
Background

Historical Events
Lyapunov (stability) 1890
SDP (cone optimization/duality) 1960’s
Engineering applications 60’s
matrix completion problems 80’s
polynomial time algorithms Nesterov-Nemirovski 80’s
combinatorial appl., primal-dual interior-point (p-d i-p)
algorithms (explosion of activity) 90’s
sparsity/special-structure/low-rank/large-scale/robust-opt.
00’s

3



What are SDPs ?

Primal and Dual SDPs (look like LPs with matrix variables)

(PSDP)

⎧⎨
⎩

p∗ := max trace CX (= 〈C,X 〉)
s.t. AX = b (bi = 〈Ai ,X 〉)

X � 0.

(DSDP)

⎧⎨
⎩

d∗ := min bT y (= 〈b, y〉)
s.t. A ∗y − Z = C (A ∗y =

∑m
i=1 yiAi)

Z � 0,

Sn space of n × n real symmetric matrices, Ai ,X ,Z ,C ∈ Sn

� 0 (� 0) pos. (semi)definiteness; (Loewner partial order)
A : Sn → R

m lin. transf.; A ∗ adjoint transf. (transpose)

4



Duality: Primal-Dual Pair PSDP, DSDP

PSDP
p∗ := max {trace CX : AX = b,X � 0}

Weak Duality (using hidden constraints)

p∗ = max
X�0

miny trace CX + [yT (b −AX ) ] (PSDP)

≤ miny max
X�0

yT b+

duality gap︷ ︸︸ ︷
[ trace

Z︷ ︸︸ ︷
(C −A ∗y) X ] (best LB)

= minC−A ∗y�0 yT b =: d∗ (DSDP)

A ∗ adjoint of A
〈A (X ), y〉 = yTAX = 〈X ,A ∗y〉 = trace X (A ∗y), ∀X ,∀y

5



Characterization of (p-d) Optimality

Characterization of Optimality for Z ,X � 0

(∗)
{ A∗y − Z − C = 0 dual feasibility

b −A(X ) = 0 primal feasibility

(∗∗) { ZX = 0 complementary slackness

X , (y ,Z ) a primal-dual optimal pair; Z (dual) slack variable

Perturbed complementary slackness
For primal-dual interior-point (p-d i-p) methods, replace (**) with
(***) ZX = μI, Z ,X � 0, μ > 0
solve (*) and (***): Xμ, yμ,Zμ on Central Path; μ ↓ 0

Difference with LP
Z ,X ∈ Sn but ZX is not necessarily symmetric!

6



(unlike LP) Strong Duality Can Fail for SDP

Strong Duality for PSDP
e.g. [7]

zero duality gap: p∗ = d∗
AND d∗ is attained.
(if both attained)

p∗ = d∗ iff Z ◦ X = 0 iff 〈Z ,X 〉 = 0 iff ZX = 0

Regularization using Faces
ref. Borwein-W/80 [2, 1, 3], Ramana/97
[4],Ramana-Tuncel-W/97 [5], Tuncel-W/09 [6].

7



Faces of Cones

Face
A convex cone F is a face of K , denoted F � K , if

x , y ∈ K and x + y ∈ F =⇒ x , y ∈ F .

If F � K and F �= K , write F � K .

Conjugate Face
If F � K , the conjugate face (or complementary face) of F is

F c := F⊥ ∩ K ∗ � K ∗,

where K ∗ = {φ : 〈φ, k〉 ≥ 0,∀k ∈ K} (dual/polar cone)
If x ∈ relint(F ), then F c = {x}⊥ ∩ K ∗.

8



Faces of SDP Cone

Face F � Sn
+ Characterized by X ∈ relint F

X = UDUT ∈ relint F � Sn
+,UT U = It ,D ∈ S t

++

iff
F = USt

+UT

Conjugate Face of F � Sn
+

the conjugate face (or complementary face) of F is

F c := F⊥ ∩ Sn
+ = VSn−t

+ V T , V T U = 0,V T V = In−t

9



Minimal Face (Minimal Cone)

Feasible set of DSDP
Let FD := {y : Z = A ∗y − C � 0}

Minimal Face
Assume FD is nonempty, the minimal face (or minimal cone) of
DSDP is

fD :=
⋂
{F � K : A ∗(FD)− C ⊂ F}

i.e., the minimal face that contains all the feasible slacks.

10



DSDP for Example from Ramana, 1995

DSDP (Max instead of Min)

0 = d∗ = max
y

⎧⎨
⎩y2 :

⎛
⎝y2 0 0

0 y1 y2
0 y2 0

⎞
⎠ �

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠
⎫⎬
⎭

y∗ =
(
y∗

1 0
)T

, y∗
1 ≤ 0, Z ∗ = C −A ∗y∗ =

⎛
⎝1 0 0

0 −y∗
1 0

0 0 0

⎞
⎠

Constraint Qualification (CQ) Fails
Slater’s CQ (strict feasibility) fails for dual

11



PSDP for Example from Ramana, 1995

Primal Program, PSDP (Min instead of Max)

1 = p∗ = min
X�0

{X11 : trace A1X = X22 = 0,

trace A2X = X11 + 2X23 = 1}

X ∗ =

⎛
⎝ 1 0 X13

0 0 0
X13 0 X33

⎞
⎠ , X33 ≥ (X 2

13)

Slater’s CQ for (primal) dual & complementarity fails
duality gap = p∗ − d∗ = 1− 0 = 1 > 0,

trace X ∗Z ∗ = trace
( 1 0 X13

0 0 0
X13 0 X33

)(1 0 0
0 −y∗

1 0
0 0 0

)
= 1 > 0

12



Minimal Face for Ramana Example

Feasible Set/Minimal Face
FD = {y ∈ R

2 : y1 ≤ 0, y2 = 0}

fD =
⋂{F � S3

+ : C −A ∗(FD) ⊂ F}
=

(S2
+ 0
0 0

)
� S3

+

Slater CQ and Minimal Face
If DSDP is feasible, then

C −A ∗y ��K 0,∀y ( Slater’s CQ fails for DSDP )⇐⇒ fD � K

13



Regularization of DSDP

Borwein-W (1981)
If d∗ is finite, then DSDP is equivalent to regularized DSDP

d∗
RD = max

y
{〈b, y〉 : A ∗y �fD C}. (RD)

Lagrangian Dual DRD Satisfies Strong Duality:

d∗ = d∗
RD = d∗

DRD = min
X
{〈C,X 〉 : AX = b, X �f∗D 0} (DRD)

and d∗
DRP is attained

14



Implementation Problems with Regularization; but,
Many Applications

Difficulties
Borwein and W. also gave an algorithm to compute fD.
But Difficulties:

1 The algorithm requires the solution of several
(homogeneous) cone programs (constraints are:
A x = 0, 〈c, x〉 = 0,0 �= x �K 0)

2 If Slater’s CQ fails for PSDP then it also fails for each of
these cone programs.

Application to Combinatorial Problems
Slater CQ fails for many applications to combinatorial problems.
But, fD can be found explicitly.

15



Further Differences with LP

Strict Complementarity can Fail

Z + X � 0 Theorem of Goldman and Tucker for LP can fail,
though conditions hold generically; ref. Shapiro/99,
Pataki-Tuncel/98, Alizadeh-Haeberly-Overton/98)

Polynomial Time Complexity/Algorithms
SDP are convex programs; can be approximately solved in
polynomial time by interior point algorithms (ref.
Nesterov-Nemirovski/88)

16



Strong Relaxations of Computationally Hard Problems

Modelling Computationally Hard Problems
Many computationally hard problems can be modelled as
quadratically constrained quadratic programs, (QQP)
(rather than LPs).
QQPs are themselves computationally hard.
But, Lagrangian relaxation can be solved efficiently using
SDP.

Applications
statistics, engineering, matrix completions, approximation
theory, nonlinear programming, Euclidean distance matrix
completion, (EDM); sensor network localiz. (SNL)
combinatorial optimization: max-cut; graph partitioning;
quadratic assignment problem; graph colouring; max-clique.

17



SDP Webpage

Software
List available at:
www-user.tu-chemnitz.de/ helmberg/sdp_software.html

SDPLIB SDPLIB is a collection of semidefinite
programming test problems. (in SDPA sparse format)
CVX, Disciplined Convex Programming
Solvers: CSDP (exploits BLAS); SeDuMi1.1
(dependable, popular); SDPT3(including
quadratic/sensor localization); SDPA (including parallel);
GloptiPoly-3 (moments; optimization; and SDP);
PENNON (nonlinear SDP); SBmethod(first order
method/large scale);

18



SDP Relaxation of Max-Cut Problem, (MC)

Max-Cut Problem
undirected, complete, graph G = (V ,E), |V | = n, with edge
weights wij ; divide nodes into two sets to maximize the sum of
weights of cut edges.

A Maximum Cut

19



Quadratic-Quadratic (QQP) Model for MC

Quadratic Model of MC with Integer Constraints

max 1
2
∑

i<j wij(1− xixj), x ∈ {±1}n.

Equate xi = 1 with i ∈ I; and −1 otherwise.

QQP Model of MC
Let L be the Laplacian of G , e.g. if weights are 0,1

Lij =

⎧⎨
⎩

deg(vi) if i = j
−1 if i �= j and vi is adjacent to vj
0 otherwise

Let q(x) := (1
4 )x

T Lx ; equivalent QP problem

(4)p∗ := max
{

q(x) = xT Lx : x ∈ {±1}n
}

20



SDP Relaxation; use commutativity
trace AB = trace BA

Direct Relaxation

(4) p∗ := max
{

xT Lx : x ∈ {±1}n
}

Replace x ∈ {±1}n with x2
i = 1. Note that

xT Lx = trace xT Lx = trace LxxT = trace LX ,with

rank-1︷ ︸︸ ︷
X = xxT

also: X � 0, diag(X ) = e, q(x) = trace LX

Relax the hard rank-1 condition on X ; get SDP relaxation

The SDP Relaxation of MC

p∗ := max {trace LX : diag(X ) = e,X � 0}

21



Duality for SDP Relaxation of MC

Primal-Dual Programs

(PSDP)
d∗ = p∗ := max trace LX

s.t. diag(X ) = e
X � 0,X ∈ Sn ,

diag: vector from diagonal; Diag: diagonal matrix from vector; e
vector of ones;

(DSDP)
p∗ = d∗ := min eT y

s.t. Diag(y) − Z = L
Z � 0,Z ∈ Sn ,

Slater Points

X̂ = I � 0; Ẑ = L− Diag(ŷ) � 0 for ŷ << 0

22



Modern Optimality Framework

(Perturbed) Overdetermined Optimality Conditions, X ,Z � 0

Fμ(X , y ,Z ) =

⎧⎪⎪⎨
⎪⎪⎩

Rd := Diag(y)− Z − L = 0 dual feas.
Rp := diag(X )− e = 0 primal feas.
ZX = 0 compl. slack.
Rc := ZX − μI = 0 pert. C.S.

ZX NOT nec. symmetric

Linearization/(LSS-Gauss)-Newton Direction

F ′
μ(X , y ,Z )

⎛
⎝ΔX
Δy
ΔZ

⎞
⎠ =

⎡
⎣Diag(Δy)−ΔZ

diag(ΔX )
ZΔX +ΔZX

⎤
⎦ = −Fμ(X , y ,Z )

23



Simple/Efficient Algorithm

Block Eliminations; Block Backsolves
← solve for ΔZ = Diag(Δy) + Rd

substitute ZΔX + (Diag(Δy) + Rd)X
← solve for ΔX = Z−1 (−Diag(Δy)X − RdX − Rc)

substitute and solve for Δy
diag

[
Z−1 (−Diag(Δy)X −Rd X − Rc)

]
= −Rb

equivalently diag
[
Z−1 Diag(Δy)X

]
= (μ diag(Z−1)− e)

− diag
(
Z−1RdX

)
= 0, since Rd = 0 easy to obtain.

Cheat/Symmetrize ΔX in Backsolve; AHO Search Direction

← backsolve for ΔZ ,ΔX ; ΔX ← 1
2(ΔX +ΔX T )

24



MATLAB Code

Initialization: X ,Z � 0
function [phi, X, y] = psd_ip( L);
% solves: max trace(LX) s.t. X psd, diag(X) = b; b = ones(n,1)/4
% min b’y s.t. Diag(y) - L psd, y unconstrained,
%**input: L ... symmetric matrix
%**output: phi ... optimal value of primal, phi =trace(LX)
% X ... optimal primal matrix
% y ... optimal dual vector
% call: [phi, X, y] = psd_ip( L);
%%%%%%%%%%%%%%%%%%%

%%Initialization
digits = 6; % 6 significant digits of phi
[n, n1] = size( L); % problem size
b = ones( n,1 ) / 4; % any b>0 works just as well
X = diag( b); % initial primal matrix is pos. def.
y = sum( abs( L))’ * 1.1; % initial y is chosen so that
Z = diag( y) - L; % initial dual slack Z is pos. def.
phi = b’*y; % initial dual costs
psi = L(:)’ * X( :); % and initial primal costs
mu = Z( :)’ * X( :)/( 2*n); % initial complementarity
iter=0; % iteration count

25



Find Search Direction/Symmetrize dX

Solve: dy ; backsolve: dZ ,dX ; symmetrize dX
disp([’ iter alphap alphad gap lower upper’]);

while phi-psi > max([1,abs(phi)]) * 10^(-digits)

iter = iter + 1; % start a new iteration
Zi = inv( Z); % inv(Z) is needed explicitly
Zi = (Zi + Zi’)/2;
dy = (Zi.*X) \ (mu * diag(Zi) - b); % solve for dy
dX = - Zi * diag( dy) * X + mu * Zi - X; % back substitute for dX
dX = ( dX + dX’)/2; % symmetrize

26



Line Search to Stay Interior; and Update

Backtrack to keep X ,Z � 0; Update X , y ,Z
% line search on primal

alphap = 1; % initial steplength
[dummy,posdef] = chol( X + alphap * dX ); % test if pos.def
while posdef > 0,

alphap = alphap * .8;
[dummy,posdef] = chol( X + alphap * dX );
end;

if alphap < 1, alphap = alphap * .95; end; % stay away from boundary
% line search on dual; dZ is handled implicitly: dZ = diag( dy);

alphad = 1;
[dummy,posdef] = chol( Z + alphad * diag(dy) );
while posdef > 0;

alphad = alphad * .8;
[dummy,posdef] = chol( Z + alphad * diag(dy) );
end;

if alphad < 1, alphad = alphad * .95; end;
% update

X = X + alphap * dX;
y = y + alphad * dy;
Z = Z + alphad * diag(dy);
mu = X( :)’ * Z( :) / (2*n);
if alphap + alphad > 1.8, mu = mu/2; end; % speed up for long steps
phi = b’ * y; psi = L( :)’ * X( :);

% display current iteration
disp([ iter alphap alphad (phi-psi) psi phi ]);

end; % end of main loop

27



Using a SDP Solver – Problem

Problem
http://infohost.nmt.edu/~sdplib/FORMAT

min 10x1+20x2
st X=F1x1+F2x2-F0, X >= 0
where

F0=[1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4]

F1=[1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0]

F2=[0 0 0 0
0 1 0 0
0 0 5 2
0 0 2 6]

28



Using a SDP Solver

SDP Solver and SDPA Format
In SDPA sparse format, this problem can be written as:
"A sample problem.
2 =mdim "number of constraints m
2 =nblocks "number of blocks in block diagonal structure
{2, 2} " sizes of individual blocks
10.0 20.0 " objective function vector
0 1 1 1 1.0 " entries of constraint matrix
0 1 2 2 2.0 " <matno> <blkno> <i> <j> <entry>
0 2 1 1 3.0
0 2 2 2 4.0
1 1 1 1 1.0
1 1 2 2 1.0
2 1 2 2 1.0
2 2 1 1 5.0
2 2 1 2 2.0
2 2 2 2 6.0

29



Success of SDP Relaxation of MC

Goemans-Williamson .878 approx. algor. for MC
MC is one of Karp’s NP-complete problems (APX-hard);
G-W ’94 showed (with nonnegative weights on edges):

.87856(bndSDP) ≤ optvalueMC ≤ bndSDP

Extensions/Numerics
This result has been extended (e.g. Nesterov/97) to more
general quadratic functions to obtain a π

2 guarantee
In practice, the strength of the bound is much tighter; large
problems can be solved (many authors).

30


