Algebraic Combinatorics – algebra or combinatorics?

Ian Goulden

Department of Combinatorics and Optimization
University of Waterloo

April 11, 2011
Combinatorics

▶ enumerative combinatorics

> how many \{0, 1\}–strings of length \(n\)? \(2^n\), for each \(n = 0, 1, 2, \ldots\)

▶ how many \{N, S, E, W\}–strings of length \(n\), with no substring with equal number of N’s and S’s, and equal number of E’s and W’s?

▶ who knows? self-avoiding walks in the plane
Combinatorics

- enumerative combinatorics
- how many \(\{0, 1\}\)-strings of length \(n\)?
- who knows? self-avoiding walks in the plane
Combinatorics

- enumerative combinatorics
- how many \(\{0, 1\} \)-strings of length \(n \)? \(2^n \), for each \(n = 0, 1, 2, \ldots \)
Combinatorics

- enumerative combinatorics

- how many \(\{0, 1\} \)-strings of length \(n \)? \(2^n \), for each \(n = 0, 1, 2, \ldots \)

- how many \(\{N, S, E, W\} \)-strings of length \(n \), with no substring with equal number of \(N \)'s and \(S \)'s, and equal number of \(E \)'s and \(W \)'s?
Combinatorics

- enumerative combinatorics

- how many \(\{0, 1\} \)-strings of length \(n \)? \(2^n \), for each \(n = 0, 1, 2, \ldots \)

- how many \(\{N, S, E, W\} \)-strings of length \(n \), with no substring with equal number of \(N \)'s and \(S \)'s, and equal number of \(E \)'s and \(W \)'s?

- who knows? self-avoiding walks in the plane
Generating series

\[\Phi_S(x) = \sum_{\sigma \in S} x^{\omega(\sigma)}, \]
Generating series

\[\Phi_S(x) = \sum_{\sigma \in S} x^{\omega(\sigma)}, \text{ where } S \text{ is a set of combinatorial objects}, \]
Generating series

\[\Phi_S(x) = \sum_{\sigma \in S} x^{\omega(\sigma)}, \text{ where } S \text{ is a set of combinatorial objects, } \omega(\sigma) \text{ takes on only values in } \{0, 1, 2, \ldots\}, \]
Generating series

\[\Phi_S(x) = \sum_{\sigma \in S} x^{\omega(\sigma)}, \text{ where } S \text{ is a set of combinatorial objects, } \omega(\sigma) \text{ takes on only values in } \{0, 1, 2, \ldots\}, \omega \text{ is a weight function} \]
Generating series

- $\Phi_S(x) = \sum_{\sigma \in S} x^{\omega(\sigma)}$, where S is a set of combinatorial objects, $\omega(\sigma)$ takes on only values in $\{0, 1, 2, \ldots\}$, ω is a weight function

- for example, $\sum_{\sigma \in \{0, 1\}^*} x^{\text{length}(\sigma)}$,
Generating series

- $\Phi_S(x) = \sum_{\sigma \in S} x^{\omega(\sigma)}$, where S is a set of combinatorial objects, $\omega(\sigma)$ takes on only values in $\{0, 1, 2, \ldots\}$, ω is a weight function

- for example, $\sum_{\sigma \in \{0, 1\}^*} x^{\text{length}(\sigma)}$, the generating series for $\{0, 1\}$–strings with respect to length
Generating series

\[\Phi_S(x) = \sum_{\sigma \in S} x^{\omega(\sigma)}, \] where \(S \) is a set of combinatorial objects, \(\omega(\sigma) \) takes on only values in \(\{0, 1, 2, \ldots\} \), \(\omega \) is a weight function

- for example, \(\sum_{\sigma \in \{0, 1\}^*} x^{\text{length}(\sigma)} \), the generating series for \(\{0, 1\}\)-strings with respect to length

- this generating series equals \(1 + 2x + 4x^2 + 8x^3 + \ldots \)
Generating series

\[\Phi_S(x) = \sum_{\sigma \in S} x^{\omega(\sigma)}, \] where \(S \) is a set of combinatorial objects, \(\omega(\sigma) \) takes on only values in \(\{0,1,2,\ldots\} \), \(\omega \) is a weight function

for example, \(\sum_{\sigma \in \{0,1\}^*} x^{\text{length}(\sigma)} \), the generating series for \(\{0,1\}-\text{strings with respect to length} \)

this generating series equals \(1 + 2x + 4x^2 + 8x^3 + \ldots = (1 - 2x)^{-1} \)
Algebra – formal power series

Consider two formal power series

\[A(x) = \sum_{i \geq 0} a_i x^i, \quad B(x) = \sum_{j \geq 0} b_j x^j \]
Consider two formal power series
\[A(x) = \sum_{i \geq 0} a_i x^i, \quad B(x) = \sum_{j \geq 0} b_j x^j \]

Definition: \[A(x) + B(x) = \sum_{n \geq 0} (a_n + b_n) x^n, \]

1 = 1 + 0 x + 0 x^2 + \cdots is a multiplicative identity, and \((1 - 2x)(1 + 2x + 4x^2 + 8x^3 + \ldots) = 1\), (since coefficient of \(x^n\) in this product is \(2^n - 2 \cdot 2^{n-1} = 0\) for each positive integer \(n\))
Consider two formal power series
\[A(x) = \sum_{i \geq 0} a_i x^i, \quad B(x) = \sum_{j \geq 0} b_j x^j \]

Definition: \[A(x) + B(x) = \sum_{n \geq 0} (a_n + b_n) x^n, \]
\[A(x) \cdot B(x) = \sum_{n \geq 0} (a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0) x^n \]
Consider two formal power series
\[A(x) = \sum_{i \geq 0} a_i x^i, \quad B(x) = \sum_{j \geq 0} b_j x^j \]

Definition: \[A(x) + B(x) = \sum_{n \geq 0} (a_n + b_n) x^n, \]
\[A(x) \cdot B(x) = \sum_{n \geq 0} (a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0) x^n \]

1 = 1 + 0x + 0x^2 + \cdots is a multiplicative identity,
Consider two formal power series
\[A(x) = \sum_{i \geq 0} a_i x^i, \quad B(x) = \sum_{j \geq 0} b_j x^j \]

Definition: \[A(x) + B(x) = \sum_{n \geq 0} (a_n + b_n) x^n, \]
\[A(x) \cdot B(x) = \sum_{n \geq 0} (a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0) x^n \]

\[1 = 1 + 0x + 0x^2 + \cdots \] is a multiplicative identity, and
\[(1 - 2x)(1 + 2x + 4x^2 + 8x^3 + \ldots) = 1, \]
Consider two formal power series

\[A(x) = \sum_{i \geq 0} a_i x^i, \quad B(x) = \sum_{j \geq 0} b_j x^j \]

Definition: \[A(x) + B(x) = \sum_{n \geq 0} (a_n + b_n) x^n, \]
\[A(x) \cdot B(x) = \sum_{n \geq 0} (a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0) x^n \]

1 = 1 + 0x + 0x^2 + \cdots is a multiplicative identity, and
\[(1 - 2x)(1 + 2x + 4x^2 + 8x^3 + \cdots) = 1, \quad (\text{since coefficient of } x^n \text{ in this product is } 2^n - 2 \cdot 2^{n-1} = 0 \text{ for each positive integer } n)\]
Combinatorics of strings and matrix algebra

Simon Newcomb Problem: Consider the generating series

\[R(x_1, \ldots, x_n, u) = \sum_{\sigma \in \{1, \ldots, n\}^*} x_1^{\text{num}(1's)} \cdots x_n^{\text{num}(n's)} u^{\text{num}(\text{rises})}, \]
Combinatorics of strings and matrix algebra

Simon Newcomb Problem: Consider the generating series

\[R(x_1, \ldots, x_n, u) = \sum_{\sigma \in \{1, \ldots, n\}^*} x_1^{\text{num}(1's)} \cdots x_n^{\text{num}(n's)} u^{\text{num}(\text{rises})}, \]

where a rise is a substring \(ij \) with \(i < j \)
Matrix encoding: Let

\[
A = \begin{pmatrix}
1 & u & \cdots & u & u \\
1 & 1 & \cdots & u & u \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 1 & u \\
1 & 1 & \cdots & 1 & 1
\end{pmatrix},
\]

an \(n \) by \(n \) matrix, and \(X \) be a diagonal \(n \) by \(n \) matrix with entries \(x_1, \ldots, x_n \)
Matrix encoding: Let

\[A = \begin{pmatrix}
1 & u & \cdots & u & u \\
1 & 1 & \cdots & u & u \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 1 & u \\
1 & 1 & \cdots & 1 & 1
\end{pmatrix}, \]

an \(n \) by \(n \) matrix, and \(X \) be a diagonal \(n \) by \(n \) matrix with entries \(x_1, \ldots, x_n \). Note that the monomial \(x_ia_{ij}x_ja_{jk}x_ka_{kl}x_la_{lm}x_ma_{mn}x_n \)
gives precisely the correct contribution to \(R \) for the string \(ijklmn \),
Matrix encoding: Let

\[A = \begin{pmatrix}
1 & u & \cdots & u & u \\
1 & 1 & \cdots & u & u \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 1 & u \\
1 & 1 & \cdots & 1 & 1
\end{pmatrix}, \]

an \(n \) by \(n \) matrix, and \(X \) be a diagonal \(n \) by \(n \) matrix with entries \(x_1, \ldots, x_n \). Note that the monomial

\[x_i a_{ij} x_j a_{jk} x_k a_{kl} x_l a_{lm} x_m a_{mn} x_n \]

gives precisely the correct contribution to \(R \) for the string \(ijklmn \), and that this monomial arises in the \(ij \)–entry of the matrix

\[XAXAXAXAXAX. \]
We conclude that $R - 1$ is the sum of all the entries in the matrix

$$X + XAX + XAXAX + XAXAXAX + \ldots$$
We conclude that $R - 1$ is the sum of all the entries in the matrix

$$X + XAX + XAXAX + XAXAXAX + \ldots$$

$$= (I -XA)^{-1}X.$$
We conclude that $R - 1$ is the sum of all the entries in the matrix

$$X + XAX + XAXAX + XAXAXAX + \ldots$$

$$= (I - XA)^{-1}X.$$

More compactly,

$$R = 1 + \text{trace}(I - XA)^{-1}XJ,$$

where J is the n by n matrix of all 1’s.
We conclude that $R - 1$ is the sum of all the entries in the matrix

$$X + XAX + XAXAX + XAXAXAX + \ldots$$

$$= (I - XA)^{-1}X.$$

More compactly,

$$R = 1 + \text{trace}(I - XA)^{-1}XJ,$$

where J is the n by n matrix of all 1’s.

Sherman-Morrison formula: If P, Q are square matrices of the same size, with P invertible and Q of rank 1, then

$$(P + Q)^{-1} = P^{-1} - \frac{1}{1 + \text{trace}P^{-1}Q}P^{-1}Q,$$

if $1 + \text{trace}P^{-1}Q \neq 0.$
Circular sequences

Here, the generating series is

\[\text{trace}(XA + \frac{1}{2}(XA)^2 + \frac{1}{3}(XA)^3 + \ldots) \]
Circular sequences

Here, the generating series is

$$\text{trace}(XA + \frac{1}{2}(XA)^2 + \frac{1}{3}(XA)^3 + \ldots)$$

$$= \text{trace} \log(I - XA)^{-1} = \log \det(I - XA)^{-1},$$
Circular sequences

Here, the generating series is

$$\text{trace}(XA + \frac{1}{2}(XA)^2 + \frac{1}{3}(XA)^3 + \ldots)$$

$$= \text{trace} \log(I - XA)^{-1} = \log \det(I - XA)^{-1},$$

the last equality from Jacobi’s identity adapted to formal power series
Symmetric functions and the symmetric group

A tableau of shape (5, 3, 2) is given below. Positive integers are placed in each cell so that they are weakly increasing in each row (left to right), and strictly increasing down each column (top to bottom).

\[
\begin{array}{cccc}
1 & 1 & 3 & 3 & 5 \\
2 & 3 & 5 \\
4 & 4 \\
\end{array}
\]

We call the weakly decreasing list (5, 3, 2) a partition of 10, with parts 5, 3, 2 (e.g., the partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)).

The Schur function indexed by a partition \(\lambda \) is the generating series \(s_\lambda(x_1, x_2, \ldots) = \sum T x_{\text{num}(1's)} x_{\text{num}(2's)} \cdots \), summed over all tableaux \(T \) of shape \(\lambda \).

Schur functions are symmetric in \(x_1, x_2, \ldots \).
Symmetric functions and the symmetric group

- A tableau of shape $(5, 3, 2)$ is given below. Positive integers are placed in each cell so that they are weakly increasing in each row (left to right), and strictly increasing down each column (top to bottom).

We call the weakly decreasing list $(5, 3, 2)$ a partition of 10, with parts $5, 3, 2$ (e.g., the partitions of 4 are $(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)$).
Symmetric functions and the symmetric group

A tableau of shape $(5, 3, 2)$ is given below. Positive integers are placed in each cell so that they are weakly increasing in each row (left to right), and strictly increasing down each column (top to bottom).

We call the weakly decreasing list $(5, 3, 2)$ a partition of 10, with parts $5, 3, 2$ (e.g., the partitions of 4 are $(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)$).

The Schur function indexed by a partition λ is the generating series

$$s_{\lambda}(x_1, x_2, \ldots) = \sum_{T} x_1^{\text{num}(1's)} x_2^{\text{num}(2's)} \cdots,$$

summed over all tableaux T of shape λ.

$\begin{array}{cccc}
1 & 1 & 3 & 3 & 5 \\
2 & 3 & 5 \\
4 & 4 \\
\end{array}$
Symmetric functions and the symmetric group

A tableau of shape (5, 3, 2) is given below. Positive integers are placed in each cell so that they are weakly increasing in each row (left to right), and strictly increasing down each column (top to bottom).

We call the weakly decreasing list (5, 3, 2) a partition of 10, with parts 5, 3, 2 (e.g., the partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)).

The Schur function indexed by a partition λ is the generating series

$$s_\lambda(x_1, x_2, \ldots) = \sum_{T} x_1^{\text{num}(1's)} x_2^{\text{num}(2's)} \cdots,$$

summed over all tableaux T of shape λ. Schur functions are symmetric in x_1, x_2, \ldots.
Another symmetric function is the power sum $p_i = x_1^i + x_2^i + \ldots$, and we define the power sum indexed by a partition to be the product of the power sums indexed by the parts,
Another symmetric function is the power sum $p_i = x_1^i + x_2^i + \ldots$, and we define the power sum indexed by a partition to be the product of the power sums indexed by the parts, so, for example, $p_{(5,3,2)} = p_5p_3p_2$.
A permutation of \(\{1, \ldots, n\} \) is a bijective function on \(\{1, \ldots, n\} \).
A permutation of \(\{1, \ldots, n\} \) is a bijective function on \(\{1, \ldots, n\} \). For example, with \(n = 12 \),

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 6 & 10 & 1 & 12 & 2 & 7 & 11 & 8 & 3 & 9 & 4
\end{pmatrix},
\]

describes a permutation \(\sigma \), where \(\sigma(1) = 5, \sigma(2) = 6, \ldots \).
A permutation of \(\{1, \ldots, n\} \) is a bijective function on \(\{1, \ldots, n\} \). For example, with \(n = 12 \),

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 6 & 10 & 1 & 12 & 2 & 7 & 11 & 8 & 3 & 9 & 4
\end{pmatrix},
\]

describes a permutation \(\sigma \), where \(\sigma(1) = 5, \sigma(2) = 6, \ldots \).

The disjoint cycle representation of \(\sigma \) is given by

\[\sigma = (1 \, 5 \, 12 \, 4)(2 \, 6)(3 \, 10)(7)(8 \, 11 \, 9).\]
A permutation of \(\{1, \ldots, n\} \) is a bijective function on \(\{1, \ldots, n\} \). For example, with \(n = 12 \),

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 6 & 10 & 1 & 12 & 2 & 7 & 11 & 8 & 3 & 9 & 4
\end{pmatrix},
\]

describes a permutation \(\sigma \), where \(\sigma(1) = 5, \sigma(2) = 6, \ldots \).

The disjoint cycle representation of \(\sigma \) is given by

\[
(1 \ 5 \ 12 \ 4)(2 \ 6)(3 \ 10)(7)(8 \ 11 \ 9).
\]

We often write \(\sigma = (1 \ 5 \ 12 \ 4)(2 \ 6)(3 \ 10)(7)(8 \ 11 \ 9) \).
A permutation of \(\{1, \ldots, n\} \) is a bijective function on \(\{1, \ldots, n\} \). For example, with \(n = 12 \),

\[
\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 6 & 10 & 1 & 12 & 2 & 7 & 11 & 8 & 3 & 9 & 4
\end{array} \right),
\]

describes a permutation \(\sigma \), where \(\sigma(1) = 5, \sigma(2) = 6, \ldots \).

The disjoint cycle representation of \(\sigma \) is given by

\[
\sigma = (1 \, 5 \, 12 \, 4)(2 \, 6)(3 \, 10)(7)(8 \, 11 \, 9).
\]

We often write \(\sigma = (1 \, 5 \, 12 \, 4)(2 \, 6)(3 \, 10)(7)(8 \, 11 \, 9) \). Here the cycles of \(\sigma \) have lengths \((4, 3, 2, 2, 1) \), a partition of 12,
A permutation of \(\{1, \ldots, n\} \) is a bijective function on \(\{1, \ldots, n\} \). For example, with \(n = 12 \),

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 6 & 10 & 1 & 12 & 2 & 7 & 11 & 8 & 3 & 9 & 4
\end{pmatrix},
\]

describes a permutation \(\sigma \), where \(\sigma(1) = 5, \sigma(2) = 6, \ldots \).

The disjoint cycle representation of \(\sigma \) is given by

\[
\begin{array}{cccc}
1 & 5 & 12 & 4 \\
2 & 6 \\
3 & 10 \\
7 & \\
8 & 11 & 9 \\
\end{array}
\]

We often write \(\sigma = (1 \ 5 \ 12 \ 4)(2 \ 6)(3 \ 10)(7)(8 \ 11 \ 9) \). Here the cycles of \(\sigma \) have lengths \((4, 3, 2, 2, 1) \), a partition of 12, and all permutations with cycle lengths specified by a given partition \(\lambda \) form a conjugacy class, denoted by \(C_\lambda \).
The set of all permutations of \{1, \ldots,\} is a group, called the symmetric group on \{1, \ldots\}.
The set of all permutations of \(\{1, \ldots, \} \) is a group, called the symmetric group on \(\{1, \ldots \} \). Let \(C_\lambda = \sum_{\sigma \in C_\lambda} \sigma \), an element of the group algebra of the symmetric group.
The set of all permutations of \(\{1, \ldots, \} \) is a group, called the symmetric group on \(\{1, \ldots\} \). Let \(C_\lambda = \sum_{\sigma \in C_\lambda} \sigma \), an element of the group algebra of the symmetric group. The \(\{C_\lambda\} \) commute with each other, and form a basis for the centre (the set of elements that commute with everything) of the group algebra.
The set of all permutations of \(\{1, \ldots,\}\) is a group, called the symmetric group on \(\{1, \ldots \}\). Let \(C_\lambda = \sum_{\sigma \in C_\lambda} \sigma\), an element of the group algebra of the symmetric group. The \(\{C_\lambda\}\) commute with each other, and form a basis for the centre (the set of elements that commute with everything) of the group algebra. Moreover, there is a basis \(\{F_\theta\}\) of orthogonal idempotents (which means that \(F_\theta F_\rho = F_\theta \delta_{\theta \rho}\)), with

\[
C_\mu = |C_\mu| \sum_{\theta \vdash n} \frac{\chi^\theta(\mu)}{\chi^\theta(1^n)} F_\theta,
\]

where \(1^n\) is the partition with \(n\) parts, each equal to 1,
The set of all permutations of \(\{1, \ldots, \} \) is a group, called the symmetric group on \(\{1, \ldots, \} \). Let \(C_\lambda = \sum_{\sigma \in C_\lambda} \sigma \), an element of the group algebra of the symmetric group The \(\{C_\lambda\} \) commute with each other, and form a basis for the centre (the set of elements that commute with everything) of the group algebra. Moreover, there is a basis \(\{F_\theta\} \) of orthogonal idempotents (which means that \(F_\theta F_\rho = F_\theta \delta_{\theta \rho} \)), with

\[
C_\mu = |C_\mu| \sum_{\theta \vdash n} \frac{\chi^\theta(\mu)}{\chi^\theta(1^n)} F_\theta,
\]

\[
F_\rho = \frac{\chi^\rho(1^n)}{n!} \sum_{\nu \vdash n} \chi^\rho(\nu)C_\nu,
\]

where \(1^n \) is the partition with \(n \) parts, each equal to 1,
The set of all permutations of \(\{1, \ldots, n\} \) is a group, called the symmetric group on \(\{1, \ldots\} \). Let \(C_\lambda = \sum_{\sigma \in C_\lambda} \sigma \), an element of the group algebra of the symmetric group. The \(\{C_\lambda\} \) commute with each other, and form a basis for the centre (the set of elements that commute with everything) of the group algebra. Moreover, there is a basis \(\{F_\theta\} \) of orthogonal idempotents (which means that \(F_\theta F_\rho = F_\theta \delta_{\theta \rho} \)), with

\[
C_\mu = |C_\mu| \sum_{\theta \vdash n} \frac{\chi^\theta(\mu)}{\chi^\theta(1^n)} F_\theta,
\]

\[
F_\rho = \frac{\chi^\rho(1^n)}{n!} \sum_{\nu \vdash n} \chi^\rho(\nu) C_\nu,
\]

where \(1^n \) is the partition with \(n \) parts, each equal to 1, and \(\chi^\lambda(\mu) \) is an irreducible character of the symmetric group.
The combinatorial calculations for multiplying conjugacy classes can be translated into the language of symmetric functions, since

\[s_\lambda = \sum_{\nu \vdash n} \frac{|C_{\nu}|}{n!} \chi_\lambda^{\nu}(\nu)p_\nu, \]
The combinatorial calculations for multiplying conjugacy classes can be translated into the language of symmetric functions, since

\[s_\lambda = \sum_{\nu \vdash n} \frac{|C_\nu|}{n!} \chi^\lambda(\nu) p_\nu, \]

and

\[p_\mu = \sum_{\theta \vdash n} \chi^\theta(\mu) s_\theta. \]
Permutations and rooted hypermaps in orientable surfaces
Permutations and rooted hypermaps in orientable surfaces

The green faces are hyperedges, the white faces are hyperfaces.
\(V = (1\ 2\ 7)(3\ 4)(5\ 6)(8)(9), \)
\(G = (1\ 8\ 6)(2\ 9\ 4)(3\ 5\ 7), \)
\(W = (1\ 5\ 8)(2\ 6\ 3\ 9)(4\ 7), \)
\(VGW = \text{identity} \)
acts transitively on \(\{1, \ldots, 9\} \) (the hypermap is connected).
\[V = (1\ 2\ 7)(3\ 4)(5\ 6)(8)(9), \]
\[V = (1 \, 2 \, 7)(3 \, 4)(5 \, 6)(8)(9), \quad G = (1 \, 8 \, 6)(2 \, 9 \, 4)(3 \, 5 \, 7), \]
\(V = (1 \, 2 \, 7)(3 \, 4)(5 \, 6)(8)(9), \quad G = (1 \, 8 \, 6)(2 \, 9 \, 4)(3 \, 5 \, 7), \quad W = (1 \, 5 \, 8)(2 \, 6 \, 3 \, 9)(4 \, 7), \)
\[V = (1\ 2\ 7)(3\ 4)(5\ 6)(8)(9), \quad G = (1\ 8\ 6)(2\ 9\ 4)(3\ 5\ 7), \]
\[W = (1\ 5\ 8)(2\ 6\ 3\ 9)(4\ 7), \quad VGW = \text{identity} \]
\[V = (1 \ 2 \ 7)(3 \ 4)(5 \ 6)(8)(9), \quad G = (1 \ 8 \ 6)(2 \ 9 \ 4)(3 \ 5 \ 7), \]
\[W = (1 \ 5 \ 8)(2 \ 6 \ 3 \ 9)(4 \ 7), \quad VGW = \text{identity} \]

\[\langle V, G, W \rangle \text{ acts transitively on } \{1, \ldots, 9\} \text{ (the hypermap is connected).} \]
This gives an expression for the generating series for rooted hypermaps (maps are a special case) in orientable surfaces in terms of symmetric functions.
This gives an expression for the generating series for rooted hypermaps (maps are a special case) in orientable surfaces in terms of symmetric functions.

An alternative expression, by considering the combinatorics of matchings, gives an expression for these maps as a matrix integral, over complex Hermitian matrices.
This gives an expression for the generating series for rooted hypermaps (maps are a special case) in orientable surfaces in terms of symmetric functions.

An alternative expression, by considering the combinatorics of matchings, gives an expression for these maps as a matrix integral, over complex Hermitian matrices.

For rooted hypermaps in nonorientable surfaces (like the projective plane or the Klein bottle), we use another commutative algebra –
This gives an expression for the generating series for rooted hypermaps (maps are a special case) in orientable surfaces in terms of symmetric functions.

An alternative expression, by considering the combinatorics of matchings, gives an expression for these maps as a matrix integral, over complex Hermitian matrices.

For rooted hypermaps in nonorientable surfaces (like the projective plane or the Klein bottle), we use another commutative algebra – the algebra of double cosets of the symmetric group with hyperoctahedral subgroup.
This gives an expression for the generating series for rooted hypermaps (maps are a special case) in orientable surfaces in terms of symmetric functions.

An alternative expression, by considering the combinatorics of matchings, gives an expression for these maps as a matrix integral, over complex Hermitian matrices.

For rooted hypermaps in nonorientable surfaces (like the projective plane or the Klein bottle), we use another commutative algebra – the algebra of double cosets of the symmetric group with hyperoctahedral subgroup. In this case, the Schur functions are replaced by zonal polynomials,
This gives an expression for the generating series for rooted hypermaps (maps are a special case) in orientable surfaces in terms of symmetric functions.

An alternative expression, by considering the combinatorics of matchings, gives an expression for these maps as a matrix integral, over complex Hermitian matrices.

For rooted hypermaps in nonorientable surfaces (like the projective plane or the Klein bottle), we use another commutative algebra – the algebra of double cosets of the symmetric group with hyperoctahedral subgroup. In this case, the Schur functions are replaced by zonal polynomials, and it becomes a matrix integral, over real symmetric matrices.
Hurwitz numbers and the KP hierarchy

- For a partition α of n and a nonnegative integer r, let H^r_α be the number of tuples $(\sigma, \pi_1, \ldots, \pi_r)$ of permutations on $\{1, \ldots, n\}$ such that

- Branched covers of the sphere with branch points ∞, X_1, \ldots, X_r, at which we have branching $\sigma, \pi_1, \ldots, \pi_r$, respectively. (The branching at π_1, \ldots, π_r is simple.)

- (The product equal to the identity permutation is a monodromy condition, and the transitivity condition means that the covers are connected.)

- The genus g of the cover is given by $r = l(\alpha) + n + 2g - 2$, from the Riemann-Hurwitz formula.
Hurwitz numbers and the KP hierarchy

For a partition α of n and a nonnegative integer r, let H_{α}^r be the number of tuples $(\sigma, \pi_1, \ldots, \pi_r)$ of permutations on \{1, \ldots, n\} such that $\sigma \in C_\alpha$, π_1, \ldots, π_r are transpositions,
Hurwitz numbers and the KP hierarchy

- For a partition \(\alpha \) of \(n \) and a nonnegative integer \(r \), let \(H^r_\alpha \) be the number of tuples \((\sigma, \pi_1, \ldots, \pi_r)\) of permutations on \(\{1, \ldots, n\} \) such that \(\sigma \in \mathcal{C}_\alpha \), \(\pi_1, \ldots, \pi_r \) are transpositions, \(\sigma \pi_1 \cdots \pi_r \) is the identity,
For a partition α of n and a nonnegative integer r, let H^r_{α} be the number of tuples $(\sigma, \pi_1, \ldots, \pi_r)$ of permutations on $\{1, \ldots, n\}$ such that $\sigma \in C_\alpha$, π_1, \ldots, π_r are transpositions, $\sigma \pi_1 \cdots \pi_r$ is the identity, and $\langle \sigma, \gamma, \pi_1, \pi_2, \ldots \rangle$ acts transitively on $\{1, \ldots, n\}$.
For a partition \(\alpha \) of \(n \) and a nonnegative integer \(r \), let \(H^r_\alpha \) be the number of tuples \((\sigma, \pi_1, \ldots, \pi_r)\) of permutations on \(\{1, \ldots, n\} \) such that \(\sigma \in C_\alpha \), \(\pi_1, \ldots, \pi_r \) are transpositions, \(\sigma\pi_1 \cdots \pi_r \) is the identity, and \(\langle \sigma, \gamma, \pi_1, \pi_2, \ldots \rangle \) acts transitively on \(\{1, \ldots, n\} \).

Branched covers of the sphere with branch points \(\infty, X_1, \ldots, X_r \), at which we have branching \(\sigma, \pi_1, \ldots, \pi_r \), respectively.
For a partition α of n and a nonnegative integer r, let H^r_{α} be the number of tuples $(\sigma, \pi_1, \ldots, \pi_r)$ of permutations on \{1, \ldots, n\} such that $\sigma \in C_{\alpha}$, π_1, \ldots, π_r are transpositions, $\sigma \pi_1 \cdots \pi_r$ is the identity, and $\langle \sigma, \gamma, \pi_1, \pi_2, \ldots \rangle$ acts transitively on \{1, \ldots, n\}.

Branched covers of the sphere with branch points ∞, X_1, \ldots, X_r, at which we have branching $\sigma, \pi_1, \ldots, \pi_r$, respectively. (The branching at π_1, \ldots, π_r is simple.)
Hurwitz numbers and the KP hierarchy

A partition \(\alpha \) of \(n \) and a nonnegative integer \(r \), let \(H^r_\alpha \) be the number of tuples \((\sigma, \pi_1, \ldots, \pi_r)\) of permutations on \(\{1, \ldots, n\} \) such that \(\sigma \in C_\alpha \), \(\pi_1, \ldots, \pi_r \) are transpositions, \(\sigma \pi_1 \cdots \pi_r \) is the identity, and \(\langle \sigma, \gamma, \pi_1, \pi_2, \ldots \rangle \) acts transitively on \(\{1, \ldots, n\} \).

Branched covers of the sphere with branch points \(\infty, X_1, \ldots, X_r \), at which we have branching \(\sigma, \pi_1, \ldots, \pi_r \), respectively. (The branching at \(\pi_1, \ldots, \pi_r \) is simple.) (The product equal to the identity permutation is a monodromy condition, and the transitivity condition means that the covers are connected.)
Hurwitz numbers and the KP hierarchy

For a partition α of n and a nonnegative integer r, let H^{r}_{α} be the number of tuples $(\sigma, \pi_1, \ldots, \pi_r)$ of permutations on $\{1, \ldots, n\}$ such that $\sigma \in C_{\alpha}$, π_1, \ldots, π_r are transpositions, $\sigma \pi_1 \cdots \pi_r$ is the identity, and $\langle \sigma, \gamma, \pi_1, \pi_2, \ldots \rangle$ acts transitively on $\{1, \ldots, n\}$.

Branched covers of the sphere with branch points ∞, X_1, \ldots, X_r, at which we have branching $\sigma, \pi_1, \ldots, \pi_r$, respectively. (The branching at π_1, \ldots, π_r is simple.) (The product equal to the identity permutation is a monodromy condition, and the transitivity condition means that the covers are connected.) The genus g of the cover is given by $r = l(\alpha) + n + 2g - 2$, from the Riemann-Hurwitz formula.
Applying the relationship between Schur functions and conjugacy classes, we can evaluate the generating series for Hurwitz numbers, and prove that it is of the form

$$\log \left(\sum_{\lambda} a_{\lambda} s_{\lambda} \right),$$

where \(\{a_{\lambda}\}\) satisfies the Plücker relations from algebraic geometry.
Applying the relationship between Schur functions and conjugacy classes, we can evaluate the generating series for Hurwitz numbers, and prove that it is of the form

$$\log \left(\sum_{\lambda} a_{\lambda} s_{\lambda} \right),$$

where \(\{a_{\lambda}\} \) satisfies the Plücker relations from algebraic geometry.
Applying the relationship between Schur functions and conjugacy classes, we can evaluate the generating series for Hurwitz numbers, and prove that it is of the form

\[
\log \left(\sum_{\lambda} a_{\lambda} s_{\lambda} \right),
\]

where \(\{a_{\lambda}\} \) satisfies the Plücker relations from algebraic geometry.

This implies that the Hurwitz generating series is a solution to the KP hierarchy.
Consider two independent sets of indeterminates \(p = (p_1, p_2, \ldots) \) and \(\hat{p} = (\hat{p}_1, \hat{p}_2, \ldots) \). Then \(\log \tau \) satisfies the KP hierarchy if and only if

\[
[t^{-1}] \exp \left(\sum_{k \geq 1} \frac{t^k}{k} (p_k - \hat{p}_k) \right) \exp \left(- \sum_{i \geq 1} t^{-i} \left(\frac{\partial}{\partial p_i} - \frac{\partial}{\partial \hat{p}_i} \right) \right) \tau(p) \tau(\hat{p}) = 0.
\]
Consider two independent sets of indeterminates $p = (p_1, p_2, \ldots)$ and $\hat{p} = (\hat{p}_1, \hat{p}_2, \ldots)$. Then $\log \tau$ satisfies the KP hierarchy if and only if
\[
[t^{-1}] \exp \left(\sum_{k \geq 1} \frac{t^k}{k} (p_k - \hat{p}_k) \right) \exp \left(- \sum_{i \geq 1} t^{-i} \left(\frac{\partial}{\partial p_i} - \frac{\partial}{\partial \hat{p}_i} \right) \right) \tau(p) \tau(\hat{p}) = 0.
\]

The KP hierarchy is a simultaneous system of quadratic pde's:

\[
F_{2,2} - F_{3,1} + \frac{1}{12} F_{1,1,1,1} + \frac{1}{2} F_{1,1}^2 = 0,
\]
\[
F_{3,2} - F_{4,1} + \frac{1}{6} F_{2,1,1,1} + F_{1,1} F_{2,1} = 0,
\]
\[
F_{4,2} - F_{5,1} + \frac{1}{4} F_{3,1,1,1} - \frac{1}{120} F_{1,1,1,1,1,1} + F_{1,1} F_{3,1} + \frac{1}{2} F_{2,1}^2,
\]
Consider two independent sets of indeterminates \(p = (p_1, p_2, \ldots) \) and \(\hat{p} = (\hat{p}_1, \hat{p}_2, \ldots) \). Then \(\log \tau \) satisfies the KP hierarchy if and only if

\[
[t^{-1}] \exp \left(\sum_{k \geq 1} \frac{t^k}{k} (p_k - \hat{p}_k) \right) \exp \left(- \sum_{i \geq 1} t^{-i} \left(\frac{\partial}{\partial p_i} - \frac{\partial}{\partial \hat{p}_i} \right) \right) \tau(p) \tau(\hat{p}) = 0.
\]

The KP hierarchy is a simultaneous system of quadratic pde's:

\[
F_{2,2} - F_{3,1} + \frac{1}{12} F_{1,1,1,1} + \frac{1}{2} F_{1,1}^2 = 0,
\]

\[
F_{3,2} - F_{4,1} + \frac{1}{6} F_{2,1,1,1} + F_{1,1} F_{2,1} = 0,
\]

\[
F_{4,2} - F_{5,1} + \frac{1}{4} F_{3,1,1,1} - \frac{1}{120} F_{1,1,1,1,1,1} + F_{1,1} F_{3,1} + \frac{1}{2} F_{2,1}^2,
\]

where \(F_{2,1} \) denotes \(\frac{\partial^2}{\partial p_1 \partial p_2} F \).