
Chapter 9Approximating minimum k-connectedspanning subgraphs9.1 IntroductionThis chapter focuses on (approximately) minimum k-connected spanning subgraphs of a givengraph G = (V;E). We study both k-edge connected spanning subgraphs (abbreviated k-ECSS),and k-node connected spanning subgraphs (k-NCSS). When stating facts that apply to both ak-ECSS and a k-NCSS, we use the term k-connected spanning subgraph (k-CSS). We take G tobe an undirected graph. Mostly, we take G to be a simple graph (i.e., G has no loops nor multipleedges), but while discussing the general k-ECSS problem, we study both simple graphs and multigraphs (i.e., graphs with multiple copies of one or more edges). Let n and m denote the number ofnodes and the number of edges, respectively.Several di�erent types of the linear objective function (i.e., vector of edge costs cvw) have beenstudied. The most general case is when the objective function is nonnegative but is otherwiseunrestricted. Two special types of objective functions turn out to be of interest in theory andpractice: (1) the case of unit costs, i.e., the optimal solution is a k-ECSS or a k-NCSS with theminimum number of edges, and (2) the case of metric costs, i.e., the edge costs cvw satisfy thetriangle inequality.Table 9.1 summarizes the best approximation guarantees currently known for the several typesof k-CSS problems discussed above. At present, for minimum k-CSS problems, approximationguarantees better than 2 are known only for the case of unit costs and for some cases of metriccosts. For nonnegative costs, it is not known whether or not the following problem is NP-complete:for a constant � > 0, �nd, say, a 2-ECSS whose cost is at most (2� �) times the minimum 2-ECSScost.Note that every node in a k-CSS has degree � k, hence, the number of edges in a k-ECSS or ak-NCSS is � kn=2.The problem of �nding a minimum k-ECSS or minimum k-NCSS is already NP-hard for thecase k = 2 and unit costs. There is a direct reduction from the Hamiltonian cycle problem becauseG has a Hamiltonian cycle i� it has 2-ECSS (or 2-NCSS) with n edges. Recently, Fernandes [10,Theorem 5.1] showed that the minimum-size 2-ECSS problem on graphs is MAX SNP-hard.121



122CHAPTER 9. APPROXIMATING MINIMUMK-CONNECTED SPANNING SUBGRAPHSTable 9.1: A summary of current approximation guarantees for minimum k-edge connected span-ning subgraphs (k-ECSS), and minimum k-node connected spanning subgraphs (k-NCSS); k is aninteger � 2. The references are to:� Cheriyan & Thurimella, IEEE F.O.C.S. (1996),� Frederickson & Ja'Ja', Theor. Comp. Sci. 19 (1982) pp. 189{201,� Khuller & Vishkin, JACM 41 (1994) pp. 214{235,� Khuller & Raghavachari, J. Algorithms 21 (1996) pp. 434{450, and� Ravi & Williamson, 6th ACM-SIAM S.O.D.A. (1995) pp. 332{341.Type of objective functionUnit costs Metric costs Nonnegative costsk-ECSS 1 + (2=(k+ 1)) [CT96] see last entry 2 [KV94]simple-edge 1.5 for k = 2 [KV94] 1.5 for k = 2 [FJ82]modelk-NCSS 1 + (1=k) [CT96] 2 + (2(k � 1)=n) [KR96] 2H(k) = O(logk) [RW95]The last section of this chapter has some bibliographic remarks, and discusses the sequenceof papers that led up to the results in this chapter, see Section 9.12. The discussion may not becomplete. (We hope to rectify any errors and omissions in future revisions of the chapter.)9.2 De�nitions and notationFor a subset S 0 of a set S, SnS 0 denotes the set fx 2 S j x 62 S 0g.Let G = (V;E) be a graph. By the size of G we mean jE(G)j. For a subset M of E and a nodev, we use degM(v) to denote the number of edges of M incident to v; deg(v) denotes degE(v). Anx-y path refers to a path whose end nodes are x and y. We call two paths openly disjoint if everynode common to both paths is an end node of both paths. Hence, two (distinct) openly disjointpaths have no edges in common, and possibly, have no nodes in common. A set of k � 2 pathsis called openly disjoint if the paths are pairwise openly disjoint. By a component (or connectedcomponent) of a graph, we mean a maximal connected subgraph, as well as the node set of such asubgraph. Hopefully, this will not cause confusion.For node set S � V (G), �G(S) denotes the set of all edges in E(G) that have one end nodein S and the other end node in V (G)nS (when there is no danger of confusion, the notation isabbreviated to �(S)); �(S) is called a cut, and by a k-cut we mean a cut that has exactly k edges.A graph G = (V;E) is said to be k-edge connected if jV j � k + 1 and the deletion of any set of< k edges leaves a connected graph. For testing k-edge connectivity, currently Gabow [17] has adeterministic algorithm that runs in time O(m+k2n log(n=k)), while Karger [27] has a randomizedalgorithm that runs in time O(m+ kn(logn)3).For a subset Q � V , N(Q) denotes the set of neighbors of Q in V nQ, fw 2 V nQ j wv 2 E; v 2



9.3. A 2-APPROXIMATION ALGORITHM FOR MINIMUM WEIGHT K-ECSS 123Qg. A separator S ofG is a subset S � V such thatGnS has at least two components. A k-separatormeans a separator that has exactly k nodes. A graph G = (V;E) is said to be k-node connected ifjV j � k + 1, and the deletion of any set of < k nodes leaves a connected graph. For testing k-nodeconnectivity, currently Rauch Henzinger, Rao and Gabow [37] have (1) a deterministic algorithmthat runs in time O(min(k2n2; k4n + kn2)) and (2) a randomized algorithm that runs in timeO(kn2) with high probability provided k = O(n1��), where � > 0 is a constant.An edge vw of a k-node connected graph G is called critical w.r.t. k-node connectivity if Gnvwis not k-node connected. Similarly, we have the notion of critical edges w.r.t. k-edge connectivity.9.2.1 MatchingA matching of a graph G = (V;E) is an edge set M � E such that degM(v) � 1; 8v 2 V ;furthermore, if every node v 2 V has degM(v) = 1, then M is called a perfect matching. A graphG is called factor critical if for every node v 2 V , there is a perfect matching in Gnv, see [32].An algorithm due to Micali and Vazirani (1984) �nds a matching of maximum cardinality in timeO(mpn). If the graph is bipartite, there is a much simpler algorithm for �nding a matching ofmaximum cardinality due to Hopcroft and Karp (1972), but the running time remains the same.9.3 A 2-approximation algorithm for minimum weight k-ECSSLet G = (V;E) be a graph of edge connectivity� k, and let c : E ! <+ assign a nonnegative cost toeach edge vw 2 E. This section gives an algorithm that �nds a k-ECSS G0 = (V;E 0) such that thecost c(E 0) =Pvw2E0 c(vw) is at most 2c(Eopt), where Eopt denotes the edge set of a minimum-costk-ECSS (i.e., for every k-ECSS (V;E 00), c(E 00) � c(Eopt)). This result is due to Khuller & Vishkin[30]. The algorithm is a straightforward application of the weighted matroid intersection algorithm,which is due to Lawler and Edmonds. For our application there is an e�cient implementation dueto Gabow [17]. This section and the next one use directed graphs, and so we include de�nitionsand notation pertaining to directed graphs in the box below.For a directed graph D = (V;A), where V is the set of nodes and A is the set of arcs, we use (v; w)to denote an arc (or directed edge) from v to w. The node v is called the tail of (v; w), and the nodew is called the head. The arc (v; w) is said to leave v and to enter w. For a node set S � V , an arc(v; w) is said to leave S if v 2 S and w 2 V nS, and (v; w) is said to enter S if w 2 S and v 2 V nS.For a node set S � V , the directed cut �D(S) or �(S) consists of all arcs leaving S (note that �(S)has no arcs entering S). The bidirected graph D = (V;A) of an undirected graph G = (V;E) hasthe same node set, and for each edge vw 2 E, the arc set A has both the arcs (v; w) and (w; v). Theundirected graph G = (V;E) of a directed graph D = (V;A) has the same node set, and for eacharc (v; w) 2 A or each arc pair (v; w); (w; v) 2 A, the edge set E has one edge vw (i.e., G has oneedge corresponding to a pair of oppositely oriented arcs). A directed graph is called acyclic if itsundirected graph has no cycles. A directed graph is called a directed spanning tree if its undirectedgraph is a spanning tree. A branching (V;B) with root node v0 is a directed spanning tree suchthat for each node w 2 V , there is a directed path from v0 to w; in other words, jBj = jV j � 1,each node w 2 V nfv0g has precisely one entering arc, v0 has no entering arc, and (V;B) is acyclic.



124CHAPTER 9. APPROXIMATING MINIMUMK-CONNECTED SPANNING SUBGRAPHSThe weighted matroid intersection algorithm e�ciently solves the following problem (P) (andmany others). Let D = (V;A) be a directed graph, let c : A ! < assign a real-valued cost toeach arc, let v0 be a node of D, and let k > 0 be an integer. The goal is to �nd a minimum-costarc set F � A such that F is the union of (the arc sets of) k arc-disjoint branchings with rootv0. In other words, the goal is to �nd F � A such that c(F ) is minimum and F = B1 [ : : :[ Bk,where B1; : : : ; Bk are pairwise arc disjoint, and for i = 1; : : : ; k; (V;Bi) is a branching with root v0.Gabow's implementation [17] either �nds an optimal F or reports that no feasible F exists, andthe running time is O(kjV j log jV j(jAj+ jV j log jV j)).To �nd a minimum-weight k-ECSS of G, c, we �rst construct the bidirected graph D = (V;A)of G, and assign arc costs to D by taking c(v; w) = c(w; v) = c(vw) for each edge vw 2 E. Notethat c(A) = 2c(E). (It may be helpful to keep an example in mind: take G to be a cycle on n � 3nodes, and take k = 2.) Choose an arbitrary node v0 2 V . Observe that for every node set S withv0 2 S and S 6= V , the directed cut �D(S) has � k arcs because the corresponding cut in G, �G(S),has � k arcs. The next result shows that this directed graph D has a feasible arc set F � A forproblem (P) above.Theorem 9.1 (Edmonds) If a directed graph D = (V;A) has j�D(S)j � k for every S � V withv0 2 S and S 6= V , where v0 is a node of D, then D has k arc-disjoint branchings with root v0.We apply the weighted matroid intersection algorithm to D; c; v0; where v0 is an arbitrary node,to �nd an optimal arc set F for problem (P). Let �F (�) denote a directed cut of (V; F ). Clearly,j�F (S)j � k; for every S � V with v0 2 S and S 6= V , because F contains k arc-disjoint directedpaths from v0 to w, for an arbitrary node w 2 V nS. Let G0 = (V;E 0) be the undirected graphof (V; F ). First, note that G0 is k-edge connected (i.e., every nontrivial cut of G0 has � k edges),because for every S � V with ; 6= S 6= V , either v0 2 S or v0 2 V nS and so either j�F (S)j � k orj�F (V nS)j � k.We claim that c(E 0) � 2c(Eopt). To see this, focus on the minimum-cost k-ECSS Gopt =(V;Eopt). The directed graph Dopt of Gopt has total arc cost = 2c(Eopt), and (reasoning as above)the arc set ofDopt contains a feasible arc set F for our instance of problem (P). Hence, the arc set Ffound by the weighted matroid intersection algorithm has cost � 2c(Eopt). Moreover, c(E 0) � c(F ),so c(E 0) � 2c(Eopt).Theorem 9.2 There is a 2-approximation algorithm for the minimum cost k-ECSS problem. Therunning time is O(kn logn(m+ n logn)).9.4 An O(1)-approximation algorithm for minimum metric costk-NCSSLet G = (V;E) be a graph of node connectivity � k, and let the edge costs c : E ! <+ form ametric, i.e., the edge costs satisfy the triangle inequality, c(vw) � c(vx) + c(xw), for every orderedtriple of nodes v; w; x. This section gives an algorithm that �nds a k-NCSS G0 = (V;E 0) such thatthe cost c(E 0) = Pvw2E0 c(vw) is at most (2 + (2k=n))c(Eopt), where Eopt denotes the edge set ofa minimum-cost k-NCSS. This result is due to Khuller & Raghavachari [29], and it is based on analgorithm of Frank & Tardos [14] for �nding an optimal solution to the following problem. Given



9.4. ANO(1)-APPROXIMATION ALGORITHM FORMINIMUMMETRIC COSTK-NCSS125a directed graph D = (V;A) with arc costs c : A ! <+, and a node v0 2 V , �nd a minimum-costarc set F � A such that (V; F ) has k openly-disjoint directed paths from v0 to w, for each nodew 2 V nfv0g. Gabow [16] has given an implementation of the Frank-Tardos algorithm that runs intime O(k2jV j2jAj).The k-NCSS algorithm �rst modi�es the given undirected graph G by adding a \root" node v0.For this, we examine all nodes v 2 V to �nd a node v1 such that the total cost of the cheapest k�1edges incident to v1 is minimumpossible. Let v2; : : : ; vk be k�1 neighbors of v1 such that kXi=2 c(v1vi)gives this minimum. We add a new node v0 to G, together with the edges v0v1; v0v2; : : : ; v0vk; andwe assign each new edge a cost of zero (the edge costs may no longer form a metric, but thisdoes not matter). Let D = (V [ fv0g; A) be the directed graph of the resulting undirected graph(V [fv0g; E[fv0v1; : : : ; v0vkg). The arc costs of D are assigned by taking c(v; w) = c(w; v) = c(vw)for every edge vw in the graph. We apply the Frank-Tardos algorithm toD; c; v0; to �nd a minimum-cost arc set F [f(v0; v1); : : : ; (v0; vk)g such that (V [fv0g; F [f(v0; v1); : : : ; (v0; vk)g) has k openly-disjoint directed paths from v0 to w, for each w 2 V . We obtain a k-NCSS G0 = (V;E 0) by takingthe undirected graph of (V; F ) and for 1 � i < j � k, adding the edge vivj if it is not alreadypresent, i.e., G0 is the \union" of the undirected graph of (V; F ) and a clique on the nodes v1; : : : ; vk.(Note that G0 is a simple graph.)Suppose that G0 is not k-node connected. Then G0 has a (k�1)-separator S, i.e., there is a nodeset S with jSj � k�1 such that G0nS has � 2 components. All the nodes in fv1; : : : ; vkgnS must bein the same component since G0 has a clique on v1; : : : ; vk. Moreover, each node w 2 V has k paths tov1; : : : ; vk such that these paths have only the node w in common; to see this, focus on the k openly-disjoint directed paths from v0 to w in the directed graph (V [ fv0g; F [ f(v0; v1); : : : ; (v0; vk)g).For every node w 2 V nS, at least one of these k paths is (completely) disjoint from S. Therefore,in G0nS, every node w 2 V nS has a path to some node in fv1; : : : ; vkg. This shows that G0nS isconnected, and contradicts our assumption that S is a separator of G0. Consequently, G0 is k-nodeconnected.Consider the total edge cost of G0, c(E 0). Reasoning as in Section 9.3, note that c(F ) � 2c(Eopt).(In detail, the directed graph of (V [ fv0g; Eopt[ f(v0; v1); : : : ; (v0; vk)g) has cost 2c(Eopt), and thearc set of this directed graph gives a feasible solution for the problem solved by the Frank-Tardosalgorithm; hence, the optimal arc set F found by the Frank-Tardos algorithm has cost � 2c(Eopt).)Let c� denote the total cost of the k� 1 cheapest edges incident to v1, i.e., c� =Pki=2 c(v1vi). Nowconsider the total edge cost of the clique on v1; : : : ; vk. Since each edge vivj (for 1 � i < j � k) hasc(vivj) � c(v1vi) + c(v1vj), it can be seen that X1�i<j�k c(vivj) � (k � 1)c�. For each node v 2 V ,let �opt(v) denote the set of edges of Eopt incident to v; clearly, j�opt(v)j � k, 8v 2 V . By ourchoice of v1 and v2; : : : ; vk; each node v 2 V has c(�opt(v)) = Xvw2�opt(v) c(vw) � kc�=(k � 1). SincePv2V c(�opt(v)) = 2c(Eopt), we have c� � 2(k � 1)c(Eopt)=(kn). Hence, X1�i<j�k c(vivj) � 2(k �1)2c(Eopt)=(kn). Summarizing, we have c(E 0) � c(F )+ X1�i<j�k c(vivj) � (2+2(k�1)2=(kn))c(Eopt).Theorem 9.3 Given a graph G and metric edge costs c, there is a (2 + (2k=n))-approximation



126CHAPTER 9. APPROXIMATING MINIMUMK-CONNECTED SPANNING SUBGRAPHSalgorithm for �nding a minimum-cost k-NCSS. The running time is O(k2n2m).9.5 2-Approximation algorithms for minimum-size k-CSSIn this section, we focus on the minimum-size k-CSS problem (note that every edge has unit cost)and sketch simple 2-approximation algorithms. Then, in preparation for algorithms with betterapproximation guarantees, we give an example that illustrates the di�culty in improving on the2-approximation guarantee for minimum-size k-CSS problems.A graph H is called edge minimal with respect to a property P if H possesses P , but for everyedge e in H , Hne does not possess P . Thus, if a k-edge connected graph G is edge minimal, thenfor every edge e 2 E(G), Gne has a (k � 1)-cut. Similarly, if a k-node connected graph G is edgeminimal, then for every edge e 2 E(G), Gne has a (k � 1)-separator.The proof of the next proposition is sketched in the exercises, see Exercise 1Proposition 9.4 (Mader [33, 34]) (1) If a k-edge connected graph is edge minimal, then thenumber of edges is � kn.(2) If a k-node connected graph is edge minimal, then the number of edges is � kn.Parts (1) and (2) of this proposition immediately give 2-approximation algorithms for theminimum-size k-ECSS problem and the minimum-size k-NCSS problem, respectively. Here is thek-NCSS approximation algorithm; we skip the k-ECSS approximation algorithm since it is simi-lar. Assume that the given graph G = (V;E) is k-node connected, otherwise, the approximationalgorithm will detect this and report failure. We start by taking E 0 = E. At termination, E 0 willbe the edge set of the approximately minimum-size k-NCSS. We examine the edges in an arbitraryorder e1; e2; : : : ; em (where E = fe1; e2; : : : ; emg). For each edge ei (for 1 � i � m) we test whetheror not the subgraph (V;E 0nei) is k-node connected. If yes, then the edge ei is not essential fork-node connectivity, so we update E 0 by removing ei from E 0, otherwise (i.e., if (V;E 0nei) is notk-node connected), we retain ei in E 0. At termination, (V;E 0) will be an edge-minimal k-NCSSbecause whenever we retain an edge in E 0 then that edge is critical w.r.t. k-node connectivity. Theapproximation guarantee of 2 follows because every k-NCSS has � kn=2 edges, whereas jE 0j � knby the proposition. The approximation algorithm runs in polynomial time, but is not particularlye�cient, since it executes jEj tests for k-node connectivity. Simple and fast 2-approximation algo-rithms for the minimum-size k-CSS problem are now available, yet the simplicity of the proofs forthe above approximation algorithm is an advantage.Another easy and e�cient method for �nding a k-CSS with � kn edges follows from results ofNagamochi & Ibaraki [36] and follow-up papers. A k-ECSS (V;E 0) with jE 0j � kn can be foundas follows (assume that G is k-edge connected): we take E 0 to be the union of (the edge sets of)k edge-disjoint forests F1; : : : ; Fk; where each Fi (for 1 � i � k) is the edge set of a maximal butotherwise arbitrary spanning forest of Gn(F1 [ : : : [ Fi�1). In more detail, we take F1 to be theedge set of an arbitrary spanning tree of G. Then, we delete all edges in F1 from G. The resultinggraph Gn(F1) may have several connected components. In general, we take Fi (for 2 � i � k) tobe the union of the edge sets of spanning trees of each of the components of Gn(F1 [ : : :[ Fi�1).The next result is due to [36] and Thurimella [39], independently.



9.5. 2-APPROXIMATION ALGORITHMS FOR MINIMUM-SIZE K-CSS 127Proposition 9.5 If G = (V;E) is k-edge connected, then the subgraph (V;E 0) is also k-edge con-nected, where E 0 = F1 [ : : :[ Fk and Fi (1 � i � k) is the edge set of a maximal spanning forest ofGn(F1 [ : : :[ Fi�1).Proof: Suppose that (V;E 0) is not k-edge connected. Then it has a cut �0(S) of cardinality� k � 1. Since G is k-edge connected, there must be an edge vw in G such that vw 62 E 0 andv 2 S, w 62 S (i.e., vw 2 �G(S)). For i = 1; : : : ; k; note that vw 62 Fi implies that Fi has a v-w path(otherwise, adding vw to Fi gives a forest of larger size). Clearly, the v-w paths in F1; : : : ; Fk areedge disjoint. This is a contradiction since G0 has both k edge disjoint v-w paths and a k � 1 cutseparating v and w.Obviously, jE 0j � k(n� 1). Consequently, the k-ECSS found by this algorithm has size withina factor of 2 of minimum. The obvious implementation of this algorithm runs in time O(km).Nagamochi & Ibaraki [36] give a linear-time implementation for this algorithm.In fact, Nagamochi & Ibaraki [36] show that the maximal forests F1; : : : ; Fk computed by theiralgorithm are such that the subgraph (V;E 0) is k-node connected if G is k-node connected, whereE 0 = F1 [ : : :[ Fk. A scan-�rst-search spanning forest with edge set F is constructed as follows:Initially, F = ;. An arbitrary node v1 is chosen and scanned. This may add some edges to F . Thenrepeatedly an unscanned node is chosen and scanned, until all nodes are scanned. If the currentF is incident to one or more unscanned nodes, then any such node may be chosen for scanning,otherwise, an arbitrary unscanned node is chosen. When a node v is scanned, all edges in EnFincident to v are examined; if the addition of an edge vw to F will create a cycle in F (i.e., if Falready has a v-w path), then the edge is rejected, otherwise vw is added to F . The next result isdue to Nagamochi & Ibaraki [36]. Other proofs are given in [13, 3]. We skip the proof.Proposition 9.6 If G = (V;E) is k-node connected, then the subgraph (V;E 0) is also k-nodeconnected, where E0 = F1 [ : : : [ Fk and Fi (1 � i � k) is the edge set of a maximal scan-�rst-search spanning forest of Gn(F1 [ : : :[ Fi�1).It follows that the algorithm in [36] is a linear-time 2-approximation algorithm for the minimum-size k-NCSS problem.9.5.1 An illustrative exampleHere is an example illustrating the di�culty in improving on the 2-approximation guarantee forminimum-size k-CSS problems. Let the given graph G have n nodes, where n is even. Supposethat the edge set of G, E(G), is the union of the edge set of the complete bipartite graph Kk;(n�k)and the edge set Eopt of an n-node, k-regular, k-edge connected (or k-node connected) graph. Forexample, for k = 2, E(G) is the union of E(K2;(n�2)) and the edge set of a Hamiltonian cycle.A naive heuristic may return E(Kk;(n�k)) which has size k(n � k), roughly two times jEoptj. Aheuristic that signi�cantly improves on the 2-approximation guarantee must somehow return manyedges of Eopt.



128CHAPTER 9. APPROXIMATING MINIMUMK-CONNECTED SPANNING SUBGRAPHS9.6 Khuller and Vishkin's 1.5-approximation algorithm for min-imum size 2-ECSSThis section describes a simple and elegant algorithm of Khuller & Vishkin [30] for �nding a 2-ECSS(V;E 0) of a graph G = (V;E) such that jE 0j � 1:5jEoptj, where Eopt is the edge set of a minimumsize 2-ECSS. Assume that the given graph G = (V;E) is 2-edge connected. Khuller & Vishkin'salgorithm is based on dfs (depth-�rst search). (The relevant facts about dfs are summarized below.)We use T to denote the dfs tree as well as its edge set. The subtree of T rooted at a node v isdenoted by T (v). For notational convenience, we identify the nodes with their dfs numbers, i.e.,v < w means that v precedes w in the dfs traversal (or preorder traversal) of T . For a node v, thedeepest backedge emanating from T (v) is denoted db(v), i.e., db(v) = wx, where wx is a backedge,w is a node of T (v), and for every backedge uy with u in T (v), x � y.We initialize E 0 to be the edge set of the dfs tree, T . Then we make a dfs traversal of T , andwhen backing up over an edge uv in T (at this point the algorithm has already completed a dfstraversal of T (v)) we check whether uv is a cutedge of the current subgraph (V;E 0). If yes, thenwe add db(v) to E 0, otherwise, we keep the same E 0.At termination, (V;E 0) is a 2-ECSS of G because there are no cutedges in (V;E 0). To see this,note that G has no cut edges, and so every edge uv 2 T has a well-de�ned backedge db(v) suchthat x � u, where x is the end node of db(v) that is not in T (v). In other words, if uv 2 T is acutedge of the current subgraph (V;E 0), then we will \cover" uv with a backedge wx such that wis in T (v) and x � u.The key result for proving the 1.5 approximation guarantee is this:Proposition 9.7 For every pair of nodes vi and vj such that the algorithm adds backedges db(vi)and db(vj) to E 0, the cuts �(T (vi)) and �(T (vj)) have no edges in common.Proof: Let vi precede vj in the dfs traversal. Let db(vi) = wx and let db(vj) = yz. Either viis an ancestor of vj , or there is a node v with children v1 and v2 such that vi is a descendant ofv1 and vj is a descendant of v2. In the �rst case, vi � z (i.e., uivi 2 T is not \covered" by thebackedge db(vj), where ui is the parent of vi in T ), and so every edge in the cut �(T (vj)) has bothend nodes in T (vi); hence, the two cuts �(T (vi)) and �(T (vj)) are edge disjoint. In the second case,the proposition follows immediately.Theorem 9.8 Let G = (V;E) be a 2-edge connected graph, and let Eopt be the edge set of aminimum-size 2-ECSS. There is a linear-time algorithm to �nd a 2-ECSS (V;E 0) such that jE 0j �1:5jEoptj.Proof: It is easily checked that the algorithm runs in linear time. Consider the approximationguarantee. Clearly, jEoptj � n, since every node is incident to � 2 edges of Eopt. We needanother lower bound on jEoptj. Let v1; v2; : : : ; vp denote all the nodes such that the algorithm addsthe backedge db(vi) (for i = 1; : : : ; p) to E 0, i.e., E 0 = T [ fdb(v1); : : : ; db(vp)g. Since the cuts�(T (v1)); : : : ; �(T (vp)) are mutually edge disjoint, and Eopt has at least two edges in each of thesecuts, we have jEoptj � 2p. Hence, jEoptj � max(n; 2p). Since jE 0j = (n� 1) + p, we havejE 0jjEoptj � n� 1n + p2p � 1:5:



9.7. MADER'S THEOREM AND APPROXIMATING MINIMUM SIZE 2-NCSS 1299.7 Mader's theorem and a 1.5-approximation algorithm for min-imum size 2-NCSS
(c) vn�1vn�2v1v2 v3 v4 v5 v6 v7 e� vn(a)(b)

Figure 9.1: Illustrating the 2-NCSS heuristic on a 2-node connected graph G = (V;E); n = jV j iseven, and k = 2. Adapted from Garg, Santosh & Singla [20, Figure 7].(a) A minimum-size 2-node connected spanning subgraph has n + 1 edges, and is indicated bythick lines (the path v1; v2; : : : ; vn and edges v1v7 and e� = v5vn).(b) The �rst step of the heuristic in Section 9.7 �nds a minimum-sizeM � E such that every nodeis incident to � (k � 1) = 1 edges of M . The thick lines indicate M ; it is a perfect matching. Thesecond step of the heuristic �nds an (inclusionwise) minimal edge set F � E such that (V;M [ F )is 2-node connected. F is indicated by dashed lines { the \key edge" e� is not chosen in F .jM [ F j = 1:5n� 5.(c) Another variant of the heuristic �rst �nds a minimum-size M � E such that every node isincident to � k = 2 edges of M . The thick lines indicateM (M is the path v1; v2; : : : ; vn and edgesv1v3, vn�2vn). The second step of the heuristic �nds the edge set F � E indicated by dashed lines{ the \key edge" e� is not chosen in F . (V;M [ F ) is 2-node connected, and for every edge vw inF , (V;M [ F )nvw is not 2-node connected. jM [ F j = 1:5n� 3.This section focuses on the design of a 1:5-approximation algorithm for �nding a minimum-size2-NCSS. The analysis of the 1:5-approximation guarantee hinges on a deep theorem due to Mader.Section 9.8 has a straightforward generalization (from k = 2 to an arbitrary integer k � 2) of the



130CHAPTER 9. APPROXIMATING MINIMUMK-CONNECTED SPANNING SUBGRAPHSalgorithm and its analysis for �nding a k-NCSS with an approximation guarantee of 1 + (2=k).A more careful analysis improves the approximation guarantee of the generalized algorithm to1+(1=k); we sketch this but skip the proof of a key theorem. Although the analysis of approximationguarantee relies on Mader's theorem only and not its proof, a proof of Mader's theorem is given inSection 9.9.The running time of the approximation algorithm for 2-NCSS is O(mpn), because it usesa subroutine for maximum cardinality matching, and the fastest maximum matching algorithmknown has this running time. Given a constant � > 0, the approximation algorithm for 2-NCSScan be modi�ed to run in linear time but the approximation guarantee becomes (1:5 + �). Also,the linear-time variant uses a linear-time algorithm of Han et al [23] for �nding an edge minimal2-NCSS. The �rst algorithm to achieve an approximation guarantee of 1:5 for �nding a minimum-size 2-NCSS is due to Garg et al [20]; moreover, this algorithm runs in linear time. The Garg etal algorithm may be easier to implement and it may run faster in practice, but the analysis of theapproximation guarantee is more sophisticated and specialized than the analysis in this section.We do not describe the algorithm of Garg et al, but instead refer the interested reader either to[20] or to the survey paper by Khuller [31].Assume that the given graph G = (V;E) is 2-node connected. The algorithm for approximatinga minimum-size 2-NCSS consists of two steps.The �rst step �nds a minimum edge cover M � E of G. An edge cover of G is a set of edgesX � E such that every node of G is incident with some edge in X . An edge cover of minimumcardinality is called a minimum edge cover. One way of �nding a minimum edge coverM is to startwith a maximum matching fM of G, and then to add one edge incident to each node that is notmatched by fM . Clearly,M is an edge cover. Let def(G) denotes the number of nodes not matchedby a maximum matching of G, i.e., def(G) = jV j � 2jfM j. Then we have jM j = jfM j+ def(G). Weleave it as an exercise for the reader that every edge cover of G has cardinality � jfM j + def(G),hence, M is in fact a minimum edge cover. (Hint: for an edge cover X , let q be the minimumnumber of edges to remove from X to obtain a matching; now focus on jX j and q.)The second step is equally simple. We �nd an (inclusionwise) minimal edge set F � EnM suchthat M [ F gives a 2-NCSS. In other words, (V;M [ F ) is 2-node connected, but for each edgevw 2 F , (V;M [ F )nvw is not 2-node connected. An edge vw of a 2-node connected graph H iscritical (w.r.t. 2-node connectivity) if Hnvw is not 2-node connected. The next result characterizescritical edges; for a generalization see Proposition 9.15.Proposition 9.9 An edge vw of a 2-node connected graph H is not critical i� there are at least 3openly disjoint v-w paths in H (including the path vw).Proof: If H has exactly two openly disjoint v-w paths, then vw is obviously a critical edge sinceHnvw has a cut node (sinceHnvw does not have two openly disjoint v-w paths). For the other part,suppose that H has � 3 openly disjoint v-w paths. By way of contradiction, let c be a cut node ofHnvw, i.e., let S = fcg be a 1-separator of Hnvw. Nodes v and w must be in the same componentof the graph H 0 obtained by deleting S from Hnvw (since Hnvw has � 2 > jSj openly disjoint v-wpaths). This gives a contradiction, because adding the edge vw to H 0 gives a disconnected graphH 0 + vw (since the new edge joins two nodes in the same component), but H 0 + vw = HnS, andHnS must be a connected graph, since H is 2-node connected and jSj = 1.



9.7. MADER'S THEOREM AND APPROXIMATING MINIMUM SIZE 2-NCSS 131To �nd F e�ciently, we start with F = ; and take the current subgraph to be G = (V;E)(which is 2-node connected). We examine the edges of EnM in an arbitrary order, say, e1; e2; : : : ; e`(` = jEnM j). For each edge ei = viwi, we attempt to �nd 3 openly disjoint vi-wi paths in thecurrent subgraph. If we succeed, then we remove the edge ei from the current subgraph (since ei isnot critical), otherwise, we retain ei in the current subgraph and add ei to F (since ei is critical).At termination, the current subgraph with edge set M [ F is 2-node connected, and every edgevw 2 F is critical. The running time for the second step is O(m2).Let E 0 denote M [ F , and let Eopt � E denote a minimum-cardinality edge set such that(V;Eopt) is 2-edge connected.Our proof of the 1.5-approximation guarantee hinges on a theorem of Mader [34, Theorem 1].A proof of Mader's theorem appears in Section 9.9. For another proof of Mader's theorem seeLemma I.4.4 and Theorem I.4.5 in [1]. Recall that an edge vw of a k-node connected graph H iscalled critical (w.r.t. k-node connectivity) if Hnvw is not k-node connected.Theorem 9.10 (Mader [34, Theorem 1]) In a k-node connected graph, a cycle consisting ofcritical edges must be incident to at least one node of degree k.Lemma 9.11 jF j � n� 1.Proof: Consider the 2-node connected subgraph returned by the heuristic, G0 = (V;E 0), whereE 0 = M [ F . Suppose that F contains a cycle C. Note that every edge in the cycle is critical,since every edge in F is critical. Moreover, every node v incident to the cycle C has degree � 3 inG0, because v is incident to two edges of C, as well as to at least 1 edge of M = E 0nF . But thiscontradicts Mader's theorem. We conclude that F is acyclic, and so has � n� 1 edges. The proofis done.Lemma 9.12 jE 0j = jM j+ jF j � 1:5n+ def(G)� 1.Proof: By the previous lemma, jF j � n � 1. A minimum edge cover M of G has size jM j =jfM j+ def(G), where fM is a maximum matching of G. Obviously, jfM j � n=2. The result follows.The next result, due to Chong and Lam, gives a lower bound on the size of a 2-ECSS.Proposition 9.13 (Chong & Lam [5, Lemma 3]) Let G = (V;E) be a graph of edge connectivity� 2, and let jEoptj denote the minimum size of a 2-ECSS.Then jEoptj �max(n+ def(G)� 1; n).Proof: Consider a closed ear decomposition of (V;Eopt), i.e., a partition of Eopt into paths andcycles P1; P2; : : : ; Pq such that P1 is a cycle, and each Pi (for 2 � i � q) has its end nodes butno internal nodes in common with P1 [ : : : [ Pi�1 (the end nodes of Pi may coincide). By theminimality of Eopt, each Pi contains at least two edges, i.e., there are no single-edge ears. Clearly,jEoptj = q + n � 1, where q is the number of ears in the decomposition. By deleting one edge ofP1, and the �rst and the last edge of each Pi (i � 2), we obtain a partition of V into completelydisjoint paths. Each of these disjoint paths has a matching such that at most one node is not



132CHAPTER 9. APPROXIMATING MINIMUMK-CONNECTED SPANNING SUBGRAPHSmatched. Taking the union of these matchings, we obtain a matching of (V;Eopt) such that at mostq nodes are not matched. Clearly, q � def(G), since def(G) is the number of nodes not matchedby a maximum matching of G = (V;E). Hence, jEoptj � def(G) + n� 1.Theorem 9.14 Let G = (V;E) be a graph of node connectivity � 2. The heuristic describedabove �nds a 2-NCSS (V;E 0) such that jE 0j � 1:5jEoptj, where jEoptj denotes the minimum size ofa 2-ECSS. The running time is O(mpn).Let � > 0 be a constant. A sequential linear-time version of the heuristic achieves an approxi-mation guarantee of (1:5 + �).Proof: The approximation guarantee follows from Lemma 9.12 and Proposition 9.13, sincejE 0jjEoptj � 1:5n+ def(G)� 1max(n+ def(G)� 1; n) � 1 + 0:5nn � 1:5:Step 1 can be implemented to run in O(mpn) time, since a maximummatching can be computedwithin this time bound. The obvious implementation of Step 2 takes O(m2) time, but this can beimproved to O(n+m) time by using the algorithm of Han et al [23]. Thus the overall running timeis O(mpn).Consider the variant of the algorithm that runs in linear time. Let fM denote a maximummatching of G. For Step 1, we �nd an approximately maximum matching. For a constant �,0 < � < 0:5, the algorithm �nds a matchingM 0 with jM 0j � (1� 2�)jfM j in O((n+m)=�) time. Weobtain an (inclusionwise) minimal edge cover M of size � (1 + 2�)jfM j + def(G) by adding to M 0one edge incident to every node that is not matched by M 0. Moreover, in linear time, we can �ndan edge minimal 2-NCSS whose edge set contains the minimal edge cover M , see [23]. Now, theapproximation guarantee is (1:5 + �).9.8 A (1+ 1k)-approximation algorithm for minimum-size k-NCSSThis section presents the heuristic for �nding an approximately minimum-size k-NCSS, and provesan approximation guarantee of 1+(1=k). The analysis of the heuristic hinges on a theorem of Mader[34, Theorem 1], see Theorem 9.10. Given a graph G = (V;E), a straightforward application ofMader's theorem shows that the number of edges in the k-NCSS returned by the heuristic is atmost (n� 1) + minfjM j : M � E and degM(v) � (k � 1); 8v 2 V g;see Lemma 9.16 below. An approximation guarantee of 1+(2=k) on the heuristic follows, since thenumber of edges in a k-node connected graph is at least kn=2, by the \degree lower bound", seeProposition 9.17. Often, the key to proving improved approximation guarantees for (minimizing)heuristics is a nontrivial lower bound on the value of every solution. We improve the approximationguarantee from 1 + (2=k) to 1 + (1=k) by exploiting a new lower bound on the size of a k-edgeconnected spanning subgraph, see Theorem 9.18:The number of edges in a k-edge connected spanning subgraph of a graph G = (V;E)is at least bn=2c+minfjM j : M � E and degM (v) � (k� 1); 8v 2 V g.



9.8. A (1 + 1K )-APPROXIMATION ALGORITHM FOR MINIMUM-SIZE K-NCSS 133Assume that the given graph G = (V;E) is k-node connected, otherwise, the heuristic willdetect this and report failure.Let E� � E denote a minimum-cardinality edge-set such that the spanning subgraph (V;E�)is k-edge connected. Note that every k-node connected spanning subgraph (V;E 0) (such as theoptimal solution) is necessarily k-edge connected, and so has jE 0j � jE�j.We need a few facts on b-matchings, because the k-NCSS approximation algorithm uses asubroutine for maximum b-matchings. Let G = (V;E) be a graph, and let b : V ! Z+ assign anonnegative integer bv to each node v 2 V . The perfect b-matching (or perfect degree-constrainedsubgraph) problem is to �nd an edge set M � E such that each node v has degM (v) = bv. Themaximum b-matching (or maximum degree-constrained subgraph) problem is to �nd a maximum-cardinality M � E such that each node v has degM (v) � bv. The b-matching problem can besolved in time O(m1:5(logn)1:5p�(m;m)), see [18, Section 11] (for our version of the problem,note that each edge has unit cost and unit capacity, and each node v may be assumed to have0 � bv � deg(v)). Also, see [21, Section 7.3].The heuristic has two steps. The �rst �nds a minimum-size spanning subgraph (V;M),M � E,whose minimum degree is (k � 1), i.e., each node is incident to � (k � 1) edges of M . Clearly,jM j � jE�j, because (V;E�) has minimum degree k, i.e., every node is incident to � k edges of E�.To �nd M e�ciently, we use the algorithm for the maximum b-matching problem. Our problem is:minfjM j : degM(v) � (k � 1); 8v 2 V; and M � Eg:To see that this is a b-matching problem, consider the equivalent problem of �nding the complementM of M w.r.t. E, where M = EnM :maxfjM j : degM (v) � deg(v) + 1� k; 8v 2 V; and M � Eg:The second step is equally simple. We �nd an (inclusionwise) minimal edge set F � EnM suchthat M [ F gives a k-node connected spanning subgraph, i.e., (V;M [ F ) is k-node connected andfor each edge vw 2 F , (V;M [F )nvw is not k-node connected. Recall that an edge vw of a k-nodeconnected graph H is critical (w.r.t. k-node connectivity) if Hnvw is not k-node connected. Thenext result characterizes critical edges.Proposition 9.15 . An edge vw of a k-node connected graph H is not critical i� there are at leastk + 1 openly disjoint v-w paths in H (including the path vw).To �nd F e�ciently, we start with F = ; and take the current subgraph to be G = (V;E)(which is k-node connected). We examine the edges of EnM in an arbitrary order, say, e1; e2; : : : ; e`(` = jEnM j). For each edge ei = viwi, we attempt to �nd (k+1) openly disjoint vi-wi paths in thecurrent subgraph. If we succeed, then we remove the edge ei from the current subgraph (since ei isnot critical), otherwise, we retain ei in the current subgraph and add ei to F (since ei is critical).At termination, the current subgraph with edge set M [ F is k-node connected, and every edgevw 2 F is critical. The running time for the second step is O(km2).The proof of the next lemma hinges on a theorem of Mader [34, Theorem 1], see Theorem 9.10.The proof is similar to the proof of Lemma 9.11 and so is omitted.Lemma 9.16 jF j � n� 1.



134CHAPTER 9. APPROXIMATING MINIMUMK-CONNECTED SPANNING SUBGRAPHSProposition 9.17 Let G = (V;E) be a graph of node connectivity � k. The heuristic above �ndsa k-NCSS (V;E 0) such that jE 0j � (1 + (2=k))jEoptj, where jEoptj denotes the cardinality of anoptimal solution. The running time is O(k3n2 +m1:5(logn)2).Proof: The approximation guarantee follows because jEoptj � (kn=2), sojM j+ jF jjEoptj = jM jjEoptj + jF jjEoptj � 1 + n(kn=2) = 1 + (2=k):We have already seen that M can be found in time O(m1:5(logn)2) via the maximum b-matchingalgorithm, and F can be found in time O(km2). The running time of the second step can beimproved to O(k3n2); this is left as an exercise.To improve the approximation guarantee to 1 + (1=k), we present an improved lower boundon jE�j, where E� denotes a minimum-cardinality edge set such that G� = (V;E�) is k-edgeconnected. Suppose that E� contains a perfect matching P0 (so jP0j = n=2). Then jE�j � (n=2) +minfjM�j : M� � E; degM�(v) � (k � 1); 8v 2 V g. To see this, focus on the edge set M 0 =E�nP0. Clearly, every node v 2 V is incident to at least (k� 1) edges ofM 0, because degE�(v) � kand degP0(v) = 1. Since M� is a minimum-size edge set with degM�(v) � (k� 1), 8v 2 V , we havejM�j � jM 0j = jE�j � (n=2). The next theorem generalizes this lower bound to the case when E�has no perfect matching. We skip the proof.Theorem 9.18 Let G� = (V;E�) be a graph of edge connectivity � k � 1, and let n denote jV j.Let M� � E� be a minimum-size edge set such that every node v 2 V is incident to � (k � 1) edgesof M�. Then jE�j � jM�j+ bn=2c.Theorem 9.19 Let G = (V;E) be a graph of node connectivity � k. The heuristic described above�nds a k-NCSS (V;E 0) such that jE 0j � (1 + (1=k))jEoptj, where jEoptj denotes the cardinality ofan optimal solution. The running time is O(k3n2 +m1:5(logn)2).Proof: The approximation guarantee of 1 + (1=k) follows easily from Theorem 9.18, using anargument similar to Proposition 9.17. We have E 0 = M [ F , where jF j � (n � 1). Moreover,since M is a minimum-size edge set with degM(v) � (k � 1); 8v 2 V , Theorem 9.18 implies thatjM j � jEoptj � bn=2c � jEoptj � (n� 1)=2. Hence,jM j+ jF jjEoptj � jEoptj � (n� 1)=2 + (n� 1)jEoptj � 1 + n=2jEoptj � 1 + (1=k);where the last inequality uses the \degree lower bound", jEoptj � kn=2.The running time analysis is the same as that in Proposition 9.17.9.9 Mader's theoremThis section has Mader's original proof of Theorem 9.10; no other proof of this theorem is known.Recall that an edge vw of a k-node connected graph G is called critical if Gnvw is not k-node



9.9. MADER'S THEOREM 135connected. In other words, vw is critical if Gnvw has a separator of cardinality < k, i.e., ifthere exists a set S with jSj � k � 1 such that (Gnvw)nS is disconnected. Note that this graphhas precisely two components, one containing v and the other containing w, because by addingthe edge vw to this graph we obtain the connected graph GnS (since G is k-node connected andjSj < k). This observation is used several times in the proof.We repeat the statement of Mader's theorem, see Theorem 9.10.a stS S a st TT stS STT S0 S1T1 Vs \ VtVsVa;s Va;tVtG GG Va = Va;s \ Va;tS \ T T0Va a bFigure 9.2: An illustration of the proof of Mader's theorem.Theorem (Mader) In a k-node connected graph, a cycle consisting of critical edges must be inci-dent to at least one node of degree k.Proof: Let G = (V;E) be a k-node connected graph. By way of contradiction, let C =a0; a1; : : : ; a`�1; a0 be a cycle such that each edge is critical. Suppose that deg(a0) is � k + 1.For notational convenience, let a = a0, s = a1 and t = a`�1. In the graph Gnas, let S be anarbitrary (k � 1)-separator whose deletion results in two components (S exists because edge as iscritical for G), and let Va;s and Vs denote (the node sets of) the two components, where a 2 Va;sand s 2 Vs. Similarly, let Va;t and Vt denote (the node sets of) the two components of (Gnat)nT ,where T is an arbitrary (k� 1)-separator of Gnat, and a 2 Va;t and t 2 Vt. See Figure 9.2. The keypoint is that jVtj < jVa;sj and symmetrically jVsj < jVa;tj;this is proved as Claim 1 below.The theorem follows easily from this inequality. Suppose that each node ai incident to the cycleC has degree � k + 1. For 0 � i � ` � 1, let ni denote the number of nodes in the componentof (Gnaiai+1)nSi that contains node ai, where Si is an arbitrary but �xed (k � 1)-separator of(Gnaiai+1) (the indexing is modulo `, so a` = a0). For example, using our previous notation,



136CHAPTER 9. APPROXIMATING MINIMUMK-CONNECTED SPANNING SUBGRAPHSn0 = jVa;sj and n`�1 = jVtj. By repeatedly applying the above inequality we have,n`�1 < n0 < n1 < : : : < n`�1:This contradiction shows that some node ai incident to the cycle C has deg(ai) = k.Claim 1 Let G be a k-node connected graph. Let a be a node with deg(a) � k + 1, and let as andat be critical edges. Let S and T be arbitrary (k � 1)-separators of Gnas and Gnat, respectively.Let the node sets of the two components of (Gnas)nS be Va;s and Vs, where a 2 Va;s and s 2 Vs.Similarly, let the node sets of the two components of (Gnat)nT be Va;t and Vt, where a 2 Va;t andt 2 Vt. Then jVtj < jVa;sj and symmetrically jVsj < jVa;tj:The claim follows from three subclaims. See Figure 9.2. Observe that the node set V ispartitioned into three sets w.r.t. S, namely, Va;s; Vs; S. This partition induces a partition of T intothree sets that we denote by T0 = Vs\T , T1 = Va;s\T and T2 = S\T , respectively (possibly someof these subsets of T may be empty). Similarly, V is partitioned into three sets w.r.t. T , namely,Va;t; Vt; T; and this gives a partition of S into three sets S0 = Vt\ S, S1 = Va;t\ S and S2 = S \T .Let Va denote Va;s \ Va;t, and note that a 2 Va.One way to see the proof is to focus on the four \arms" of the \crossing" separators S and T .By taking two consecutive \arms" together with the \hub" S \ T , we get a candidate separator,say, X ; note that X may not be a separator of G. The proof focuses on the \bottom" candidateseparator X = T1 [ (S \ T ) [ S1 and the \top" one Y = T0 [ (S \ T ) [ S0. A closer examinationshows that X [ fag is a genuine separator of G but Y is not.Subclaim 1 jS0j � jT1j and symmetrically jT0j � jS1j.By way of contradiction, suppose that jS0j is > jT1j. Focus on the set X = T1[ (S \T )[S1. SincejX j = jSj � jS0j+ jT1j and jSj = k � 1, we have jX j � k � 2. Since deg(a) � k + 1, a has at leastthree neighbors in V nX ; two of these are s and t; let b be a third one, i.e., ab 2 E and b 62 X[fs; tg.By the de�nition of S and T , b 62 Vs and b 62 Vt, hence, b 2 Va = Va;s \ Va;t. Therefore, Vanfagis a nonempty set. It is easily checked that N(Vanfag) � fag [X . (This is left as an exercise forthe reader.) Clearly, jfag [ X j � k � 1, and jVanfagj � jV j � (k + 3), since the complementarynode set contains S [ T [ fa; s; tg. We have a contradiction, because the k-node connectivity of Gimplies that every node set V 0 with 0 < jV 0j � jV j � k has at least k neighbors. This shows thatjS0j � jT1j. Similarly, it follows that jT0j � jS1j.Subclaim 2 Vs \ Vt = ;.Let Y = S0[ (S\T )[T0. Note that jY j = jSj� jS1j+ jT0j � jSj = k�1, by the previous subclaim.By focusing on Vs\Vt, and carefully observing that neither a nor one of a's neighbors is in Vs \Vt,it is easily checked that jVs\Vtj � jV j�(k+2) and N(Vs\Vt) � Y . As in the proof of the previoussubclaim, the k-node connectivity of G implies that the set Vs \ Vt is empty.Subclaim 3 jVtj < jVa;sj and symmetrically jVsj < jVa;tj.We have jVtj = jVa;s \ Vtj+ jS \ Vtj+ jVs \ Vtj



9.10. APPROXIMATING MINIMUM-SIZE K-ECSS 137� jVa;s \ Vtj+ jVa;s \ T j= jVa;sj � jVaj � jVa;sj � 1;where the �rst inequality follows because jVa;s \ T j = jT1j � jS0j = jS \ Vtj by Subclaim 1, andjVs \ Vtj = 0 by Subclaim 2, and the second inequality follows because jVaj = jVa;s \ Va;tj � 1.Similarly, it can be proved that jVsj < jVa;tj.9.10 Approximating minimum-size k-ECSSThe heuristic can be modi�ed to �nd an approximately minimum-size k-ECSS. We prove a (1 +(2=(k+1)))-approximation guarantee. The analysis hinges on Theorem 9.22 which may be regardedas an analogue of Mader's theorem [34, Theorem 1] for k-edge connected graphs.In this section, an edge e of a k-edge connected graph H is called critical if Hne is not k-edgeconnected. Assume that the given graph G = (V;E) is k-edge connected, otherwise, the heuristicwill detect this and report failure.The �rst step of the heuristic �nds an edge set M � E of minimum cardinality such thatevery node in V is incident to � k edges of M . Clearly, jM j � jEoptj, where Eopt � E denotesa minimum-cardinality edge set such that (V;Eopt) is k-edge connected. The second step of theheuristic �nds an (inclusionwise) minimal edge set F � EnM such that M [ F is the edge set of ak-ECSS. In detail, the second step starts with F = ; and E 0 = E. Note that G0 = (V;E 0) is k-edgeconnected at the start. We examine the edges of EnM in an arbitrary order e1; e2; : : :. For eachedge ei = viwi (where 1 � i � jEnM j), we determine whether or not viwi is critical for the currentgraph by �nding the maximum number of edge disjoint vi-wi paths in G0.Proposition 9.20 An edge viwi of a k-edge connected graph is not critical i� there exist at leastk + 1 edge disjoint vi-wi paths (including the path viwi).If viwi is noncritical, then we delete it from E 0 and G0, otherwise, we retain it in E 0 and G0,and also, we add it to F . At termination of the heuristic G0 = (V;E 0), E 0 = M [ F , is k-edgeconnected and every edge vw 2 F is critical w.r.t. k-edge connectivity. Theorem 9.22 below showsthat jF j � kn=(k + 1) for k � 1. Since jEoptj � kn=2, the minimum-size k-ECSS heuristic achievesan approximation guarantee of 1 + (2=(k+ 1)) for k � 1.The next lemma turns out to be quite useful. A straightforward counting argument gives theproof, see Mader [33, Lemma 1].Lemma 9.21 Let G = (V;M) be a simple graph of minimum degree k � 1.(i) Then for every node set S � V with 1 � jSj � k, the number of edges with exactly one endnode in S, j�(S)j, is at least k.(ii) If a node set S � V with 1 � jSj � k contains at least one node of degree � (k + 1), thenj�(S)j is at least k + 1.The goal of Theorem 9.22 is to estimate the maximum number of critical edges in the \com-plement" of a spanning subgraph of minimum degree k in an arbitrary k-edge connected graph H .
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Figure 9.3: Two laminar families of tight node sets for a 2-edge connected graph H (k = 2).(a) The laminar family F covers all critical edges of H . F consists of the node sets A1; : : : ; A8,where each Ai is tight since j�(Ai)j = 2 = k. For a node set Ai, �i is the node set AinSfAj 2 F jAj � Ai; Aj 6= Aig. Note that �i = Ai for the inclusionwise minimal Ai, i.e., for i = 1; 4; 5; 7; 8.Also, the tree T corresponding to F [ fV (H)g is illustrated.(b) The laminar family F 0 covers all critical edges of E(H)nM , where M � E(H) is such thatevery node is incident to at least k = 2 edges of M . M is indicated by dotted lines. All edgesof E(H)nM are critical. F 0 consists of the tight node sets A1; A2. Also, the node sets �1; �2 areindicated (�1 = A1), and the tree T 0 representing F 0 [ fV (H)g is illustrated.



9.11. THE MULTI EDGE MODEL FOR MINIMUM K-ECSS PROBLEMS 139Clearly, every critical edge e 2 E(H) is in some k-cut �(Ae), Ae � V (H). By a tight node set Sof a k-edge connected graph H we mean a set S � V (H) with j�H(S)j = k, i.e., a node set S suchthat �H(S) is a k-cut. As usual, a family of sets fSig is called laminar if for any two sets in thefamily, either the two sets are disjoint, or one set is contained in the other. For an arbitrary subsetF 0 of the critical edges of H , it is well known that there exists a laminar family F of tight nodesets covering F 0, i.e., there exists F = fA1; A2; : : : ; A`g, where Ai � V (H) and �(Ai) is a k-cut, for1 � i � `, such that each edge e 2 F 0 is in some �(Ai), 1 � i � `. (For details, see [11, Section 5].)It is convenient to de�ne a tree T corresponding to F [ fV (H)g: there is a T -node correspondingto each set Ai 2 F and to V (H), and there is a T -edge AiAj (or V (H)Aj) i� Aj � Ai and no othernode set in F contains Aj and is contained in Ai. Note that the T -node corresponding to the nodeset Ai of the laminar family F is denoted by Ai, and the T -node corresponding to the node setV (H) is denoted by V (H). Each T -edge corresponds to a k-cut of H . Suppose that the tree T isrooted at the T -node V (H). We associate another node set �i � V (H) with each node set Ai ofF : �i = Ain[fA 2 F j A � Ai; A 6= Aig:In other words, a T -node Ai 2 F that is a leaf node of T has �i = Ai, otherwise, �i consists ofthose H-nodes of Ai that are not in the node sets A0; A00; : : :, where A0; A00; : : : 2 F correspond tothe children of Ai in the tree T . For distinct T -nodes Ai and Aj , note that �i and �j are disjoint.Another useful fact is that [̀i=1 �(Ai) = [̀i=1 �(�i), because every edge in �(�i) is either in �(Ai) or in�(A0); �(A00); : : :, where A0; A00; : : : 2 F correspond to the children of Ai in the tree T . See Figure 9.3for an illustration of F = fAig, the family of node sets f�ig, and the tree T for a particular graph.We skip the proof of the next theorem.Theorem 9.22 Let H be a k-edge connected, n-node graph (k � 1), and let M � E(H) be an edgeset such that every node in V (H) is incident to at least k edges of M . Let F be the set consistingof edges of E(H)nM that are critical w.r.t. k-edge connectivity, i.e., F � E(H)nM and every edgee 2 F is in a k-cut of H. Then, jF j � kk + 1(n� 1).Theorem 9.22 is asymptotically tight. Consider the k-edge connected graph G obtained asfollows: take ` + 1 copies of the (k + 1)-clique, C0; C1; : : : ; C`, and for each i = 1; : : : ; `, choose anarbitrary node vi in Ci and add k (nonparallel) edges between vi and C0. Take M = Sì=0E(Ci),and F = E(G)nM . Observe that jF j = k(n � (k + 1))=(k+ 1).Theorem 9.23 Let G = (V;E) be a graph of edge connectivity � k � 1. The heuristic describedabove �nds a k-edge connected spanning subgraph (V;E 0) such that jE 0j � (1 + (2=(k+ 1)))jEoptj,where jEoptj denotes the cardinality of an optimal solution. The running time is O(k3n2+m1:5(logn)2).9.11 The multi edge model for minimum k-ECSS problemsFor minimum k-ECSS problems, two di�erent models have been studied, depending on the numberof copies of an edge e 2 E(G) that can be used in the desired subgraph: (1) in the simple-edge



140CHAPTER 9. APPROXIMATING MINIMUMK-CONNECTED SPANNING SUBGRAPHSTable 9.2: A summary of current approximation guarantees for minimum k-edge connected span-ning subgraphs (k-ECSS) in the multi edge model; k is an integer � 2. The references are to:� Goemans & Bertsimas, Math. Programming 60 (1993) pp. 145{166, and � Goemans, Williamson& Tardos, personal communication (1994) cited in Karger's Ph.D. thesis.Type of objective functionUnit costs Metric costs Nonnegative costsk-ECSS see last entry see last entry 1.5 for k even [GB93]multi-edge 1 +O(1)=k [GTW94] 1:5 + (1=2k) for k odd [GB93]modelmodel, at most one copy of an edge can be used, and (2) in the multiedge model, an arbitrarynumber of copies of an edge may be used. Some but not all of the approximation algorithms andguarantees for the simple-edge model extend to the multiedge model; this happens when the inputgraph may be taken to be a multigraph, because then we can take the given (simple) graph G andmodify it into a multigraph by taking k copies of every edge e 2 E(G). In the other direction,some of the current approximation guarantees in the multiedge model are strictly better than thecorresponding guarantees in the simple-edge model.For minimum k-ECSS problems and the multiedge model, there is no di�erence between metriccosts and nonnegative costs, because we can replace the given graph G and edge costs c by the\metric completion" G0; c0; where G0 is the complete graph on the node set of G, and c0vw is theminimum c-cost of a v-w path in G, see Goemans & Bertsimas [22, Theorem 3].9.12 Bibliographic remarksGiven a graph, consider the problem of �nding a minimum-size 2-edge connected spanning subgraph(2-ECSS), or a minimum-size 2-node connected spanning subgraph (2-NCSS). Khuller & Vishkin[30] achieved the �rst signi�cant advance by obtaining approximation guarantees of 1.5 for theminimum-size 2-ECSS problem. Garg et al [20], building on the results in [30], obtained an approx-imation guarantee of 1:5 for the minimum-size 2-NCSS problem. These algorithms are based ondepth-�rst search (DFS), and they do not imply e�cient parallel algorithms for the PRAM model.Subsequently, Chong & Lam [5] gave a (deterministic)NC algorithm on the PRAM model with anapproximation guarantee of (1:5+ �) for the minimum-size 2-ECSS problem, and later they [7] andindependently [4] gave a similar algorithm for the minimum-size 2-NCSS problem. In the contextof approximation algorithms for minimum-size k-connected spanning subgraph problems, Chong &Lam [5] appear to be the �rst to use matching. For the minimum-size k-ECSS problem on simplegraphs, Cheriyan & Thurimella [4], building on earlier work by Khuller & Raghavachari [29] andKarger [26], gave a 1+(2=(k+1))-approximation algorithm. The k-ECSS approximation algorithmin [4] does not apply to multigraphs. For the minimum-size k-ECSS problem on multigraphs, a1.85-approximation algorithm is given in [29], and a randomized (Las Vegas) algorithm with anapproximation guarantee of 1 +p[O(logn)=k] is given in [26].



9.13. EXERCISES 141In the context of augmenting the node connectivity of graphs, the �rst application of Mader'stheorem is due to Jord�an [25, 24].One of the �rst algorithmic applications of Mader's theorem appears to be due to Jord�an [25, 24];Jord�an applied the theorem in his approximation algorithm for augmenting the node connectivityof graphs. The key lemma in the analyses in Sections 9.7, 9.8 above, namely, Lemma 9.11 (also,Lemma 9.16) is inspired by these earlier results of Jord�an. The analysis of the k-NCSS heuristicfor digraphs is similar, and hinges on another theorem of Mader [35, Theorem 1], which may beregarded as the generalization of [34, Theorem 1] to digraphs. An approximation guarantee of1 + (1=k) is proved on the digraph heuristic by employing a simpler version of Theorem 9.18, togive a lower bound on the number of edges in a solution.9.13 Exercises1. Prove both parts of Proposition 9.4 using the following sketch.For part 2, note that every edge e 2 E(G) is critical w.r.t. k-node connectivity, since G isedge-minimal k-node connected. Apply Mader's theorem (Theorem 9.10) and focus on edgesthat have degree � k + 1 at both end nodes.2. Prove the following generalization of Chong and Lam's lower bound on the number of edgesin a 2-ECSS.Proposition 9.24 Let G = (V;E) be a graph of edge connectivity � k � 1, and let jEoptjdenote the minimum size of a k-edge connected spanning subgraph. If G is not factor critical,then jEoptj � k2(n+ def(G)). In general, jEoptj � k2 max(n+ def(G)� 1; n):(Hint: One way is via the Gallai-Edmonds decomposition theorem of matching theory.)3. Adapt the 1.5-approximation algorithm for a 2-NCSS in Section 9.7 to �nd a 2-ECSS whosesize is within a factor of 1.5 of minimum. Assume that the given graph G is 2-edge connected.(Hint: Focus on a block (i.e., a maximal 2-node connected subgraph) G0 of G. Is it truethat the size of an optimal 2-NCSS of G0 equals the size of an optimal 2-ECSS of G0?)4. Show that the running time of the second step of the approximation algorithm for a minimum-size k-NCSS can be improved to O(k3n2).(Hint: Use Nagamochi & Ibaraki's [36] sparse certi�cate eE for k-node connectivity. Here,eE � E, j eEj � kn, and for all nodes v; w, (V; eE) has k openly disjoint v-w paths i� G has kopenly disjoint v-w paths.)5. (Research problem) Given a graph, is there a 1 + (1=k)-approximation algorithm for �ndinga minimum-size k-ECSS? What about the special case k = 3?
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