MATH 235, Winter 2016 Sample Midterm

1. Consider the linear operator $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$

$$T(ax^2 + bx + c) = 4cx^2 + 2bx + a_1$$

- (a) For $B = \{1, x, x^2\}$, the standard basis, find the *B*-matrix $[T]_B = A$ that represents *T*, i.e., represents the linear operator *T* relative to basis *B*.
- (b) Find a basis B' of P_2 such that the B'-matrix representation of T satisfies $[T]_B = 3[T]_{B'}$.
- 2. In each part below a vector space \mathbb{V} and a function $\langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ are given. Decide whether the function is an inner product on \mathbb{V} .
 - (a) $\mathbb{V} = \mathbb{R}^2$, with the function $\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = x_1 y_1 + 51 x_1 y_2 + 51 x_2 y_1 + y_1 y_2.$ (b) $\mathbb{V} = P_2(\mathbb{R})$, with the function $\langle p(x), q(x) \rangle = (p(0) + p(1) + p(2)) (q(0) + q(1) + q(2)).$
- 3. Let L be the linear operator on $\mathbb{V} = P_2(\mathbb{R})$ defined by

$$L(a + bx + cx^{2}) = (3a + 2b + 2c) - 2a + b + 2c)x - (a + b)x^{2}.$$

Consider the basis $\mathbb{B} = \{x - x^2, 1 - x, -1 + x + x^2\}$ for $P_2(\mathbb{R})$.

- (a) Compute the matrix $[L]_B$.
- (b) Find a basis for Ker(L).
- 4. Find an orthonormal basis for the row space of the matrix

$$A = \begin{bmatrix} 1 & -1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 & 3 \\ 0 & 3 & 1 & -2 & 1 \end{bmatrix}$$

with the property that one of the vectors in your basis is a scalar multiple of the first column of A^{T} .

- 5. Let Q be an $m \times n$ matrix with orthonormal columns.
 - (a) What is rank(Q)?
 - (b) Prove that $Q^T Q = I_n$.
 - (c) Prove that ||Qx|| = ||x|| for all $x \in \mathbb{R}^n$.
- 6. Let \mathbb{V}, \mathbb{W} be vector spaces and $L : \mathbb{V} \to \mathbb{W}$ be a linear mapping. Prove or disprove the following statements.
 - (a) If $\operatorname{rank}(L) = \dim \mathbb{W}$ then L is an isomorphism.
 - (b) If $\text{Span}\{v_1, ..., v_n\} = \mathbb{V}$, then $\text{Span}\{L(v_1), ..., L(v_n)\} = \text{Range}(L)$.
 - (c) If $Ker(L) = \{0\}$ and $\{v_1, ..., v_n\}$ is a linearly independent subset of \mathbb{V} , then $\{L(v_1), ..., L(v_n)\}$ is a linearly independent subset of \mathbb{W} .