact spherical t-design with
tO(N2) vectors has been given by Bajnok [2] and Korevaar
and Meyers [13]. A spherical t-design in RN can be trans-
formed into a (t/2, t/2)-design in CN/2. Thus, those re-
sults also imply the existence of quantum t-designs with a
similar number of states.

To summarize the previous work (for the case when t is
fixed and the dimension N is large), inefficient construc-
tions of quantum t-designs with an exponential number of
states are known for any t and efficient constructions are
known for t = 2. The contributions of this paper are as
follows:

1. We introduce the notion of an approximate t-design;

2. We give two efficient constructions of approximate t-
designs, a simpler construction with O(N3t) states,
for any t, and a more complicated construction with
O(N t logcN) states.

3. We show how to apply an approximate 4-design to de-
randomize the state-distinction result by Sen [19].

Note added. After this paper was accepted for publi-
cation, we have learned that parts of our results has been
discovered before, in the context of mathematical analysis.
Namely, Kuperberg [14] has constructed an exact t-design
with O(N2t) states. The main ideas behind Kuperberg’s
construction are similar to our simpler construction, but Ku-
perberg’s paper handles some of the details of the construc-
tion in a better way, obtaining an exact design with a smaller
number of states.

Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
0-7695-2780-9/07 $20.00  © 2007



Our second construction achieves a result that is in-
comparable to Kuperberg’s construction. It is approxi-
mate (instead of exact in his paper) but uses less states
(O(N t logcN) instead of O(N2t)).

According to Kuperberg (personal communication), an
approximate t-design for CN (for some notion of approxi-
mate designs) can be also obtained from an exact design for
N -dimensional torus. In another paper, Kuperberg [15] has
constructed a t-design forN -dimensional torus withO(N t)
states which implies an approximate t-design for CN with
O(N t) states. It is, however, unclear, whether this gives an
approximate t-design w.r.t. our definition of approximate
designs, a weaker definition or a stronger definition.

Since Kuperberg’s work [14, 15] was done in the context
of mathematical analysis, it did not address the questions of
efficiently generating quantum states from a t-design or effi-
ciently performing POVM w.r.t. a t-design. Due to similar-
ity of his construction and ours, it is likely that our method
of efficiently performing POVM also works for his design.

2 Summary of results

Our definition of an approximate (t, t)-design is as fol-
lows:

Definition 2 A probability distribution over quantum states
(pi, |φi〉) is an ε-approximate (t, t)-design if

(1 − ε)
∫
ψ

(|ψ〉〈ψ|)⊗tdψ ≤
∑
i

pi(|φi〉〈φi|)⊗t

≤ (1 + ε)
∫
ψ

(|ψ〉〈ψ|)⊗tdψ,

where the integral over |ψ〉 on the right hand side is taken
over the Haar measure on the unit sphere in CN and

∑
i

pi|φi〉〈φi| =
∫
ψ

|ψ〉〈ψ|dψ =
I

N
. (1)

Instead of requiring closeness to a t-design in the l∞
norm, as in Definition 2, one could use a different norm
(e.g., l1 or l2-norm). This might make design easier to con-
struct but closeness in l1 or l2 is not sufficient for Theorem
4 and, possibly, other applications.

Theorem 1 Fix a constant t. Then, for everyN ≥ 2t, there
exists an O( 1

N1/3 )-approximate (t, t)-design consisting of
O(N3t) quantum states1.

The t-design of Theorem 1 can be efficiently imple-
mented, for several meanings of “efficiently implemented”:

1The big-O constants can depend on t.

1. It is possible to generate a quantum state |φ〉 dis-
tributed according to the probability distribution
(pi, |φi〉) in time O(logcN).

2. Because of equation (1), the operators Npi|φi〉〈φi|
form a POVM measurement. This POVM measure-
ment can be implemented in time O(logcN).

The first property is just the normal definition of being able
to sample from the probability distribution. (Since we are
dealing with states in N dimensions, which can be de-
scribed by logN qubits, “efficient” means polynomial in
logN .) The second property may seem unusual at first but
it is exactly what we need for our application (Theorem 4).

In section 4.2, we show that the number of states
in the ε-approximate (t, t)-design can be decreased to
O(N t logcN). There is a simple way to generate the states
in the resulting (t, t)-design but we are not sure if the cor-
responding POVM measurement can be efficiently imple-
mented.

We now give the application of Theorem 1. Radhakrish-
nan et al. [17] have shown

Theorem 2 Let |ψ1〉, |ψ2〉 be two orthogonal quantum
states in CN . Then,

EM̂‖M̂(ψ1) − M̂(ψ2)‖1 = Ω(1),

where M̂ is an orthonormal basis picked uniformly at ran-
dom from the Haar measure.

This result was improved by Sen[19].

Theorem 3 Let ρ1, ρ2 be two mixed states in CN with
rankρ1 + rankρ2 ≤

√
N
K for a sufficiently large K. Then,

EM̂‖M̂(ρ1) − M̂(ρ2)‖1 = Ω(f),

where M̂ is an orthonormal basis picked uniformly at ran-
dom from the Haar measure and f = ‖ρ1 − ρ2‖F is the

Frobenius norm of ρ1 − ρ2 (‖A‖F =
√∑N

k,l=1 |akl|2).

Theorem 2 is a particular case of Theorem 3, since
‖|ψ1〉〈ψ1| − |ψ2〉〈ψ2|‖F = 2. As next theorem shows, we
can replace the measurement in a random orthonormal ba-
sis by a POVM w.r.t. a complex projective 4-design (where
“POVM with respect to (pi, |φi〉)” is just the POVM con-
sisting of one-dimensional projectors Npi|φi〉〈φi|).
Theorem 4 Let f = ‖ρ1 − ρ2‖F and ε < cf4, where c is
a sufficiently small constant. Then, for any mixed states ρ1,
ρ2 in CN×N ,

‖M̂(ρ1) − M̂(ρ2)‖1 = Ω(f),

where M̂ is a POVM with respect to an ε-approximate
(4, 4)-design.
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Theorems 4 and 1 together derandomize Theorem 3, as
long as f = Ω(n−1/12). Also, Theorem 4 does not require
the constraint on the rank of ρ1 and ρ2 from Theorem 3.

The rest of this paper is structured as follows. In sec-
tion 3, we compare different definitions of t-designs. Then,
in section 4, we give our construction of approximate t-
designs (Theorem 1). In section 5, we show how to use
(4, 4)-designs for state-distinction (Theorem 4). These are
the main results of our paper.

Some more technical claims are postponed to appen-
dices. In appendix A, we derive expressions for expected
values of monomials involving amplitudes of a quantum
state drawn from Haar measure. In appendix B, we prove
two theorems relating definitions of (t, t)-designs and in ap-
pendix C, we show how to implement POVM w.r.t. our
(t, t)-design efficiently.

3 Definitions of (t, t)-designs

The earlier papers on (t, t)-designs used a different def-
inition of (t, t)-designs, in terms of polynomials of the am-
plitudes of a state |φi〉. In this section, we show that the two
definitions are equivalent. We also present a condition on
the polynomials of amplitudes which implies Definition 2.

Let p(x1, . . . , xN , y1, . . . , yN ) be a polynomial of de-
gree at most t in variables x1, . . . , xN and degree at most
t in variables y1, . . . , YN . For a state |ψ〉 =

∑N
j=1 αj |j〉,

we define

p(ψ) = p(α1, . . . , αN , α
∗
1, . . . , α

∗
N ).

Definition 3 A probability distribution over quantum states
(pi, |φi〉) is a complex projective (t, t)-design if, for arbi-
trary polynomial p(x1, . . . , xN , y1, . . . , yN ) of degree t in
variables x1, . . . , xN and degree t in variables y1, . . . , yN ,
we have ∫

ψ

p(ψ)dψ =
∑
i

pip(φi), (2)

where the integral over |ψ〉 on the left hand side is taken
over the Haar measure on the unit sphere in CN .

Theorem 5 (pi, |φi〉) is a complex projective (t, t)-design
according to Definition 1 if and only if it is a complex pro-
jective (t, t)-design according to Definition 3.

Proof: In appendix B.
Let

p =
k∏
j=1

x
cj

ij
(x∗ij )

dj

be a monomial. We call p unbalanced if di �= ci for some
i ∈ {1, . . . , N}. In appendix A, we show that the Haar-
expectation of any unbalanced monomial p is∫

ψ

p(ψ)dψ = 0 (3)

and the Haar-expectation of any monomial of the form

p =
k∏
j=1

x
cj

ij
(x∗ij )

cj

for distinct xi1 , . . . , xik is∫
ψ

p(ψ)dψ =
c1! . . . ck!

N(N + 1) . . . (N + d− 1)
(4)

We show that having an approximate version of these
requirements is sufficient for an approximate (t, t)-design:

Theorem 6 Assume that a probability distribution over
quantum states (pi, |φi〉) satisfies the following constraints:

1.
∑
i pip(φi) = 0 for any unbalanced monomial p,

2. ∣∣∣∣∣
∑
i

pip(φi) − c1! . . . ck!
N(N + 1) . . . (N + d− 1)

∣∣∣∣∣
≤ ε

c1! . . . ck!
N(N + 1) . . . (N + d− 1)

.

for monomials p =
∏k
j=1 x

cj

ij
(x∗ij )

cj with c1 + . . . +
ck = d and d ≤ t and

3.
∑
i pip(φi) = 1

N for monomials p = xjx
∗
j , where j ∈

{1, 2, . . . , N}.

Then, (pi, |φi〉) is an t!ε-approximate (t, t)-design.

Proof: In appendix B.

4 Constructing approximate (t, t)-designs

4.1 Main construction

In this section, we prove Theorem 1. It suffices to con-
struct a set of states that satisfies the requirements of Theo-
rem 6. For simplicity, assume that N is a power of 2. We
use

Theorem 7 [21] For any N = 2k, there is a set S of Nd

functions f : {0, . . . , N − 1} → {0, . . . , N − 1} such that,
for any distinct k1, . . . , kd ∈ {0, . . . , N − 1}, the proba-
bility distribution of f(k1), . . . , f(kd) (where f is chosen
uniformly at random from S) is exactly the uniform distri-
bution over tuples of d elements of {0, . . . , N − 1}.

Such S are called d-wise independent families of func-
tions. The second technical tool that we use is the Gaussian
quadrature.
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Lemma 1 [7, Chapter 10.6] Let X be a real-valued ran-
dom variable and ri = E[Xi], for i ∈ {1, . . . , 2t}. Then,
there exist real q1, . . . , q2t and x1, . . . , x2t such that qi ≥ 0,
q1 + . . .+ q2t = 1 and

2t∑
i=1

qix
j
i = rj ,

for all j ∈ {1, . . . , 2t}.

In other words, for any continuous probability distribu-
tion, we can always construct a discrete probability distri-
bution with the first 2t moments having the same values.

Let |ψ〉 =
∑N
i=1 αi|i〉 be a state drawn from the Haar

measure. Let PN be the probability density function of α1

and let P = limN→∞
√
NPN . Let α be drawn from P .

We let X = |α| with probability 1/2 and X = −|α| with
probability 1/2. Then, E[Xj ] = 0 for odd j and

E[Xj ] = lim
N→∞

N j/2· (j/2)!
N(N + 1) . . . (N + j/2 − 1)

= (j/2)!

(5)
for even j. We apply Lemma 1 (with rj = (j/2)!) to
get q1, . . . , q2t and x1, . . . , x2t. Notice that q1, . . . , q2t and
x1, . . . , x2t are independent ofN and, thus, can be absorbed
into big-O constants.

We then replace each qi with one of the two closest mul-
tiples of 1/N (i.e., �Nqi�

N or �Nqi�+1
N ) so that q1 + . . .+ q2t

remains 1. We simultaneously adjust xi so that qix2
i stays

the same. This changes the probabilities qj by at most 1/N
and xj by at most a factor of 1 + O(1/N). The moments∑
i qix

j
i change by at most

2t
N

(max
i
xji − min

i
xji ) = O

(
1
N

)

due to change in probabilities pi and at most a multiplicative
factor of (1+O(1/N))t = 1+O(1/N) due to change in xi.
(Here, t can be absorbed into the big-O constant because t
is fixed.) We now define a random variable Y which takes
the value xj with probability qj . By the argument above,
we have

Claim 1

∣∣E[Y 2cj ] − cj !
∣∣ = O

(
1
N

)
.

Let S1 be a t-wise independent family of functions f :
{1, . . . , N} → {1, . . . , N} and S2 be a 2t-wise indepen-
dent family of functions g : {1, . . . , N} → {1, . . . , N}.

We now consider the set of quantum states |ψf,g〉 =∑N
j=1 αf,g,j |j〉, (where f ∈ S1, g ∈ S2) generated in a

following way:

1. Let βf,g,j be a complex number with absolute value
af,j = xl√

N
where l is such that q1 + . . . + ql−1 <

f(j)
N ≤ q1 + . . .+ ql and amplitude eiπg(j)/N .

2. Let

αf,g,j =
βf,g,j√∑N
i=1 a

2
f,i

,

for j ∈ {1, . . . , N}.

3. Let

pf,g =

∑N
i=1 a

2
f,i

|S1| · |S2| .

We claim that (pf,g, |ψf,g〉) is an approximate (t, t)-
design. We first show

Claim 2 Fix f ∈ S1. If we pick |ψ〉 =
∑N
j=1 αf,g,j |j〉

uniformly at random from |ψf,g〉, g ∈ S2, then

1. E[h] = 0 for any unbalanced monomial h of degree at
most 2t;

2.

E[h] =
k∏
j=1


 af,ij√∑N

i=1 a
2
f,i




2cj

(6)

for a balanced monomial

h = (αi1α
∗
i1)

c1 . . . (αikα
∗
ik

)ck

of degree at most 2t.

Proof: Let

h = αc1i1 (α∗
i1)

d1 . . . αck
ik

(α∗
ik

)dk

be a monomial of degree d =
∑
j(cj +dj) which is at most

2t. Then, it contains at most 2t different variables αi1 , . . .,
αik . Since g is picked from a 2t-wise independent family
of functions, we have

E[h] =
k∏
j=1


 af,ij√∑N

i=1 a
2
f,i



cj+dj

k∏
j=1

E[eiπyj(cj−dj)/N ]

where each yi is an independently picked uniformly random
element of {0, 1, . . . , 2N−1}. If, for some j, cj �= dj , then
the corresponding expectation E[eiπyj(cj−dj)/N ] is 0. This
proves the first part of the claim. Otherwise, all expectations
are 1 and the second part follows.

The first part of the claim immediately implies that the
first requirement of Theorem 6 is satisfied. To prove the
second requirement, we first observe two facts about the

normalization factor
√∑N

i=1 a
2
f,i:
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1. We have

minj x2
j

N
≤

N∑
i=1

a2
f,i ≤

maxj x2
j

N
,

because each of af,i is equal to one of xj .

2. Let f be picked uniformly at random from S1. We
have

Prf

[∣∣∣∣∣
N∑
i=1

a2
f,i − 1

∣∣∣∣∣ ≥ C√
N

+O

(
1
N

)]
≤ 1
C2

.

(7)
To prove this bound, let D[Y ] denote the variance of
a random variable Y . Because of Claim 1 and each
af,i being distributed as X√

N
where X is the vari-

able of Claim 1, we have E[a2
f,i] = (1 + O( 1

N )) 1
N ,

E[
∑N
i=1 a

2
f,i] = 1 +O( 1

N ) and

D[a2
f,i] = E[a4

f,i] − E2[a2
f,i]

=
2! − (1!)2 +O( 1

N )
N2

=
(

1 +O

(
1
N

))
1
N2

.

Since the variables a2
f,i are t-wise independent (and,

hence, 2-wise independent), we have D[
∑N
i=1 a

2
f,i] =

(1 + O( 1
N )) 1

N . Equation (7) now follows by ap-
plying Chebyshev inequality to the random variable∑N
i=1 a

2
f,i and using E[

∑N
i=1 a

2
f,i] = 1 +O( 1

N ).

We have to bound the expectation of the random variable

X ′ =
k∏
j=1


 af,ij√∑N

i=1 a
2
f,i




2cj

, (8)

with af,i = f(i), where f ∈ S1 and the probability of f is

equal to |S2|pf,g =
∑N

i=1
a2

f,i

|S1| . Equivalently, we can bound
the expectation of

X =

∏k
j=1 a

2cj

f,ij

(
∑N
i=1 a

2
f,i)d−1

, (9)

when each f is picked with probability 1
|S1| and d =

∑
j cj .

We observe that

1
Nd

max2d
j xj

min2d−2
j xj

< X <
1
Nd

min2d
j xj

max2d−2
j xj

.

Thus, the maximum and the minimum value of X differ by

at most D
Nd where D = min2d

j xj

max2d−2
j

xj
− max2d

j xj

min2d−2
j

xj
is indepen-

dent of N . We take C = N1/6. If |∑N
i=1 a

2
f,i − 1| ≤ C√

N
,

then, because of (7), every term in the denominator of (9) is
betweenA1 = 1− 1

N1/3−O( 1
N ) andA2 = 1+ 1

N1/3 +O( 1
N )

and, therefore, we have,

Ad−1
1

k∏
j=1

a
2cj

f,ij
≤ X ≤ Ad−1

2

k∏
j=1

a
2cj

f,ij
.

Therefore,

Ad−1
1 E


 k∏
j=1

a
2cj

f,ij


− D

Nd
Pr

[∣∣∣∣∣
N∑
i=1

a2
f,i − 1

∣∣∣∣∣ ≤ C√
N

]

≤ E[X] ≤

Ad−1
2 E


 k∏
j=1

a
2cj

f,ij


 +

D

Nd
Pr

[∣∣∣∣∣
N∑
i=1

a2
f,i − 1

∣∣∣∣∣ ≤ C√
N

]
.

By equation (7),

Pr

[∣∣∣∣∣
N∑
i=1

a2
f,i − 1

∣∣∣∣∣ ≤ C√
N

]
≤ 1
C2

.

Together with the independence of random variables a2cj

f,ij
(which is implied by t-wise independence of af,ij and k ≤
t), this implies

Ad−1
1

k∏
j=1

E[a2cj

f,ij
] − D

Nd+1/3

≤ E[X] ≤ Ad−1
2

k∏
j=1

E[a2cj

f,ij
] +

D

Nd+1/3
.

The theorem now follows from claim 1, A1 = 1−O( 1
N1/3 )

and A2 = 1 +O( 1
N1/3 ).

To prove third requirement of Theorem 6, let |ψf,g〉 =∑N
i=1 αf,g,i|i〉. Then, the expectation of xjx∗j is

∑
f,g

pf,gαf,g,iα
∗
f,g,i =

∑
f,g

∑N
i=1 a

2
f,i

|S1| · |S2|
|βf,g,i|2∑N
i=1 a

2
f,i

=
∑
f,g

|βf,g,i|2
|S1| · |S2|

which is just the expectation of |βf,g,i|2 when f, g are cho-

sen uniformly at random. This expectation is
∑2t
l=1 ql

x2
l

N =
1
N , by the definition of the random variables xj . This com-
pletes the proof of Theorem 1.
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4.2 Improved construction

To decrease the number of states in the (t, t)-design, we
use a result about approximately t-wise independent fami-
lies of functions.

Definition 4 A family of functions f : {0, . . . , N −
1} → {0, . . . ,m − 1} is t-wise δ-dependent if, for
any pairwise distinct i1, . . . , it ∈ {0, . . . , N − 1},
the variational distance between the probability distribu-
tion of f(i1), . . . , f(it) and the uniform distribution on
{0, . . . ,m− 1}t is at most δ.

Theorem 8 [16] There is a family of t-wise δ-dependent
functions f : {0, . . . , N − 1} → {0, 1} of cardinality
2O(t+log logN+log 1

δ ).

Instead of 0-1 valued functions, we will need m-valued
functions. If m = 2k, we can use the construction of
[16] to construct a t logm-wise δ-dependent family of func-
tions f ′ : {0, . . . , N logm − 1} → {0, 1} of cardinality
2O(t logm+log logN+log 1

δ ). We then define f(i) to be equal
to the number formed by f ′(i logN), f ′(i logN + 1), . . .,
f ′(i logN+logN−1). This gives us a t-wise δ-dependent
family of functions f : {0, . . . , N − 1} → {0, . . . ,m− 1}.

We also use

Theorem 9 [1] There is a t-wise independent family of
functions f : {0, . . . , N − 1} → {0, 1} of cardinality
O(N t/2).

We modify the previous construction in a following way:

• We replace the probabilities qj by the closest multiples
of 1

m (instead of 1
N ).

• f is picked from a t-wise δ-dependent family of func-
tions f : {0, . . . , N − 1} → {0, . . . ,m− 1} (where m
will be specified later). By the discussion after Theo-
rem 8, such a family has cardinalityO(mct(δ logN)c)
for some constant c.

• g is replaced by two functions: g1 : {0, . . . , N −1} →
{0, 1} and g2 : {0, . . . , N − 1} → {0, . . . , N − 1}.
g1 is picked from a 2t-wise independent family of
functions of Theorem 9. g2 is picked from a t-wise
δ-dependent family of functions {0, . . . , N − 1} →
{0, . . . ,m − 1}. Instead of e2iπg(j)/N , our phase is
(−1)g1(j)e2iπg2(j)/m.

The number of states in our sample size is then
O(N tmct(logN/δ)c) for some constant c. We will take
δ = O(ε) and m = Ω(1/ε). This gives a design with
O(N t(1/ε)ct(logN/ε)c) states. We claim that this gives
us an ε-approximate (t, t)-design.

The argument is the same as in section 4.1, with the fol-
lowing changes:

1. In Claim 1, we have O( 1
mNcj ) instead of O( 1

Ncj+1 ).

2. In Claim 2, for monomials that contain αci (α
∗
i )
d with

c + d odd, the expectation is still exactly 0, because
of the (−1)g1(j) multiplier which is 1 with probability
1/2 and -1 with probability 1/2. For monomials

h = αc1i1 (α∗
i1)

d1 . . . αck
ik

(α∗
ik

)dk (10)

with c1+d1, . . ., ck+dk all even, the (−1)g1(j) term is
always 1. Since g2 is picked from a t-wise δ-dependent
family of functions, the expectation of h for a fixed f
deviates from the expectation for t-wise independent
g2 by at most cδ times

k∏
j=1


 af,ij√∑N

i=1 a
2
f,i



cj+dj

(11)

for some constant c.

3. We then have to bound the expectation of X ′ (equa-
tion (8)) which can be replaced by the expectation
of X (equation (9)) in the same way as before. The
only change is that f is now chosen from a t-wise δ-
dependent family. This means that the expectation of

k∏
j=1


 af,ij√∑N

i=1 a
2
f,i



cj+dj

differs from the expectation when f is chosen from a
t-wise independent family by at most Dδ

Nd .

Overall, this introduces an additional error of order
c(max 1

m , δ) times the expectation of (11). Thus, choos-
ing δ = O(ε) and m = Ω(1/ε) with appropriate constants
is sufficient for an ε-approximate design.

To complete the proof, we have to verify that Theorem
6 works, when, instead of an assumption about balanced
terms, we just have an assumption about terms of the form
(10). This part is mostly technical and is omitted in this
version.

5 Derandomizing the measurement in a ran-
dom basis

In this section, we prove theorem 4. First, we consider
the case when we have an exact (4, 4)-design instead of an
approximate one. By the definition of POVM,

‖M̂(ρ1) − M̂(ρ2)‖1 =
L∑
j=1

Npj |〈φj |ρ1 − ρ2|φj〉|

where L is the number of states in the (4, 4)-design. Theo-
rem 4 now follows from
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Lemma 2

L∑
j=1

pj |〈φj |ρ1 − ρ2|φj〉| = Ω
(
f

N

)
.

To prove Lemma 2, we use the fourth moment method
of Berger [4]:

Lemma 3 [4] For any random variable S,

E[|S|] ≥ E[S2]3/2

E[S4]1/2
.

This means that

L∑
j=1

pj |〈φj |ρ1 − ρ2|φj〉| ≥
(
∑L
j=1 pj |〈φj |ρ1 − ρ2|φj〉|2)3/2

(
∑L
j=1 pj |〈φj |ρ1 − ρ2|φj〉|4)1/2

.

We now bound the numerator and the denominator of this
expression. We first observe that

L∑
j=1

pj |〈φj |ρ1 − ρ2|φj〉|2 = E|φ〉|〈φ|ρ1 − ρ2|φ〉|2 (12)

with |φ〉 on the right hand side chosen according to the Haar
measure. (Let |φ〉 =

∑N
i=1 αi|i〉. Then, equation (12) is

true because |〈φ|ρ1−ρ2|φ〉|2 is a polynomial of degree 2 in
variables αi and degree 2 in variables α∗

i and, therefore, its
expectation is the same for Haar measure and for a (4, 4)-
design.) Let λ1, . . . , λn be the eigenvalues of ρ1−ρ2. Then,

λ1 + . . .+ λN = Tr(ρ1) − Tr(ρ2) = 0, (13)

λ2
1 + . . .+ λ2

N = ‖ρ1 − ρ2‖F = f2.

For the moment, assume that ρ1−ρ2 is diagonal in the basis
|1〉, . . ., |N〉 and |i〉 is the eigenvector with the eigenvalue
λi. By writing out g(φ) = (〈φ|ρ1 − ρ2|φ〉)2 for |φ〉 =∑N
i=1 αi|i〉, we get that g(φ) is equal to

N∑
i=1

λ2
i (αiα

∗
i )

2 + 2
N∑

i,j=1
i<j

λiλjαiα
∗
iαjα

∗
j .

When |φ〉 is picked from the Haar measure, the expectation
of each term is given by equation (4). This gives us

E|φ〉[g] =
2

N(N + 1)

N∑
i=1

λ2
i +

1
N(N + 1)

2
N∑

i,j=1
i<j

λiλi−1

=
1

N(N + 1)

(
N∑
i=1

λi

)2

+
1

N(N + 1)

N∑
i=1

λ2
i

=
f2

N(N + 1)
. (14)

If ρ1 − ρ2 is not diagonal in the basis |1〉, . . . , |N〉, let U
be a unitary transformation that maps |1〉, . . . , |N〉 to the
eigenbasis of ρ1 − ρ2. Then,

E(〈φ|ρ1 − ρ2|φ〉)2 = E(〈φ|U†(ρ1 − ρ2)U |φ〉)2,
by the invariance of Haar measure under unitary trans-
formations and U†(ρ1 − ρ2)U is diagonal in the basis
|1〉, . . . , |N〉. Thus, the expression (14) for the expectation
remains the same even if ρ1−ρ2 is not diagonal in the basis
|1〉, . . . , |N〉.

The expectation of g must be the same if |φ〉 is picked
from a (4, 4)-design. Therefore,

L∑
j=1

pj(〈φj |ρ1 − ρ2|φj〉)2 =
f2

N(N + 1)
. (15)

Similarly,

L∑
j=1

pj(〈φj |ρ1 − ρ2|φj〉)4 = E(〈φ|ρ1 − ρ2|φ〉)4

= E

(
n∑
i=1

λiαiα
∗
i

)4

. (16)

For the second equality, we again assumed that ρ1 − ρ2 is
diagonal in the basis |1〉, . . . , |N〉. This assumption can be
removed in the same way as before.

Denote vi = λiαiα
∗
i . Let N4 be a shortcut for N(N +

1)(N + 2)(N + 3). Then, (16) is equal to

E



N∑
i=1

v4
i +

N∑
i,j=1

i
=j

4v3
i vj +

N∑
i,j=1
i<j

6v2
i v

2
j+

N∑
i,j,k=1

j<k,i 
=j,i
=k

12v2
i vjvk +

N∑
i,j,k,l=1

i<j<k<l

24vivjvkvl


 =

24
N4




n∑
i=1

λ4
i +

N∑
i,j=1

i
=j

λ3
iλj +

N∑
i,j=1
i<j

λ2
iλ

2
j+

N∑
i,j,k=1

j<k,i 
=j,i
=k

λ2
iλjλk +

N∑
i,j,k,l=1

i<j<k<l

λiλjλkλl


 =

1
N4

(
N∑
i=1

λi

)4

+
6
N4

(
N∑
i=1

λi

)2 ( N∑
i=1

λ2
i

)
+
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8
N4

(
N∑
i=1

λi

)(
N∑
i=1

λ3
i

)
+

9
N4

N∑
i=1

λ4
i +

6
N4

N∑
i,j=1
i<j

λ2
iλ

2
j =

9
N4

N∑
i=1

λ4
i +

6
N4

N∑
i,j=1
i<j

λ2
iλ

2
j ≤

9
N4

(
N∑
i=1

λ2
i

)2

=
9
N4

f4,

(17)
with the first equality following from equation (4), the sec-
ond equality following by a rearrangement of terms, the
third equality following from (13) and the inequality fol-

lowing by expanding
(∑N

i=1 λ
2
i

)2

and using λ2
iλ

2
j ≥ 0 for

all i, j.
By combining Lemma 3 and equations (15), (16) and

(17), we get

L∑
j=1

pj |〈φj |ρ1 − ρ2|φj〉| ≥
( f2

N(N+1) )
3/2

( 9f4

N(N+1)(N+2)(N+3) )
1/2

≥ f

3N
.

This implies Lemma 2 in the case when we have an exact
(4, 4)-design.

For the case of ε-approximate (4, 4)-design, we bound
the difference between the expectations of (〈φ|ρ1−ρ2|φ〉)2
and (〈φ|ρ1 − ρ2|φ〉)4 when |φ〉 is drawn from the Haar
measure and when it is drawn from an approximate (4, 4)-
design. We can rewrite

(〈φ|ρ1 − ρ2|φ〉)2 =
∑
j

λj(〈φ|ϕj〉〈ϕj |φ〉)2 (18)

where λj are eigenvalues of ρ1 − ρ2 and |ϕj〉 are the cor-
responding eigenvectors. By the definition of (t, t)-design,
the expectation of

(〈φ|ϕj〉〈ϕj |φ〉)2 = 〈ϕ⊗2
j |(|φ〉〈φ|)⊗2|ϕ⊗2

j 〉
changes by at most ε

M (where M is the dimension of sym-
metric subspace Hsym for 2 copies of a state |φ〉) when |φ〉
is picked from an ε-approximate (4, 4) design. The entire
sum (18) changes by at most∑

j

|λj | ε
M

≤ 2ε
M
,

where the inequality follows from the sum of all positive
eigenvalues of ρ1−ρ2 being at most Trρ1 = 1 and the sum
of absolute values of negative eigenvalues being at most
Trρ2 = 1. Since M ≥ N2

2 , this is at most 4ε
N2 .

Similarly, we can show that the expectation of (〈φ|ρ1 −
ρ2|φ〉)4 changes by at most 2·4!ε

N4 when |φ〉 is picked from an
ε-approximate (4, 4) design. For our proof to work, those
changes have to be small compared to the expectations of
(〈φ|ρ1 − ρ2|φ〉)2 and (〈φ|ρ1 − ρ2|φ〉)4 when |φ〉 is picked
from the Haar measure. This happens if ε < cf4 for a suffi-
ciently small constant c.

5.1 (2, 2)-designs are not sufficient

We note that using a (4, 4)-design is essential for our
construction. First, as shown by Berger [4], a bound on the
fourth moment is necessary to obtain a bound on E[|S|].
Second, some well-known (2, 2)-designs are insufficient for
distinguishing between some orthogonal quantum states.

For example, this is true for (2, 2)-designs constructed
from mutually unbiased bases [11]. Let |φ1〉, . . ., |φN 〉
be an orthonormal basis for an N -dimensional Hilbert
space and |ϕ1〉, . . ., |ϕN 〉 be another orthonormal basis
for the same space. The two bases are mutually unbiased
if |〈φi|ϕj〉| = 1√

N
for all i, j. If N is prime, there ex-

ist N + 1 orthonormal bases |φi,1〉, . . ., |φi,N 〉 (for i ∈
{1, . . . , N + 1}) such that any two of them are mutually
unbiased. The collection of states |φi,j〉 (with probabilities
1/N(N + 1) each) is then a (2, 2)-design [11].

We now consider the POVM corresponding to this (2, 2)-
design. This POVM is equivalent to randomly choosing i ∈
{1, . . . , N+1} (with probabilities 1/(N+1) each) and then
performing an orthogonal measurement in the basis |φi,1〉,
. . ., |φi,N 〉.

Let |ψ1〉 = |φ1,1〉, |ψ2〉 = |φ1,2〉. Then, measuring
in the first basis perfectly distinguishes the states |ψ1〉 and
|ψ2〉 but measuring either of those states in any other basis
|φi,1〉, . . ., |φi,N 〉 produces the uniform probability distri-
bution. Therefore, performing the POVM on |ψ1〉 and |ψ2〉
produces two probability distributions with the variational
distance 2/(N + 1) between them.

However, since |ψ1〉 and |ψ2〉 are orthogonal, we have
‖|ψ1〉〈ψ1| − |ψ2〉〈ψ2|‖F = 2.

6 Open problems

It appears plausible that the methods developed above
can be applied to construct approximate t-designs for uni-
tary transformations (defined in [5]). An important set
of open questions is whether the efficient approximate t-
designs developed above can be applied to derandomize
other protocols that make use of random states and/or ran-
dom unitary operators, for example, the protocol for locking
classical correlations [8].

Acknowledgments. We thank Oded Regev for suggest-
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Appendix
A Haar Average of State-Component Mono-

mials

Consider the N -dimensional Hilbert space, H = CN

consisting of the set of normalized pure quantum states.
These states correspond to the points of a unit sphere S2N−1

which is the “surface” of a ball in 2N real dimensions. If
we remove the arbitrary and unphysical phase associated
with each state then we are left with the complex projective
space CPN−1. In either case there exists a unique natu-
ral measure that is induced by the invariant (Haar) measure
on the unitary group U(N): a uniformly random pure state
can be defined by the action of a uniformly random uni-
tary matrix on an arbitrary reference state, |φ〉 = U |φ0〉.
The measure on pure states is distinguished by the rota-
tional invariance of the Haar measure. This measure, which
I will denote µ(ψ), is equivalent to the uniform measure
on the unit sphere S2N−1. Choosing a fixed representation,
|ψ〉 =

∑
i ci|i〉, the uniform measure for normalized vec-

tors (pure states) in H can be expressed using the Euclidean
parametrization,

dµ(ψ ∈ S2N−1) =
(
ΠN
i=1d

2ci
)
δ

(
N∑
l=1

|cl|2 − 1

)
(19)

where δ is the Dirac delta function.
The average value of any function f : H → C takes the

explicit form,

〈f(ψ)〉ψ = 1
VS2N−1

∫
S2N−1 f(ψ) dµ(ψ ∈ S2N−1).(20)

Often the function can be represented or approximated as a
polynomial in the components of the pure state. The terms
of such a polynomial may be calculated directly using the
Euclidean measure (19) by using an integration trick [20].
Consider first calculating the volume of pure states. We
have,

VS2N−1 =
∫
ψ∈S2N−1

dµ(ψ)

=
∫
ψ∈S2N−1

(
ΠN
i=1d

2ui
)
r−2N+1δ

(√∑
|ul|2 − r

)

where we have made the change of variables ci = ui/r,
and used the identity δ(a/b − 1) = bδ(a − b). (No-
tice that for calculating the volume of the 2N − 1 sphere
one has to be careful about distinguishing the constraint

δ
(∑N

l=1 |ul|2 − r
)

from δ(
√∑N

l=1 |ul|2 − r) for the vari-

able radius r2 =
∑N
l=1 |cl|2.) Collecting factors of r on

the left hand side, the main trick for evaluating this integral

is to introduce the integrating factor exp(−r2)dr and then
integrate both sides with respect to r,

VS2N−1

∫ ∞

0

dr r2N−1 exp(−r2)

=
∫

ΠN
i=1d

2ui e
−
∑N

j=1
|uj |2 ;

VS2N−1
Γ(N)

2
=

[
Γ
(

1
2

)]2N

= πN ;

VS2N−1 =
2πN

(N − 1)!

where we’ve used the integral identity
∫∞
0
rqe−r

2
=

(1/2)Γ(q + 1/2), and recovered the well-known result for
the volume of the unit R sphere in R + 1 real dimensions:
VSR = 2πR/2/(R/2 − 1)! with R = 2N .

Now we can calculate the correlation function for a k-
body product of distinct state components,

I(k, t) ≡ 〈|c1|2t1 |c2|2t2 · · · |ck|2tk〉

=
1

VS2N−1

∫
ψ∈S2N−1

dµ(ψ) |c1|2t1 |c2|2t2 · · · |ck|2tk ,

which corresponds to the expectation of a homogeneous
polynomial of degree (t, t), where t =

∑k
j=1 tj . By the

same method as above we obtain,

I(k, t) VS2N−1

∫ ∞

0

dr r2N−1+2
∑

tj exp(−r2)

=
∫

ΠN
i=1d

2ui e
−
∑N

l=1
|ul|2Πk

j=1|uj |2tj ;

I(k, t)
2πN

(N − 1)!
Γ(N +

∑
tj)

2

=
[∫

d2u e−|u|2
]N−k

Πk
j=1

∫
d2uj e

−|uj |2 |uj |2tj ;

I(k, t) =
(N − 1)!

πk(N + t− 1)!
Πk
j=1

∫
d2uj e

−|uj |2 |uj |2tj .
where in the last line we’ve used[∫

d2u e−|u|2
]N−k

= (π)N−k
. (21)

In order to evaluate the remaining factor we change to polar
coordinates, with uj = x + iy, and dxdy = rdrdθ, giving
for each uj the factor,∫

d2uj e
−|uj |2 |uj |2tj = 2π

∫ ∞

0

dr e−|uj |2r2tj

= 2πΓ(tj + 1)/2 = πtj !.

Hence,

〈|c1|2t1 |c2|2t2 · · · |ck|2tk〉 =
t1!t2! · · · tk!

(N + t− 1)(N + t− 2) · · · (N)
.

(22)
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B Proofs of Theorems from section 3

Proof: [of Theorem 5]
In Definition 3, instead of a general polynomial p, it suf-

fices to consider the case when p is a monomial

xc11 x
c2
2 . . . xcN

N yd11 yd22 . . . ydN

N .

If the equation (2) is true for all monomials p, it will also be
true for all polynomials p.

To see the equivalence with Definition 1, observe that
each entry of the density matrix

∑
i pi(|φi〉〈φi|)⊗t is an

expectation of a monomial in the amplitudes of |φi〉 and
the corresponding entry of

∫
ψ
(|ψ〉〈ψ|)⊗tdψ is the expec-

tation of the same monomial when |ψ〉 is picked from the
Haar measure. Thus, if the expectations are the same for
any monomial, the density matrices

∑
i pi(|φi〉〈φi|)⊗t and∫

ψ
(|ψ〉〈ψ|)⊗tdψ are the same and Definition 1 holds.
In the other direction, for every monomial of degree t in

variables αi and degree t in variables α∗
i , there is an entry in∫

ψ
(|ψ〉〈ψ|)⊗tdψ which is equal to its expectation. There-

fore, Definition 1 also implies Definition 3.
Proof: [of Theorem 6] Let Hsym be the subspace spanned
by all states of the form |ψ〉⊗t.

Then,
∫
ψ
(|ψ〉〈ψ|)⊗tdψ is just I

M , the completely mixed
state over the subspace Hsym (whereM = dimHsym). We
need to prove that, for any |ψsym〉 ∈ Hsym,

1 − ε

M
≤ E

[〈ψsym| (pi|φi〉〈φi|⊗t) |ψsym〉] ≤ 1 + ε

M
.

(23)
We can write any state |ψsym〉 ∈ Hsym as

|ψsym〉 =
∑

i1≤i2≤...≤it
αi1,...,it |ψi1,...,it〉,

where |ψi1,...,it〉 is the uniform superposition over all basis
states |j1, . . . , jt〉 such that the multisets {i1, . . . , it} and
{j1, . . . , jt} are equal.

Let di1,...,it be the number of different basis states
|j1, . . . , jt〉 such that the multiset {j1, . . . , jt} is equal
to {i1, . . . , it}. (If there are k different elements in
{i1, . . . , it}, occurring c1, . . . , ck times, then di1,...,it =

t!
c1!...ck! .) Then, each of |j1, . . . , jt〉 has the amplitude of

1√
di1,...,it

in the state |ψi1,...,it〉. Let α1, . . . , αN be the am-

plitudes of a state |ψ〉 =
∑
j αj |j〉 which is picked from the

distribution (pi, |φi〉). Then,

〈ψi1,...,it |ψi〉 = di1,...,it ·
1√

di1,...,it
〈i1, . . . , it|φi〉

=
√
di1,...,itαi1 . . . αit .

By summing over all components |ψi1,...,it〉 of |ψsym〉, we
get that

〈ψsym||φi〉〈φi|⊗t|ψsym〉 =


 ∑
i1≤...≤it

α∗
i1,...,it

√
di1,...,itαi1 . . . αit


×


 ∑
j1≤...≤jt

αj1,...,jt
√
dj1,...,jtα

∗
j1 . . . α

∗
jt


 . (24)

If |ψ〉 was picked from the Haar measure, the expecta-
tion of (24) would be 1

M . Thus, it suffices to bound the
difference of the expected value of (24) between the two
cases: |ψ〉 picked from Haar measure and |ψ〉 picked from
(pi, |φi〉).

We expand both sums in the equation (24). If jl �= il for
some l ∈ {1, . . . , t}, then the expectation of a term

αi1 . . . αitα
∗
j1 . . . α

∗
jt (25)

is 0 in both cases. When jl = il for all l ∈ {1, . . . , k},
the expectations of (25) under both distributions differ by at
most

ε
c1! . . . ck!

N(N + 1) . . . (N + d− 1)
di1,...,it |αi1,...,it |2.

Since the squared amplitudes |αi1,...,it |2 sum up to 1, this
means that the difference between expectation of (24) in the
two cases is at most

ε
c1! . . . ck!

N(N + 1) . . . (N + d− 1)
di1,...,it =

ε
t!

N(N + 1) . . . (N + d− 1)
.

C Efficient implementation

In this section, we show how to implement (an approx-
imation) of the POVM w.r.t. one-dimensional projectors
Ef,g = pf,gN |ψf,g〉〈ψf,g| efficiently.

For this construction, we will need to use the particular
t-wise independent family of functions from [21]. Let G
be a finite field with N elements (which exists because we
constrained N to be power of 2). We associate {0, . . . , N −
1} with the elements of G. Using the construction of [21]
results in f(x) ranging over all polynomials (in x) overG of
degree at most t− 1 and g(x) ranging over all polynomials
over G of degree at most 2t− 1.

We have Ef,g = EgEf where

1. Ef is a diagonal matrix, with the entries (Ef )j,j =
1

Nt−1 a
2
f,j on the diagonal;

2. Eg = 1
N2t−1 |ψg〉〈ψg| where |ψg〉 =

1√
N

∑N−1
l=0 e2πi

g(j)
N |j〉.
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Both Ef and Eg constitute a POVM. Thus, we can perform
the measurement in two steps, first measuring Ef and then
measuring Eg .

The POVM Ef can be implemented as follows. Let
c1, . . . , ct−1 be arbitrary and let fj(x) = ct−1x

t−1 + . . .+
c1x + j. Then, for each i and each l ∈ {0, . . . , N − 1},
there is exactly one j such that fj(i) = l. This means that,
for each i, ∑

j

a2
fj ,i = N

2t∑
l=1

ql
x2
l

N
= 1

and
∑
j Efj

= I
Nt−1 .

Thus, (c1, . . . , ct−1) is a uniformly random (t−1)-tuple
of elements of {0, 1, . . . , N − 1}. Let |ψ〉 =

∑N−1
j=0 αj |j〉

be the state that is being measured w.r.t. Ef . To measure c0
(after “measuring” c1, . . . , ct−1), we first create an ancilla
state

2t∑
l=1

xl√
N

N(q1+q2+...+ql)∑
i=N(q1+q2+...+ql−1)+1

|i〉.

We then compute m = ct−1j
t−1 + . . . + c1j, perform the

transformation |i〉 → |i −m〉, uncompute m and measure
c = i−m.

Conditional on obtaining outcome c, this results in the
transformation Uc|j〉 = xl√

N
|j〉 where l is such that

q1 + . . .+ ql−1 <
fc(j)
N

≤ q1 + . . .+ ql.

By definition of af,j , we have afc,j = xl√
N

. Thus, Uc|j〉 =
afc,j |j〉. The corresponding measurement operator is Ec =
UcU

†
c . We have Efc

= 1
Nt−1Ec. Thus, taking c0 = c

results in a correct implementation of the POVM Ef .
Next, we show how to measure Eg . Let d0, d2, . . . , dt−1

be arbitrary but fixed and gj(x) = d0 + jx+ d2x
2 + . . .+

d2t−1x
2t−1.

Let Ug0 |j〉 = e2πi
g0(j)

N |j〉. Then, Ug0 |ψ′
l〉 = |ψgl

〉 where

|ψ′
l〉 =

1√
N

N−1∑
j=0

e−2πi jl
N |j〉

are just the vectors of Fourier basis. This has two conse-
quences. First,

N−1∑
l=0

|ψgl
〉〈ψgl

| = Ug0

(
N−1∑
l=0

|ψ′
l〉〈ψ′

l|
)
U †
g0 = Ug0IU

†
g0 = I.

Therefore, (d0, d2, . . . , d2t−1) is just a uniformly random
vector of 2t − 1 values from {0, . . . , N − 1} which can
be generated by producing the uniform superposition of all
|d0, d2, d3, . . . , d2t−1〉 and measuring it.

Second, once (d0, d2, . . . , d2t−1) has been produced, d1

can be obtained by performing U†
g0 and then an orthogonal

measurement in the basis |ψ′
1〉, . . ., |ψ′

N 〉.
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