 January 5,2022

Introduction

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be differentiable. Consider the problem:
(P)

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C \subseteq \mathbb{R}^{n}
\end{array}
$$

In the special Case, when $C=R^{n}$ and f is "nice", the minimizens of f (if any) will occur at the critical points of f, namely, $x \in \mathbb{R}^{n}$ such that

$$
\nabla f(x)=0
$$

This is known as "Fermat's rule", which we will lear n about more later.

In this course
X is an Euclidean
space with
inner product $\langle,$, and induced norm $\|x\|=\sqrt{\langle x, x\rangle}$ Examples:

$$
\begin{array}{ll}
1 & x=R^{d},(\forall x \in x)(\forall y \in x) \\
& \langle x, y\rangle=x^{\top} y \\
2 & x=\mathbb{R}^{n \times n},(\forall x \in X)(\forall y \in X) \\
& \langle x, y\rangle=\operatorname{tr}\left(x^{\top} y\right) .
\end{array}
$$

In this Course, we will discuss and learn about Convexity of sets and functions and how we Can approach problem (P) in the more general settings of:

1) Absence of differentiability of the function f, f is convex (this is called the objective function)
and / or
2) $\varphi \neq C \nsubseteq x, C$ Convex (C is called the constraint set).

Affine sets and affine subspaces in $\mathbb{R}^{n}:$
Definition LI-I
Let $s \subseteq x$
S is an affine subspace if

$$
s \neq \phi
$$

$$
(\forall x \in S) \quad(\forall y \in S)(\forall \lambda \in \mathbb{R})
$$

$$
\lambda x+(1-\lambda) y \in S .
$$

Let $S \subseteq X$. The affine hull of S, denoted by of (S) is the intersection of all affine subspaces containing S, i.e, the smallest affine subspace of X Containing S.

Examples of affine sets of \mathbb{R}^{n} :
$1 L$, where $L \subseteq \mathbb{R}^{n}$ is a linear subspace.
$2 a+L$, where $a \in \mathbb{R}^{n}, L \subseteq \mathbb{R}^{n}$ is a linear subspace.
$3 \quad \mathbb{R}^{n}$

Geometrically speaking
A nonempty subset $S \subseteq X$ is an affine subspace if the line connecting any two points in the set lies entirely in the set.
Examples in \mathbb{R}^{2} :

Convex sets in \mathbb{R}^{n} :
Definition LI-2
A subset C of X is
Convex if $(\forall \lambda \in] 0,1[)$

$$
\begin{aligned}
& (\forall x \in C)(\forall y \in C) \\
& \lambda x+(1-\lambda) y \in C .
\end{aligned}
$$

The following are examples of Convex subsets of \mathbb{R}^{d} :
1

$$
\theta, \mathbb{R}^{d} \text {. }
$$

$2 C$, where C is aball.
3 C, where C is an affine subspace
4 , where C is a half-space i.e., $C=\left\{x \in \mathbb{R}^{d} \mid\langle x, u\rangle \leqslant \eta\right\}$ where $u \in \mathbb{R}^{d}, \eta \in \mathbb{R}$ are fixed.

Geometrically speaking:
A subset $C \subseteq X$ is Convex if given any two points $x \in C, y \in C$, the line segment joining x and y, denoted ky $[x, y]$, lies entindy in C.

Convex sets

Not convex

Theorem LI -3
The intersection of an arbitrany Collection of Convex sets in X is Convex.

Proof:
Let I be an indexed set (not necessarily finite).
Let $\left(C_{i}\right)_{i \in I}$ be a Collection of Convex subsets of x

Set $C:=\bigcap_{i \in I} C_{i}$.
Goal:
C is Convex ?
If $c=\varnothing \Rightarrow c$ is Convex.
suppose that $C \neq$.
Let $\lambda \in] 0,1[$ and let $(x, y) \in C \times C$.

Since C_{i} is Convex $(\forall i \in I)$, we learn that ($\forall i \in I) \quad \lambda x+(1-\lambda) y \in C_{i}$.
Hence,

$$
\lambda x+(1-\lambda) y \in \quad \bigcap_{i \in I} C_{i}=C
$$

Hence, C is Convex.
The proof is complete.

Corollary LI -4
Let $b_{i} \in X, \beta_{i} \in \mathbb{R}$ for $i^{\prime} \in I$, where I is an arbitrary index set.
Then the set:

$$
C=\left\{x \in X \mid\left\langle x, b_{i}\right\rangle \leqslant \beta_{i}, f_{i} \in I\right\}
$$

is Convex.
Proof:
see $H W 1$

Convex combinations of vectors:
Definition
A vector sum

$$
\lambda_{1} x_{1}+\ldots+\quad+\lambda_{m} x_{m}
$$

is called a convex combination of vectors x_{1}, \ldots, x_{m} if

$$
\forall i \in\{1, \ldots, m\} \quad \lambda_{i} \geqslant 0 \text {, and }
$$

$$
\sum_{i=1}^{m} \lambda_{i}=1
$$

Theorem LI-5
A subset C of X is Convex X if and only if it contains all the convex combinations of its elements.

Proof:
(\Leftarrow) Suppose Contains all the convex combinations of its elements.
Let $\lambda \in] 0,1\left[\right.$ and let $x \in C_{\text {, }}$ $y \in C$.
By assumption, the Convex Combination

$$
\lambda x+(1-\lambda) y
$$

lies in C.

Therefore, C is Convex (\Rightarrow) Suppose C is Convex. We proceed lu induction on m, where m is the number of elements in the convex combination.

Base case: when $m=2$, the Conclusion is clear by the convexity of C.
Now, suppose that for some $m \geqslant 2$ it holds that any convex combination of m vectors lies in C.

Let $\left\{x_{1}, \ldots, x_{m}, x_{m+1}\right\} \subseteq C$,
let $\lambda_{1}, \ldots, \lambda_{m}, \lambda_{n+1} \geqslant 0$,
s.th. $\quad \sum_{i=1}^{m+1} \lambda_{i}=1$.

Our goal is to show that

$$
z:=\sum_{i=1}^{m+1} \lambda_{i} x_{i} \in C \text { ? }
$$

Observe that, there must exist at least one $\lambda_{i} \in[0,1[$ or else if all $\lambda_{i}=1 \Rightarrow 1=\sum_{i=1}^{m+1} \lambda_{i}=m+1>3$ which is absurd

Without loss of generality, we can and do assume that $\lambda_{m_{+1}} \in[0,1[$.

$$
\begin{aligned}
\text { Now } \\
\begin{aligned}
z & =\sum_{i=1}^{m+1} \lambda_{i} x_{i} \\
& =\sum_{i=1}^{m} \lambda_{i} x_{i}+\lambda_{m+1} x_{m+1} \\
& =\left(1-\lambda_{m+1}\right) \sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1} x_{i}+\lambda_{m+1} x_{m+1}} \\
& =\left(1-\lambda_{m+1}\right) \sum_{i=1}^{m} \lambda_{i} x_{i}+\lambda_{m+1} x_{m+1} \in C
\end{aligned},=1 .
\end{aligned}
$$

Observe that, $\lambda_{i}:=\frac{\lambda_{i}}{1-\lambda_{m+1}} \geqslant 0$ and that $\sum_{i=1}^{m} \dot{\lambda}_{i}=\frac{\lambda_{1}+--+\lambda_{m}}{1-\lambda_{m+1}}$

$$
\begin{aligned}
& =\frac{1-\lambda_{m+1}}{1-\lambda_{m+1}} \Gamma \begin{array}{l}
\text { by using } \\
\lambda_{1}+\lambda_{2+}
\end{array} \\
& =1 \quad+\lambda_{m+1}+\lambda_{m+1}=1
\end{aligned}
$$

Using the inductive hypothesis,
we learn that

$$
\sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} \quad x_{i} \in C \text {. }
$$

Hence,

$$
z=\left(1-\lambda_{m+1}\right) \underbrace{\sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} x_{i}}_{\in C}+\lambda_{m+1} x_{\in C}
$$

$\in C$ (C is convex).
The proof is complete.

Definition LI-6 "Convex hull" Let $S \subseteq X$. The intersection of all Convex sets Containing S is Galled the convex hull of S and is denoted by Conv S.
By Theorem 2.1, Cons S is Convex. In fact, it is the smallest Convex set containing S. Theorem LI -7
Let $S \subseteq X$. Then conv S Consists of all the Convex Combinations of the elements of S, i.e.,
Conv $S=\left\{\sum_{i \in I} \lambda_{i} x_{i} \mid I\right.$ is a finite index

$$
\begin{aligned}
& \text { set, }(\forall i \in I) x_{i} \in S, \\
& \left.\lambda_{i} \geqslant 0, \sum_{i \in I} \lambda_{i}=1\right\} .
\end{aligned}
$$

Proof:
Set
$D:=\left\{\sum_{i \in I} a_{i} x_{i} \mid I\right.$ is a finite index set, $(\forall i \in I) x_{i} \in S$,

$$
\left.\lambda_{i} \geqslant 0, \sum_{i \in I} \lambda_{i}=1\right\} .
$$

ConvS S ? ?
Cleanly, $S \subseteq D$. Moreover,
D is Convex. Indeed, let $d_{1}, d_{2} \in D$, and let $\lambda \in] 0,1[$.
Then, there exist

$$
\begin{aligned}
& \lambda_{1}, \ldots, \lambda_{k} \geqslant 0, \sum_{i=1}^{k} \lambda_{i}=1, \\
& \mu_{1}, \cdots, \mu_{n} \geqslant 0, \sum_{j=1}^{n} \mu_{j}=1 \\
& d_{1}=\sum_{i=1}^{k} \lambda_{i} x_{i},\left\{x_{1},-, x_{k}\right\} \subseteq S \\
& d_{2}=\sum_{j=1}^{n} \mu_{j} y_{j},\left\{y_{1}, \ldots, y_{r}\right\} \subseteq S .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \lambda d_{1}+(1-\lambda) d_{2} \\
= & \lambda \lambda_{1} x_{1}+\cdots+\lambda \lambda_{k} x_{k} \\
& +(1-\lambda) \mu_{1} y_{1}+\cdots+(1-\lambda) \mu_{r} y_{r}
\end{aligned}
$$

Observe that $\lambda \lambda_{i}>(1-\lambda) \mu_{j} \geqslant 0$

$$
i \in\{1, \ldots, k\}, j \in\{1, \ldots, r\},
$$

and that

$$
\begin{aligned}
& \lambda \lambda_{1}+\cdots+\lambda \lambda_{k}+(1-\lambda) \mu_{1}+\ldots+(1-\lambda) \mu_{r} \\
= & \lambda \sum_{i=1}^{k} \lambda_{i}+(1-\lambda) \sum_{j=1}^{r} \mu_{j} \\
= & \lambda(1)+(1-\lambda)(1)=\lambda+1-\lambda=1 .
\end{aligned}
$$

Altogether, we conclude that D is Convex set $\geq S$ Hence, Conv $S \subseteq D$.
$D \leq$ Conv S ?
Observe that $S \subseteq$ Conv S.
Now, Combine with Theorem 2.2 to learn that the Convex Combinations of elements of S lie in Cons S.

Convex hull: Examples.

