Recall that:

- X is a real Hilbert space with inner product $\langle\rangle$,$\rangle and$ induced norm $\quad\left\|_{x}\right\|=\sqrt{\langle x, x\rangle}$.
- A is monotone if

$$
\begin{array}{ll}
\left(\forall\left(x, x^{*}\right) \in g r A\right) & \left(\forall\left(y, y^{*}\right) \in g_{r} A\right) \\
\left\langle x-y, x^{*}-y^{*}\right\rangle & \geqslant 0 .
\end{array}
$$

- A is maximally monotone if gr A has no proper extension (in terms of set inclusion).

Theorem
Let $A: X \rightrightarrows X$ be monotone such that $\operatorname{gr} A \neq \phi$. Then there exists $\tilde{A}: x \Rightarrow x$ such that \tilde{A} is a maximal monotone extension of A, ie. $\operatorname{gr} A \subseteq \operatorname{gr} \tilde{A}$.

$$
\begin{aligned}
& f(x)=x \\
& f: R \\
& g r f=\{(x, x) \mid x \in \mathbb{R}\}
\end{aligned}
$$

Minty them A monotone.
A is max mind $\Leftrightarrow(\operatorname{Id}+A)$ is

We will use Zorn's Lemma $\mathcal{\sim}$. Zorn's Lemma (Fact L3-1)
Let A be a partially ordered set (P-O.set) such that each chain of A has an upper bound. Then A has a maximal element.

Poses:
Let A be aset, and let "s" be abinary relation on $A \times A$. Then A is partially ordered if $\forall a, b, c \in A$ we have:

1) $a \preccurlyeq a$
2) $a \leqslant b, b \leqslant c \quad \Rightarrow \quad a \leqslant c$
(3) $a \leqslant b, b \leqslant a \Rightarrow a=b$

Examples: $(\mathbb{R}, \leqslant),(\mathbb{R} ; \geqslant),\left(R_{i}=\right)$
NoT poses: $(\mathbb{R},<)$

If, in addition, we have
(4) $(\forall a \in A)(\forall b \in A)$ either $a \leqslant b$ or $b \leqslant a$ Then A is totally ordered set.

Example:.
Let S be a set of two or more elements. Set $A=2^{s}=\{u \mid u \subseteq S\}$.
Define a binary relation A lu:

$$
u \preccurlyeq v: \Longleftrightarrow u \subseteq v
$$

Then (1) $u \subseteq u \quad \forall u \in A$
(2) $u \subseteq v, v \subseteq w \Rightarrow u \subseteq w$
(3) $u \subseteq v, v \subseteq u \Rightarrow u=v$

Hence, \leqslant defines a partial order on A. Is it a total order? Nor

$$
\begin{aligned}
& S=\{0,1\} \quad, A=\} \infty,\{0\}, 31\}, S\}=2^{s} \\
& \{1\} \notin\{0\} \neq\{1\} .
\end{aligned}
$$

Chain:
Let A be a P.O. set. Then $C \subseteq A$ is a chain if C is totally ordered. Revisiting the previous example:

$$
\begin{aligned}
& S=\{0,1\} \quad, A=\} \infty,\{0\}, 31\}, S\}=2^{s} \\
& \{1\} \notin\{0\} \neq\{1\} . \\
& C_{1}=\{\infty,\{0\}\} .
\end{aligned}
$$

C_{1} is a chain since $\varphi \subseteq\{0\}$.
$\left.C_{2}=\{0,30\}, S\right\}$ is achain.
since $\& \subseteq\{0\}$, of $\subseteq S$,

$$
\{0\} \subseteq S
$$

Upper bound:
Let $B \subseteq A$. Then $a \in A$ is an upper bound of B if $(r b \in B) \quad b \leqslant a$. $a \in A$ is maximal if

$$
\left.\begin{array}{l}
c \in A \\
a \leqslant c
\end{array}\right\} \Rightarrow a=c
$$

$$
\begin{aligned}
S & =\{0,1\}, A=\} \varphi,\{0\}, 31\}, S\}=2^{s} \\
& \{1\} \notin\{0\} \neq\{1\} . \\
B_{1} & =\{\infty,\{1\}\}
\end{aligned}
$$

$\{1\}$, S are upper bounds of B_{1}

$$
B_{2}=\{\{0\},\{1\}\}
$$

S is the only upper bound of B_{2}
S is maximal element of A.

Zorn's Lemma (Fact L3-1)
Let A be a partially ordered set (POSET) such that each chain of A has an upper bound. Then A has a maximal element.

Applications:-
Theorem L 3-2
V is a vector space. Then V has a bairn, ie, a linearly independant spanning set.
Proof.
Define
$M:=\{B \subseteq V \mid B$ is linearly independent \}.
Then M is a posset with partialorder C
Let $e=\left\{B_{i} \in M \mid i \in I\right\}$ be achain.
$\eta:=\{B \subseteq V \mid B$ is lineally independent $\}$
Then η is a posset with patididorder \subseteq
Let $e=\left\{B_{i} \in M \mid i \in I\right\}$ bc achain
Claim 1: C has an upper bound
set $U:=U_{i \in I} B_{i}$.
Clearly, $(\forall i \in I) \quad B_{i} \subseteq U$
It remains to verify that $U \in T \mathcal{U}$.
Take $\left\{u_{1}, \ldots, u_{n}\right\} \subseteq U$, and consider
Goal:

$$
\begin{aligned}
& \lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{n} u_{n}=0 \\
& \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0 ?
\end{aligned}
$$

Indeed,
$\forall k \in\{1, \ldots, n\}$ there exists i_{k} such that $u_{k} \in B_{i_{k}} \in E$. $A U$ the sets $B_{i_{k}}, k \in\{1, \ldots n\}$ are comparable (because it is a chain).
Mutually Comparing by the chain property (4) $(\forall a \in A)(\forall b \in A)$ either $a \leqslant b$ or $b \leqslant a$ $\exists K^{*} \in\{1, \ldots, n\}$ such that $\forall k \in\{1, \ldots, n\}$ $B_{i_{k}} \subseteq B_{i_{k}}$

Hence,

$$
\begin{aligned}
\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} & =\bigcup_{i=1}^{n}\left\{u_{i}\right\} \\
& \subseteq \bigcup_{k=1}^{n} B_{i_{k}} \subseteq B_{i_{k^{*}}} \in \eta
\end{aligned}
$$

Because $B_{i_{k}} \in M$

$$
\xrightarrow[\substack{\text { lin indef } \\ \text { vectors }}]{\text { Bike** }^{\text {m }}} \quad \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0
$$

That is U is a set of linearly indep. vectors

$$
\Rightarrow u \in M
$$

$1,2 \Rightarrow C$ has an upper bound That is: M is a pose

Every chain has an upper bound $\xrightarrow[\text { Lemma }]{\text { Zorn's }} M$ has a maximal element say $B \in M$. Hence, B_{C} is lineally indef.

Claim 2: $\operatorname{span}(B)=V$
Suppose for eventual contradiction that span $\mathcal{B} \neq V$. Get $v \in V \backslash \operatorname{span} B$ and observe that $\bar{B}:=\frac{B \cup\{v\} \in \mathcal{R}}{\text { Din indep. }}$
Indeed, suppose $\lambda_{i} \in \mathbb{R}, b_{i} \in B, i \in\{1, \ldots, n\}$. such that

$$
\lambda_{1} b_{1}+\cdots+\lambda_{n} b_{n}+\mu v=0
$$

If $\mu=0 \underset{\text { done because } B \text { is } \lambda_{1 n}=0}{\lambda_{1} b_{1} b_{n}=0}$.
Otherwise, if $\mu \neq 0$ then

$$
v=\sum_{i=1}^{n}-\frac{\lambda_{i}}{\mu} b_{i} \in \operatorname{span} B(\text { absend })
$$

Hence $B \cup\{v\}$ is lin. indep. set but $\bar{B}=B \cup\{\vee\} \supsetneqq B$ which Contradicts the maximality of B. Hence, $\operatorname{span}(B)=V$ and we have a basis?

Theorem L3-3:
Let $A: X \rightarrow X$ be monotone such that gr $A \neq \phi$. Then there exists $\tilde{A}: X \Rightarrow X$ such that \tilde{A} is a maximal monotone extension of A, i.e., $\operatorname{gr} A \subseteq \operatorname{gr} \tilde{A}$ Proof: Zorn's Lemma (Fact L3-1) Let A be a partially ordered set (POSET) such that each chain of A has an upper bound. Then A has a maximal element.
Set $N:=\{B: X \rightarrow x \mid$ B is mono, $\operatorname{gr} A \subseteq \operatorname{gr} B$,ie. B extends $A \quad 3$.
Then $M \neq \phi \quad(A \in M)$.
Define a partial order on M via:

$$
B_{1} \propto B_{2} \quad \Leftrightarrow g r B_{1} \subseteq g r B_{2} .
$$

(verify it is a partial order).
Let Q be a chain of M (every two elements are comparable).
Define $B: X \rightarrow X$ via its graph $\operatorname{gr} B=\underset{c \in e}{\cup} \operatorname{gr} C$

Clearly, $(\forall c \in C)$

$$
\operatorname{gr} C \leq \bigcup_{c \in C} \operatorname{gr} C=\operatorname{gr} B
$$

It remains to show that $B \in \mathscr{A}$.
(a) Indeed, let $\bar{C} \in \bigcup \subseteq \mathbb{W}$

Then $\operatorname{gr} A \subseteq \operatorname{gr} \bar{C} \subseteq U_{C \in C} \operatorname{grC}=\operatorname{gr} B$
(b) - We show that B is monatore.

Indeed, take $\left(x, x^{*}\right),\left(y, y^{*}\right) \in \operatorname{gr} B=$ Ute $_{c \in}$ gr C Then there exist $c_{1}, c_{2} \in C$ such that

$$
\left(x, x^{*}\right) \in \operatorname{gr} C_{1} \quad,\left(y, y^{*}\right) \in \operatorname{gr} C_{2}
$$

$\stackrel{C_{\text {chain }}}{\stackrel{\text { is a }}{ }}$ Without loss of generality, we may and do assume that: $\quad \operatorname{gr} C_{1} \subseteq \operatorname{gr} C_{2}$

$$
\begin{aligned}
& \Rightarrow\left\{\left(x, x^{*}\right),\left(y, y^{*}\right)\right\} \subseteq g r \quad c_{2} \\
\underset{\text { mono. }}{c_{2}} & \left\langle x-y, x^{*}-y^{*}\right\rangle \geqslant 0
\end{aligned}
$$

 $\in M$

Maim:
\hat{A} is maximally monotone.
$\tilde{A} \in M \Rightarrow \tilde{A}$ is mono, gracgra
We only need to verify maximality.
Suppose for eventual contradiction that \tilde{A} is not maximally monotone. Then there exists $\left(z, z^{*}\right) \in X \times X \backslash \operatorname{gr} \tilde{A}$ such that $\left(z, z^{*}\right)$ is monotonically related to $\operatorname{gr} \tilde{A}$, i.e., $\left(\forall\left(a, a^{*}\right) \in \operatorname{gr} \tilde{A}\right)\left\langle z-a, z^{*}-a^{*}\right\rangle \geqslant 0$.
Define \tilde{B} via its graph by

$$
\begin{aligned}
\operatorname{gr} \tilde{B} & =\operatorname{gr} \tilde{A} \cup\left\{\left(z, z^{*}\right)\right\} \\
& \geq \operatorname{gr} \tilde{A} \geq \operatorname{gr} A
\end{aligned}
$$

observe that $\tilde{\mathcal{B}}$ is monotone (verify) and extends $A \Rightarrow \vec{B} \in M$, and
which is absurd since

$$
\left(z, z^{*}\right) \in \operatorname{gr} \tilde{B} \searrow \operatorname{gr} \tilde{A}
$$

Therefore, \tilde{A} is maximally mono.

Connection to optimization:-

$$
f: \mathbb{R} \rightarrow \mathbb{R}: x \longmapsto\left\{\begin{array}{cl}
+\infty, & x<0 ; \\
1, & x=0 \\
0, & x>0
\end{array}\right.
$$

Find of.
verify that ∂f is monotone but Not maximally mono.
Next lecture:
Minty's theorem
Maximality is crucial for algorithms! maximality and convexity, J.S.C.

