1. Consider the linear operator $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$

$$
T\left(a x^{2}+b x+c\right)=4 c x^{2}+2 b x+a
$$

(a) For $B=\left\{1, x, x^{2}\right\}$, the standard basis, find the B-matrix $[T]_{B}=A$ that represents T, i.e., represents the linear operator T relative to basis B.
(b) Find a basis B^{\prime} of P_{2} such that the B^{\prime}-matrix representation of T satisfies $[T]_{B}=3[T]_{B^{\prime}}$.
2. In each part below a vector space \mathbb{V} and a function $\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ are given. Decide whether the function is an inner product on \mathbb{V}.
(a) $\mathbb{V}=\mathbb{R}^{2}$, with the function $\left\langle\binom{ x_{1}}{x_{2}},\binom{y_{1}}{y_{2}}\right\rangle=x_{1} y_{1}+51 x_{1} y_{2}+51 x_{2} y_{1}+y_{1} y_{2}$.
(b) $\mathbb{V}=P_{2}(\mathbb{R})$, with the function $\langle p(x), q(x)\rangle=(p(0)+p(1)+p(2))(q(0)+q(1)+q(2))$.
3. Let L be the linear operator on $\mathbb{V}=P_{2}(\mathbb{R})$ defined by

$$
\left.L\left(a+b x+c x^{2}\right)=(3 a+2 b+2 c)-2 a+b+2 c\right) x-(a+b) x^{2}
$$

Consider the basis $\mathbb{B}=\left\{x-x^{2}, 1-x,-1+x+x^{2}\right\}$ for $P_{2}(\mathbb{R})$.
(a) Compute the matrix $[L]_{B}$.
(b) Find a basis for $\operatorname{Ker}(L)$.
4. Find an orthonormal basis for the row space of the matrix

$$
A=\left[\begin{array}{ccccc}
1 & -1 & 0 & 1 & 1 \\
2 & 1 & 1 & 0 & 3 \\
0 & 3 & 1 & -2 & 1
\end{array}\right]
$$

with the property that one of the vectors in your basis is a scalar multiple of the first column of A^{T}.
5. Let Q be an $m \times n$ matrix with orthonormal columns.
(a) What is $\operatorname{rank}(Q)$?
(b) Prove that $Q^{T} Q=I_{n}$.
(c) Prove that $\|Q x\|=\|x\|$ for all $x \in \mathbb{R}^{n}$.
6. Let \mathbb{V}, \mathbb{W} be vector spaces and $L: \mathbb{V} \rightarrow \mathbb{W}$ be a linear mapping. Prove or disprove the following statements.
(a) If $\operatorname{rank}(L)=\operatorname{dim} \mathbb{W}$ then L is an isomorphism.
(b) If $\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}=\mathbb{V}$, then $\operatorname{Span}\left\{L\left(v_{1}\right), \ldots, L\left(v_{n}\right)\right\}=$ Range (L).
(c) If $\operatorname{Ker}(L)=\{0\}$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent subset of \mathbb{V}, then $\left\{L\left(v_{1}\right), \ldots, L\left(v_{n}\right)\right\}$ is a linearly independent subset of \mathbb{W}.

