Monotone operators, fixed point theory and splitting methods.

1 Monotone apertors generalize * derivatives of convex function "concave up" functions eg.,

$$
f: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow x^{2}
$$

* Matrices whose symmetric part is positive semidefinite.
"Let A be an $n \times n$ matrix. The symmetric part of A is

$$
A_{+}=\frac{1}{2}\left(A+A^{\top}\right)
$$

* It has beautiful applications, egg. chebysher sets $\&$ Klee sets

2 They are closely connected to (firmly) nonexpansive mappings. whose convergence properties we will study.
Example:-
On the real line
$T: \mathbb{R} \longrightarrow \mathbb{R}$ is firmly nonexpansive if T is non decreasing AND

$$
\begin{aligned}
& (\forall x \in \mathbb{R})(\forall y \in \mathbb{R}) \\
& \left|T_{x}-T_{y}\right| \leqslant|x-y|, \\
& \text { e.g. } T_{x}=x \quad \forall x \in \mathbb{R}
\end{aligned}
$$

Note that

$$
T x=-x \text { is Nat }
$$ firmly nonexpansive.

3 Putting pies from 1 and 2 together we will Consider algorithms to solve feasibility and optimization problems e.g.,
POCS = Projections onto $D R$: Convex sets Rachford Dykstra

In this Course:
X is a real Hilbert space with inner product $\langle,>$ and induced norm 11. II Recall that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence if $(\forall \varepsilon>0)(\exists N \in N)$ such that $(\forall n \in \mathbb{N}) \quad(\forall m \in \mathbb{N})$

$$
\left\|x_{n}-x_{m}\right\|<\varepsilon
$$

A Hilbert space is a complete inner product space.

* Complete: Every Cauchy sequence converges to a limit in x.
* inner product space: x is a vector space, <.,.〉 satisfies:

1. $(\forall x \in X)\langle x$,$\rangle is linear$

$$
\langle x, \alpha y+z\rangle=\alpha\langle x, y\rangle+\langle x, z\rangle
$$

2. $(\forall x \in x)(\forall y \in x)$

$$
\langle x, y\rangle=\langle y, x\rangle \quad \text { Symmetry }
$$

3. $\langle x, x\rangle \geqslant 0$,

$$
\langle x, x\rangle=0 \Leftrightarrow x=0
$$

Define the norm

$$
\|x\|:=\sqrt{\langle x, x\rangle}
$$

satisfies

$$
\begin{aligned}
\|x\| & \geqslant 0 \\
\|\alpha x\| & =|\alpha|\|x\| \\
\|x+y\| & \leqslant\|x\|+\|y\|
\end{aligned}
$$

- $X=\mathbb{R}^{n}$:
$x, y \in \mathbb{R}^{n}$ are column vectors.

$$
\begin{aligned}
x \cdot y & =\sum_{i=1}^{n} x_{i} y_{i} \\
\|x\| & =\sqrt{x^{\top} x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
\end{aligned}
$$

* The rational numbers:

$$
Q=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}
$$

Q is an inner product space However, \$0 is No F complete. Consider $\quad x_{n}=\left(1+\frac{1}{n}\right)^{n}$ $\left(x_{n}\right)_{n \in N}$ is a sequence of rational numbers, $\left(x_{n}\right)$ is a Cauchy sequence.

$$
x_{n} \longrightarrow e \in R \backslash Q
$$

$$
\begin{aligned}
& X=\mathbb{R}^{n \times n} \\
& A, B \in \mathbb{R}^{n \times n} \\
& \langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right) \\
& X=L^{2}[0,1]
\end{aligned}
$$

space of measurable functions $x:[0,1] \longrightarrow \mathbb{R}$ such that $|x|^{2}$ is Lebsegue integrable

$$
\left.\begin{array}{l}
\langle x, y\rangle=\int_{0}^{1} x(t) y(t) d t \\
x
\end{array}\right)=l^{2} .
$$

But

$$
\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \ldots\right) \notin l^{2}
$$

as $\sum \frac{1}{n}=+\infty$

Monotone map:
$A: x \rightarrow x$ is monotone if

$$
\begin{aligned}
& (\forall x \in x) \quad(\forall y \in x) \\
& \quad\langle A x-A y, x-y>\geqslant 0
\end{aligned}
$$

Example
$f: R \rightarrow R$ is monotone if

$$
\begin{aligned}
& (\forall x \in \mathbb{R})(\forall y \in \mathbb{R}) \\
& (f(x)-f(y))(x-y) \geqslant 0
\end{aligned}
$$

This means f is pondecreasing!
Indeed, let $x, y \in \mathbb{R}, x \leqslant y$.

$$
\begin{aligned}
& \Rightarrow x-y \leqslant 0 \quad \Rightarrow f(x)-f(y) \leqslant 0 \\
& \Rightarrow f(x) \leqslant f(y)
\end{aligned}
$$

- We can easily then see that - Id is NOJ monotone.

Suppose now that $x=\mathbb{R}^{n}$, A is linear, i.e., $A \in \mathbb{R}^{n \times n}$ Recall that for $x, y \in \mathbb{R}^{n}$

$$
\langle x, y\rangle=x^{\top} y
$$

Therefore

$$
\begin{aligned}
\left\langle x, A_{y}\right\rangle & =x^{\top} A_{y} \\
& =\left(x^{\top} A_{y}\right)^{\top} \\
& =y^{\top} A^{\top}\left(x^{\top}\right)^{\top} \\
& =y^{\top} A^{\top} x \\
& =\left\langle y, A^{\top} x\right\rangle
\end{aligned}
$$

Proposition L 1
A is mono $\Leftrightarrow A_{+}:=\frac{1}{2}\left(A+A^{\top}\right)$ is positive semidefinite.

Proof:
A is monotone $\Leftrightarrow(\forall x)(\forall y)$

$$
\begin{aligned}
&\langle A x-A y, x-y\rangle \geqslant 0 \\
& \prime \prime \\
&\langle A(x-y), x-y\rangle \geqslant 0 \\
& \Leftrightarrow(\forall z)\langle A z, z\rangle \geqslant 0 \\
& \Leftrightarrow(\forall z)\left\langle A^{\top} z, z\right\rangle \geqslant 0 \\
& \Leftrightarrow(\forall z)\left\langle\frac{A z+A^{\top} z}{2} \geqslant z\right\rangle \\
& \Leftrightarrow\left(\forall z \in \mathbb{R}^{n}\right) \geqslant 0 \\
&\langle A+z, z\rangle \geqslant 0
\end{aligned}
$$

We proved
A ismono $\Longleftrightarrow A_{t}=\frac{A_{+} A^{\top}}{2}$
is positive semidefinite.

Examples:.
1

$$
\begin{aligned}
& A=I d \quad\left(I n \cdot R^{n} \quad A=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& \text { ie., }(F x \in x) \\
& A x=x
\end{aligned}
$$

Then A is monotone.
Indeed: $r z \in X$

$$
\langle A z, z\rangle=\langle z, z\rangle=\|z\|^{2} \geqslant 0
$$

Observe that

$$
A=\nabla\left(\frac{1}{2}\|\cdot\| \|^{2}\right)
$$

$2 \quad A$ is monotone.
Indeed: $r z \in X$

$$
\langle A z, z\rangle=\langle 0, z\rangle=0 \geqslant 0
$$

Observe that

$$
A=\nabla(0)
$$

$3 \quad A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ ratatam by $\pi / 2$ in the plane.
Then A is monotone
Indeed: $\left(\forall\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}\right)$

$$
\begin{aligned}
\langle A z, z\rangle & =(A z)^{\top} z \\
& =\left(-z_{2}, z_{1}\right)\binom{z_{1}}{z_{2}} \\
& =-z_{2} z_{1}+z_{1} z_{2} \\
& =0
\end{aligned}
$$

Observe Hat

$$
\begin{aligned}
A_{+} & =A+A^{\top}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad レ
\end{aligned}
$$

Nonetheless :-
If such that

$$
A=\nabla \rho .
$$

Indeed, suppose Hat $\exists f: R^{2} \rightarrow \mathbb{R}$ such that $\forall z \in \mathbb{R}^{2}$

$$
\nabla f(z)=A z
$$

Then

$$
\nabla^{2} f(z)=\underbrace{}_{\substack{\text { not } \\ \text { symmetric }}}
$$

which is absurd.
"Recall the symmetry of the Hessian matrix $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$,

$$
z=(x, y)^{\prime \prime}
$$

