Background

Historical Events	
 Lyapunov (stability) 	1890
 SDP (cone optimization/duality) 	1960's
 Engineering applications 	60's
 matrix completion problems 	80's
 polynomial time algorithms Nesterov-Nemirovski 	80's
• combinatorial appl., primal-dual interior-point (p-d i	-p)
algorithms (explosion of activity)	90's
 sparsity/special-structure/low-rank/large-scale/robu 	ist-opt.
UUS	

What are **SDPs**?

Primal and D	al SDPs (look like LPs with matrix variables)
(PSDP)	$\begin{cases} p^* := \max \text{ trace } CX (= \langle C, X \rangle) \\ \text{s.t.} \mathcal{A} X = b (b_i = \langle A_i, X \rangle) \\ X \succeq 0. \end{cases}$
(DSDP)	$\begin{cases} d^* := \min b^T y & (= \langle b, y \rangle) \\ \text{s.t.} & \mathcal{A}^* y - Z = C & (\mathcal{A}^* y = \sum_{i=1}^m y_i A_i) \\ & Z \succeq 0, \end{cases}$

 S^n space of $n \times n$ real symmetric matrices, $A_i, X, Z, C \in S^n \to 0$ ($\succeq 0$) pos. (semi)definiteness; (Loewner partial order) $\mathcal{A} : S^n \to \mathbb{R}^m$ lin. transf.; \mathcal{A}^* adjoint transf. (transpose)

Duality: Primal-Dual Pair PSDP, DSDP

\mathcal{A}^* adjoint of \mathcal{A}	
$\langle \mathcal{A}(\mathbf{X}), \mathbf{y} \rangle = \mathbf{y}^{T} \mathcal{A} \mathbf{X} = \langle \mathbf{X}, \mathcal{A}^* \mathbf{y} \rangle = \operatorname{trace} \mathbf{X}(\mathcal{A}^* \mathbf{y}),$	$\forall X, \forall y$

Characterization of (p-d) Optimality

Characterization of Optimality for $Z, X \succeq 0$ (*) $\begin{cases} \mathcal{A}^* y - Z - C = 0 & \text{dual feasibility} \\ b - \mathcal{A}(X) = 0 & \text{primal feasibility} \end{cases}$ (**) $\{ ZX = 0 & \text{complementary slackness} \end{cases}$ X, (y, Z) a primal-dual optimal pair; Z (dual) slack variable

Perturbed complementary slackness

For primal-dual interior-point (p-d i-p) methods, replace (**) with (***) $ZX = \mu I$, $Z, X \succ 0, \mu > 0$ solve (*) and (***): $X_{\mu}, y_{\mu}, Z_{\mu}$ on Central Path; $\mu \downarrow 0$

Difference with LP

 $Z, X \in S^n$ but ZX is not necessarily symmetric!

(unlike LP) Strong Duality Can Fail for SDP

Strong Duality for PSDP

e.g. [7]

zero duality gap: p* = d*
<u>AND</u> d* is attained.

• (if both attained)

$$p^* = d^* \text{ iff } Z \circ X = 0 \text{ iff } \langle Z, X \rangle = 0 \text{ iff } ZX = 0$$

7

Regularization using Faces

ref. Borwein-W/80 [2, 1, 3], Ramana/97 [4],Ramana-Tuncel-W/97 [5], Tuncel-W/09 [6].

Faces of Cones

Face

A convex cone *F* is a face of *K*, denoted $F \leq K$, if

$$m{x},m{y}\inm{K}$$
 and $m{x}+m{y}\inm{F}\Longrightarrowm{x},m{y}\inm{F}$.

If $F \leq K$ and $F \neq K$, write F < K.

Conjugate Face

If $F \leq K$, the conjugate face (or complementary face) of F is

 $F^c := F^\perp \cap K^* \trianglelefteq K^*,$

8

where $K^* = \{\phi : \langle \phi, k \rangle \ge 0, \forall k \in K\}$ (dual/polar cone) If $x \in \text{relint}(F)$, then $F^c = \{x\}^{\perp} \cap K^*$.

Faces of SDP Cone

Tace
$$F \leq S_{+}^{n}$$
 Characterized by $X \in \text{relint } F$
 $X = UDU^{T} \in \text{relint } F \leq S_{+}^{n}, U^{T}U = I_{t}, D \in S_{++}^{t}$
iff
 $F = US_{+}^{t}U^{T}$

Conjugate Face of $F \leq S^n_+$

the conjugate face (or complementary face) of F is

$$F^{c} := F^{\perp} \cap \mathcal{S}^{n}_{+} = V \mathcal{S}^{n-t}_{+} V^{T}, \quad V^{T} U = 0, V^{T} V = I_{n-t}$$

Minimal Face (Minimal Cone)

Feasible set of DSDP
Let $\mathcal{F}_D := \{ y : Z = \mathcal{A}^* y - C \succeq 0 \}$
Minimal Face
Assume \mathcal{F}_D is nonempty, the minimal face (or minimal cone) of DSDP is
$f_{\mathcal{D}} := igcap \{ m{\mathcal{F}} \trianglelefteq m{\mathcal{K}} : \mathcal{A}^*(\mathcal{F}_{\mathcal{D}}) - m{\mathcal{C}} \subset m{\mathcal{F}} \}$
i.e., the minimal face that contains all the feasible slacks.

DSDP for Example from Ramana, 1995

DSDP (Max instead of Min)
$0=d^*=\max_y \ \left\{ y_2 \ : \ \right.$	$ \begin{pmatrix} y_2 & 0 & 0 \\ 0 & y_1 & y_2 \\ 0 & y_2 & 0 \end{pmatrix} \preceq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \bigg\} $
$\mathbf{y}^* = \begin{pmatrix} \mathbf{y}_1^* & 0 \end{pmatrix}^T, \mathbf{y}_1^* \leq 0,$	$Z^* = C - \mathcal{A}^* y^* = egin{pmatrix} 1 & 0 & 0 \ 0 & -y_1^* & 0 \ 0 & 0 & 0 \end{pmatrix}$

11

Constraint Qualification (CQ) Fails Slater's CQ (strict feasibility) fails for dual

PSDP for Example from Ramana, 1995

Prima	l Progi	ram, I	PSDP (I	Min instead of Max)
1	= p * =	= min x≻o	{ X ₁₁ :	: trace $A_1 X = X_{22} = 0$, trace $A_2 X = X_{11} + 2X_{23} = 1$ }
X * =	$\begin{pmatrix} 1\\0\\X_{13} \end{pmatrix}$	0) 0 0)	$\begin{pmatrix} X_{13} \\ 0 \\ X_{33} \end{pmatrix}$,	$X_{33} \ge (X_{13}^2)$

Slater's CQ for (primal) dual & complementarity fails				
duality gap $= p^* - d^* = 1 - 0 = 1 > 0$,				
trace $X^*Z^* = \text{trace} \begin{pmatrix} 1 & 0 & X_{13} \\ 0 & 0 & 0 \\ X_{13} & 0 & X_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -y_1^* & 0 \\ 0 & 0 & 0 \end{pmatrix} = \underline{1 > 0}$				

Minimal Face for Ramana Example

Slater CQ and Minimal Face

If DSDP is feasible, then

 $\textbf{C} - \mathcal{A}^*\textbf{y} \not\succ_{\textbf{K}} \textbf{0}, \forall \textbf{y} \text{ (Slater's CQ fails for DSDP)} \Longleftrightarrow \textbf{f}_{\textbf{D}} \lhd \textbf{K}$

Regularization of DSDP

Borwein-W (1981)

If *d*^{*} is finite, then DSDP is equivalent to regularized DSDP

$$d_{RD}^* = \max_{y} \{ \langle b, y \rangle : \mathcal{A}^* y \preceq_{f_D} C \}.$$
(RD)

Lagrangian Dual DRD Satisfies Strong Duality:

$$d^* = d^*_{RD} = d^*_{DRD} = \min_{X} \{ \langle C, X \rangle : A X = b, X \succeq_{f^*_D} 0 \}$$
 (DRD)

14

and *d**_{DRP} is <u>attained</u>

Implementation Problems with Regularization; but, Many Applications

Difficulties

Borwein and W. also gave an algorithm to compute f_D . But Difficulties:

- The algorithm requires the solution of several (homogeneous) cone programs (constraints are:
 A x = 0, ⟨c, x⟩ = 0, 0 ≠ x ≽_K 0)
- If Slater's CQ fails for PSDP then it also fails for each of these cone programs.

Application to Combinatorial Problems

Slater CQ fails for many applications to combinatorial problems. But, f_D can be found explicitly.

Further Differences with LP

Strict Complementarity can Fail

Z + X > 0 Theorem of Goldman and Tucker for LP can fail, though conditions hold generically; ref. Shapiro/99, Pataki-Tuncel/98, Alizadeh-Haeberly-Overton/98)

Polynomial Time Complexity/Algorithms

SDP are convex programs; can be approximately solved in polynomial time by interior point algorithms (ref. Nesterov-Nemirovski/88)

Strong Relaxations of Computationally Hard Problems

Modelling Computationally Hard Problems

- Many computationally hard problems can be modelled as quadratically constrained quadratic programs, (QQP) (rather than LPs).
- QQPs are themselves computationally hard.
- But, Lagrangian relaxation can be solved efficiently using SDP.

Applications

statistics, engineering, matrix completions, approximation theory, nonlinear programming, Euclidean distance matrix completion, (EDM); sensor network localiz. (SNL) combinatorial optimization: max-cut; graph partitioning; quadratic assignment problem; graph colouring; max-clique.

SDP Webpage

Software

List available at:

www-user.tu-chemnitz.de/ helmberg/sdp_software.html

- SDPLIB SDPLIB is a collection of semidefinite programming test problems. (in SDPA sparse format)
- CVX, Disciplined Convex Programming
- Solvers: <u>CSDP</u> (exploits BLAS); <u>SeDuMi1.1</u> (dependable, popular); <u>SDPT3</u>(including quadratic/sensor localization); <u>SDPA</u> (including parallel); <u>GloptiPoly-3</u> (moments; optimization; and SDP); <u>PENNON</u> (nonlinear SDP); <u>SBmethod</u>(first order method/large scale);

SDP Relaxation of Max-Cut Problem, (MC)

Max-Cut Problem

undirected, complete, graph $\mathcal{G} = (V, E)$, |V| = n, with edge weights w_{ij} ; divide nodes into two sets to maximize the sum of weights of cut edges.

Quadratic-Quadratic (QQP) Model for MC

Quadratic Model of MC with Integer Constraints

 $\max \ \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j), \quad x \in \{\pm 1\}^n.$

Equate $x_i = 1$ with $i \in \mathcal{I}$; and -1 otherwise.

QQP Model of MC

Let L be the Laplacian of \mathcal{G} , e.g. if weights are 0, 1

 $L_{ij} = \begin{cases} \deg(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\ 0 & \text{otherwise} \end{cases}$

Let $q(x) := (\frac{1}{4})x^T Lx$; equivalent QP problem

$$(4)p^* := \max \left\{ q(x) = x^T L x : x \in \{\pm 1\}^n \right\}$$

SDP Relaxation; use commutativity trace AB =trace BA

Duality for SDP Relaxation of MC

Primal-Dual Progra	ams		
(PSDP)	<i>d</i> * = <i>p</i> * :=	max s.t.	$egin{aligned} & ext{trace } \mathcal{LX} \ & ext{diag}(\mathcal{X}) = \mathbf{e} \ & \mathcal{X} \succeq 0, \mathcal{X} \in \mathcal{S}^n , \end{aligned}$
diag: vector from c vector of ones;	liagonal; <mark>Diag</mark> :	diago	onal matrix from vector; e
(DSDP)	p* = d* :=	min s.t.	$e^T y$ Diag $(y) - Z = L$ $Z \succeq 0, Z \in S^n$,

Slater Points $\hat{X} = I \succ 0;$ $\hat{Z} = L - \text{Diag}(\hat{y}) \succ 0$ for $\hat{y} << 0$

Modern Optimality Framework

(Perturbed) Ove	erdetermined Optimality C	ond	litio	ns, $X, Z \succ 0$
${\sf F}_\mu({\sf X},{\sf y},{\sf Z})=iggl\{$	$\left\{ egin{array}{l} R_d := \operatorname{Diag}(y) - Z - L \ R_{ ho} := \operatorname{diag}(X) - e \ ZX \ R_c := ZX - \mu I \end{array} ight.$	 	0 0 0 0	dual feas. primal feas. compl. slack pert. C.S.
ZX NOT nec. s	ymmetric			

Linearization/(LSS-Gauss)-Newton Direction

$$F'_{\mu}(X, y, Z) \begin{pmatrix} \Delta X \\ \Delta y \\ \Delta Z \end{pmatrix} = \begin{bmatrix} \mathsf{Diag}(\Delta y) - \Delta Z \\ \mathsf{diag}(\Delta X) \\ Z \Delta X + \Delta Z X \end{bmatrix} = -F_{\mu}(X, y, Z)$$

Simple/Efficient Algorithm

Block Eliminations; Block Backsolves

- \leftarrow solve for $\Delta Z = \text{Diag}(\Delta y) + R_d$
- substitute $Z\Delta X + (Diag(\Delta y) + R_d)X$
- \leftarrow solve for $\Delta X = Z^{-1} \left(\text{Diag}(\Delta y) X R_d X R_c \right)$
- substitute and solve for Δy diag $[Z^{-1}(-\text{Diag}(\Delta y)X - R_d X - R_c)] = -R_b$ equivalently $\boxed{\text{diag}[Z^{-1}\text{Diag}(\Delta y)X] = (\mu \text{diag}(Z^{-1}) - e)}$ $- \text{diag}(Z^{-1}R_d X) = 0$, since $R_d = 0$ easy to obtain.
- Cheat/Symmetrize ΔX in Backsolve; AHO Search Direction
- $\leftarrow \text{ backsolve for } \Delta Z, \Delta X; \Delta X \leftarrow \frac{1}{2}(\Delta X + \Delta X^T)$

MATLAB Code

Initialization: $X, Z \succ 0$

function [phi, X, y] = psd_ip(I	; (1
🗄 solves: max trace(LX) s.t. X p	psd, diag(X) = b; b = ones(n,1)/4
🕴 min b'y s.t. Dia	eg(y) - L psd, y unconstrained,
***input: L symmetric matri	x
**output: phi optimal value	e of primal, phi =trace(LX)
🗄 X optimal prima	al matrix
y optimal dual	vector
<pre>k call: [phi, X, y] = psd_ip(</pre>	L);

%%Initialization	
ligits = 6;	% 6 significant digits of phi
[n, n1] = size(L);	% problem size
o = ones(n,1) / 4;	% any b>0 works just as well
<pre>4 = diag(b);</pre>	% initial primal matrix is pos. def.
y = sum(abs(L))' * 1.1;	% initial y is chosen so that
I = diag(y) - L;	% initial dual slack Z is pos. def.
phi = b' *y;	% initial dual costs
psi = L(:)' * X(:);	% and initial primal costs
nu = Z(:)' * X(:)/(2*n);	<pre>% initial complementarity</pre>
iter=0;	% iteration count

Find Search Direction/Symmetrize dX

Solve: c	<mark>ly</mark> ; bac	ksolve:		; symr	netrize <i>d</i>	X	
disp(['	iter	alphap	alphad	gap	lower	upper']);	
while phi-p	si > max([1, abs (phi)]) * 10^	(-digits))		
iter Zi = dy = dX = dX =	= iter + inv(Z); (Zi + Zi' (Zi.*X) - Zi * di (dX + dX	1;)/2; \ (mu * di ag(dy) * ?')/2;	% start % inv(Z ag(Zi) - X + mu * % symme	a new it) is need b); Zi - X; trize	teration ded explicit: % solve for % back subs	ly dy titute for dX	

Line Search to Stay Interior; and Update

Backtrack to keep $X, Z \succ 0$; Update X, y, Z

```
% line search on primal
      alphap = 1;
                                  % initial steplength
      [dummy,posdef] = chol( X + alphap * dX ); % test if pos.def
      while posdef > 0,
              alphap = alphap * .8;
               [dummy,posdef] = chol(X + alphap * dX);
               end;
if alphap < 1, alphap = alphap * .95; end; % stay away from boundary
% line search on dual; dZ is handled implicitly: dZ = diag( dy);
      alphad = 1;
      [dummy,posdef] = chol( Z + alphad * diag(dy) );
      while posdef > 0;
               alphad = alphad * .8;
               [dummy,posdef] = chol( Z + alphad * diag(dy) );
              end;
      if alphad < 1, alphad = alphad * .95; end;
% update
     X = X + alphap * dX;
      y = y + alphad * dy;
      Z = Z + alphad * diag(dy);
mu = X(:)' * Z(:) / (2*n);
      if alphap + alphad > 1.8, mu = mu/2; end; % speed up for long steps
      phi = b' * y; psi = L( :)' * X( :);
% display current iteration
        disp([ iter alphap alphad (phi-psi) psi phi ]);
        end;
                         % end of main loop
```

Using a SDP Solver – Problem

Problem
<pre>http://infohost.nmt.edu/~sdplib/FORMAT min 10x1+20x2 st X=F1x1+F2x2-F0, X >= 0 where</pre>
$F0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}$
0 0 3 0 0 0 0 4]
F1=[1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F2=[0 0 0 0 0 1 0 0
0 0 5 2 0 0 2 6]

Using a SDP Solver

SDP Solver and SDPA Format

In SDPA sparse form	nat, this problem can be written as:
"A sample problem.	
2 =mdim	"number of constraints m
2 =nblocks	"number of blocks in block diagonal structure
{2, 2}	" sizes of individual blocks
10.0 20.0	" objective function vector
0 1 1 1 1.0	" entries of constraint matrix
0 1 2 2 2.0	" <matno> <blkno> <i> <j> <entry></entry></j></i></blkno></matno>
0 2 1 1 3.0	
0 2 2 2 4.0	
1 1 1 1 1.0	
1 1 2 2 1.0	
2 1 2 2 1.0	
2 2 1 1 5.0	
2 2 1 2 2.0	
2 2 2 2 6.0	

Success of SDP Relaxation of MC

Goemans-Williamson .878 approx. algor. for MC

MC is one of Karp's NP-complete problems (APX-hard); G-W '94 showed (with nonnegative weights on edges):

 $.87856(bnd_{SDP}) \le optvalue_{MC} \le bnd_{SDP}$

Extensions/Numerics

This result has been extended (e.g. Nesterov/97) to more general quadratic functions to obtain a $\frac{\pi}{2}$ guarantee In practice, the strength of the bound is much tighter; large problems can be solved (many authors).