Background

Historical Events

@ Lyapunov (stability) 1890
@ SDP (cone optimization/duality) 1960’s
@ Engineering applications 60’s
@ matrix completion problems 80's
@ polynomial time algorithms Nesterov-Nemirovski 80’s
@ combinatorial appl., primal-dual interior-point (p-d i-p)
algorithms (explosion of activity) 90's

@ sparsity/special-structure/low-rank/large-scale/robust-opt.
00’s




What are SDPs ?

Primal and Dual (look like with variables)

p*:= max traceCX (= (C,X))
(PSDP) st. AX=b (b =(A,X))
X = 0.

d*:= min by (= (b,y))
(DSDP) S.t. A*y —Z=C (./4 Ty = Zlm:l yiAi)
Z =0,

V.

S" space of n x n real symmetric matrices, Aj,X,Z,C € 8"
= 0 (>= 0) pos. (semi)definiteness; (Loewner partial order)
A : 8" — R™ lin. transf.; A * adjoint transf. (transpose)




Duality: Primal-Dual Pair PSDP, DSDP

p* := max {traceCX : AX =b,X > 0}

Weak Duality (using hidden constraints)

p*

r)zlgé(miny trace CX + [yT(b — AX)] (PSDP)

duality gap
_ P S
miny r)?%(yTb+ [trace (C — A*y) X] (bestLB)
minc_j*yjo y'b=:d* (DSDP)

<A(X)7y> = yT'AX = (X, A%y) = traceX(A*y)v VX, vy




Characterization of (p-d) Optimality

Characterization of Optimality for

(%) A*y —Z —C = 0 dual feasibility
b—A(X) = 0 primalfeasibility

(xx){ ZX = 0 complementary slackness

X, (y,Z) a primal-dual optimal pair; Z (dual) slack variable
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Perturbed complementary slackness

For primal-dual interior-point (p-d i-p) methods, replace (**) with
() ZX =pl, Z,X=0,u>0

solve (*) and (***): X,, Y., Z, on Central Path; . | O

Difference with LP
Z,X € 8" but ZX is not necessarily symmetric!




(unlike LP) Strong Duality Can Fail for SDP

Strong Duality for PSDP
e.g. [7]

@ zero duality gap: p* =d*
@ ANDd* is)z/at af[r)le%.

@ (if both attained)

p*=d*iffZ o X = 0iff (Z,X) =0iff ZX =0
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Regularization using Faces

ref. Borwein-W/80 [2, 1, 3], Ramana/97
[4],Ramana-Tuncel-W/97 [5], Tuncel-W/09 [6].




Faces of Cones

Face

A convex cone F is a face of K, denoted F < K, if
x,yeKandx+y eF =X,y €F.

If F <K and F # K, write F < K.
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Conjugate Face
If F < K, the conjugate face (or complementary face) of F is

F¢:=FfNK* <K

where K* = {¢ : (¢,k) > 0,Vk € K} (dual/polar cone)
If x € relint(F), then F¢ = {x}+ NK*.
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Faces of SDP Cone

Face Characterized by

X =UDUT e relintF <87, UTU =I;,D € S% |
iff
F =UsiuT

Conjugate Face of

the conjugate face (or complementary face) of F is

FC.=F'tnST=vs'vT, VvIU=0,VTV =In




Minimal Face (Minimal Cone)

Feasible set of DSDP

Let Fp :={y : Z = A"y — C > 0}

Minimal Face

Assume Fp is nonempty, the minimal face (or minimal cone) of
DSDP is
fo .= {F <K : A*(Fp) - C CF}

i.e., the minimal face that contains all the feasible slacks.
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DSDP for Example from Ramana, 1995

DSDP (Max instead of Min)
y 0 O
0 = d* = max Yo 0 yi Y2 | =X
/ 0y, O

1
0
0
. 1 0 O
y*=(y; 0), yf<0, Z*=C-A'y*=(0 —y; O

Constraint Qualification (CQ)

Slater’'s CQ (strict feasibility) fails for dual

11



PSDP for Example from Ramana, 1995

Primal Program, PSDP (Min instead of Max)

1=p*=min {Xy: traceAX =Xz =0,
: trace ApX = X1 +2Xp3 = 1}

1 0 Xi3
X*=10 0 0 |, Xg>(X3)

X3 0 X3

Slater’s for (primal) dual & complementarity

dualtygap=p*—d*=1-0=1> 0,

trace X *Z* = trace (é 0 Xés) (é 5 8) =1>0
- 0 01 0 T ===

X1z 0 Xgg




Minimal Face for Ramana Example

Feasible Set/Minimal Face
Fop={y eR?:y; <0, y, =0}

fo = N{FIS3:C—A*(Fp)CF}

S2 0
0 0

Slater CQ and Minimal Face

If DSDP is feasible, then

C — A%y #¢ 0,Vy ( Slater's CQ fails for DSDP ) < fp <K
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Regularization of DSDP

Borwein-W (1981)

If d* is finite, then DSDP is equivalent to regularized DSDP

drp = max {(b,y) : A%y =, C}. (RD)

Lagrangian Dual DRD Satisfies Strong Duality:

d* = dip = dggp = min {(C.X) : AX =b, X =; 0} (DRD)

and djp is attained
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Implementation Problems with Regularization; but,
Many Applications

Difficulties

Borwein and W. also gave an algorithm to compute fp.
But Difficulties:

© The algorithm requires the solution of several
(homogeneous) cone programs (constraints are:
Ax =0,{c,x) =0,0#X =k 0)

Q@ If Slater's CQ fails for PSDP then it also fails for each of
these cone programs.

| \

Application to Combinatorial Problems

Slater CQ fails for many applications to combinatorial problems.
But, fp can be found explicitly.

&




Further Differences with LP

Strict Complementarity can Fail

m Theorem of Goldman and Tucker for LP can fall,
though conditions hold generically; ref. Shapiro/99,
Pataki-Tuncel/98, Alizadeh-Haeberly-Overton/98)

Polynomial Time Complexity/Algorithms

| \

SDP are convex programs; can be approximately solved in
polynomial time by interior point algorithms (ref.
Nesterov-Nemirovski/88)




Strong Relaxations of Computationally Hard Problems

Modelling Computationally Hard Problems

@ Many computationally hard problems can be modelled as
guadratically constrained quadratic programs, (QQP)
(rather than LPs).

@ QQPs are themselves computationally hard.

@ But, Lagrangian relaxation can be solved efficiently using
SDP.
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Applications

statistics, engineering, matrix completions, approximation
theory, nonlinear programming, Euclidean distance matrix
completion, (EDM); sensor network localiz. (SNL)
combinatorial optimization: max-cut; graph partitioning;
gquadratic assignment problem; graph colouring; max-clique.




SDP Webpage

Sofware

List available at:
www-user.tu-chemnitz.de/ helmberg/sdp_software.html

@ SDPLIB SDPLIB is a collection of semidefinite
programming test problems. (in SDPA sparse format)

@ CVX, Disciplined Convex Programming

@ Solvers: CSDP (exploits BLAS); SeDuMil.1
(dependable, popular); SDPT3(including
quadratic/sensor localization); SDPA (including parallel);
GloptiPoly-3 (moments; optimization; and SDP);

PENNON (nonlinear SDP); SBmethod(first order
method/large scale);
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SDP Relaxation of Max-Cut Problem, (MC)

Max-Cut Problem

undirected, complete, graph G = (V,E), [V| = n, with edge
weights wj;; divide nodes into two sets to maximize the sum of

weights of cut edges.
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Quadratic-Quadratic (QQP) Model for MC

Quadratic Model of MC with Integer Constraints
IR %Zi<j wii(1 —xx), x € {E1}"

Equate x; = 1 with i € Z; and —1 otherwise.

| \

QQP Model of MC
Let L be the Laplacian of G, e.qg. if weights are 0, 1

deg(vi) ifi=]j
Lj = -1 ifi #jandy; is adjacent to v,
0 otherwise

Let q(x) := (3)xTLx; equivalent QP problem
(4)p* := max {q(x) =x"Lx: X € {il}”}




SDP Relaxation; use commutativity
trace AB = trace BA

Direct Relaxation

(4) p*:=max {xTLx DX € {il}”}

Replace x € {£1}" with x? = 1. Note that

rank-1
—

xTLx = tracexTLx = trace LxxT = trace LX,with X = xx'
also: X =0, diag(X)=-e, q(x)=tracelLX

Relax the hard rank-1 condition on X; get SDP relaxation

The SDP Relaxation of MC

| A

‘ p* := max {trace LX : diag(X) = e, X > 0} ‘

\
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Duality for SDP Relaxation of MC

Primal-Dual Programs

d*=p*:= max tracelLX
(PSDP) s.t. diag(X)=e
X>=0,XeS8",

diag: vector from diagonal; Diag: diagonal matrix from vector; e
vector of ones;

p*=d*:= min eTy
(DSDP) st. Diag(y)—-Z =1L
Z>=0,ZecS8",

Slater Points

A

X=1-0; Z=L-Diag(y)>0fory <<0

| \




Modern Optimality Framework

(Perturbed) Overdetermined Optimality Conditions,

Rq :=Diag(y) —Z —L = 0 dualfeas.

) Rp:=diag(X)—e = 0 primal feas.
FulX.y,2) = ZX = 0 compl. slack.
Rc :=2ZX — pul = 0 pert. C.S.

ZX NOT nec. symmetric

V.

Linearization/(LSS-Gauss)-Newton Direction

AX Diag(Ay) — AZ
F.(X.y,Z) | Ay | = | diag(AX) | =-Fu(X.,y,Z)
AZ ZAX + AZX
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Simple/Efficient Algorithm

Block Eliminations; Block Backsolves

@ « solve for AZ = Diag(Ay) + Ry

@ substitute ZAX + (Diag(Ay) + Rq)X

@ « solve for AX = Z~1(—Diag(Ay)X — RgX — R¢)

@ substitute and solve for Ay
diag [Z 1 (— Diag(Ay)X — R¢X — R¢)] = —Ryp
equivalently | diag [Z ~* Diag(Ay)X] = (ndiag(Z 1) —e)

—diag (Z *RgqX) = 0, since Ry = 0 easy to obtain.

| \

Cheat/Symmetrize in Backsolve; AHO Search Direction
< backsolve for AZ, AX; AX + 3(AX + AXT)




MATLAB Code

itializatio

function [phi, X, y] = psd ip( L);

% solves: max trace (LX) s.t. X psd, diag(X) = b; b = ones(n,1)/4
% min b’y s.t. Diag(y) - L psd, y unconstrained,
$*xinput: L ... symmetric matrix

%$xxoutput: phi ... optimal value of primal, phi =trace (LX)

% X ... optimal primal matrix

% y ... optimal dual vector

% call: [phi, X, y]l = psd_ip( L);

%%Initialization
digits = 6; % 6 significant digits of phi
n, nl] = size( L) % problem size

i
4; any b>0 works just as well
initial primal matrix is pos. def.
initial y is chosen so that

initial dual slack Z is pos. def.

o0

[ L
b = ones( n,1 ) /
X = diag( b);
Y
Z

o0 op

= sum( abs( L))’ % 1.1;
= diag( y) - L;

o0

phi = b’*y; % initial dual costs

psi = L(:)" » X( :); % and initial primal costs
mu = Z( :)' % X( :)/( 2%n); % initial complementarity
iter=0; % iteration count
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Find Search Direction/Symmetrize dX

Solve: ©; backsolve: ; symmetrize dX
disp ([ iter alphap alphad gap lower upper’]) ;

while phi-psi > max([1,abs(phi)]) * 10”(-digits)

iter = iter + 1; % start a new iteration

zZi = inv( 2); % inv(Z) is needed explicitly

Zi = (Zi + zi’)/2;

dy = (2Zi.*X) \ (mu % diag(zi) - b); % solve for dy

dX = - Zi » diag( dy) * X + mu % Zi - X; % back substitute for dX
dx = ( dX + dx’)/2; % symmetrize
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Line Search to Stay Interior; and Update

Backtrack to keep ; Update
% line search on primal
alphap = 1; % initial steplength

[dummy, posdef] = chol( X + alphap * dX ); % test if pos.def
while posdef > 0,
alphap = alphap * .8;
[dummy, posdef] = chol( X + alphap * dX );
end;
if alphap < 1, alphap = alphap * .95; end; % stay away from boundary
% line search on dual; dZz is handled implicitly: dZ = diag( dy);
alphad = 1;
[dummy, posdef] = chol( Z + alphad * diag(dy) );
while posdef > 0;
alphad = alphad x .8;
[dummy, posdef] = chol( Z + alphad * diag(dy) );
end;
if alphad < 1, alphad = alphad % .95; end;
% update
X = X + alphap * dX;
y = y + alphad * dy;
Z = Z + alphad x diag(dy);
mu = X( :)’ % Z( :) / (2%n);
if alphap + alphad > 1.8, mu = mu/2; end; % speed up for long steps
phi = b’ % y; psi = L( :)’ * X( :);
% display current iteration
disp([ iter alphap alphad (phi-psi) psi phi ]);

end; % end of main loop
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Using a SDP Solver — Problem

Problem

http://infohost.nmt.edu/~sdplib/FORMAT

min 10x1+20x2

st X=F1x1+F2x2-F0, X >= 0

where
Fo=[

Fl=

F2=

Oo0oO0OO0OO0OOOKFOOOHR

OoOHOOOHKHOOONO
MNUIOOOOOOOWOoOOo
AN OOOOOO®OOo O
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Using a SDP Solver

SDP Solver and

In SDPA sparse format, this problem can be written as:
"A sample problem.

2 =mdim "number of constraints m

2 =nblocks "number of blocks in block diagonal structure
{2, 2} " sizes of individual blocks

10.0 20.0 " objective function vector
01111.0 " entries of constraint matrix
01222.0 " <matno> <blkno> <i> <j> <entry>
02113.0

02224.0

11111.0

11221.0

21221.0

22115.0

22122.0

22226.0
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Success of SDP Relaxation of MC

Goemans-Williamson approx. algor. for MC

MC is one of Karp’s NP-complete problems (APX-hard);
G-W '94 showed (with nhonnegative weights on edges):

.87856(bndspp ) < optvaluey,= < bndspp

Extensions/Numerics

This result has been extended (e.g. Nesterov/97) to more
general quadratic functions to obtain a 5 guarantee

In practice, the strength of the bound is much tighter; large
problems can be solved (many authors).

| A\
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