
Success of SDP Relaxation of MC

Goemans-Williamson .878 approx. algor. for MC

MC is one of Karp’s NP-complete problems (APX-hard);
G-W ’94 showed (with nonnegative weights on edges):

.87856(bndSDP) ≤ optvalueMC ≤ bndSDP

Extensions/Numerics

This result has been extended (e.g. Nesterov/97) to more
general quadratic functions to obtain a π

2 guarantee
In practice, the strength of the bound is much tighter; large
problems can be solved (many authors).
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SDP arise from general quadratic approximations?

General Quadratic Approximations

Approximations from quadratic functions are stronger than from
linear functions. E.g.

x ∈ {±1} iff x2 = 1 x ∈ {0, 1} iff x2 − x = 0

QQPs
Let

qi(y) =
1
2

yT Qiy + yT bi + ci , y ∈ R
n

(QQP)
q∗ = min q0(y)

s.t. qi(y) ≤ 0
i = 1, . . .m
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Lagrangian Relaxation

Lagrangian; x Lagrange multiplier vector

L(y , x) = q0(y) +
∑m

i=1 xiqi(y)

or equivalently (combine quad./lin. terms)

L(y , x) = 1
2yT (Q0 +

∑m
i=1 xiQi)y

+yT (b0 +
∑m

i=1 xibi)
+(c0 +

∑m
i=1 xici)

Weak Duality

Use hidden constraints

d∗ = max
x≥0

min
y

L(y , x) ≤ q∗ = min
y

max
x≥0

L(y , x)
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Homogenization

Homogenize the Lagrangian

multiply linear term by new variable y0:
y0yT (b0 +

∑m
i=1 xibi), y2

0 = 1
use: strong duality for TRS; hidden SDP constraints

d∗ = max
x≥0

miny L(y , x)

= max
x≥0

min
y2

0=1

1
2yT (Q0 +

∑m
i=1 xiQi)y + ty2

0

+y0yT (b0 +
∑m

i=1 xibi)
+(c0 +

∑m
i=1 xici)− t

= max
x≥0,t

min
y

1
2yT (Q0 +

∑m
i=1 xiQi)y + ty2

0

+y0yT (b0 +
∑m

i=1 xibi)
+(c0 +

∑m
i=1 xici)− t
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Hidden SDP Constraint in Lagrangian Dual

Hessian is � 0

B :=

(

0 bT
0

b0 Q0

)

,

A

(

t
x

)

:= −

[

t
∑m

i=1 xibT
i

∑m
i=1 xibi

∑m
i=1 xiQi

]

, : Rm+1 → Sn+1

and the SDP constraint

B −A
(

t
x

)

� 0.

NOTE: There is NO hidden constraint needed in convex case;
e.g. if all qi are convex.
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Lagrangian Relaxation and Equivalent SDP

Dual-Primal Programs

Lagrangian Relaxation is equivalent to SDP (with c0 = 0)

(DSDP)

d∗ = sup −t +
∑m

i=1 xici

s.t. A

(

t
x

)

� B

x ∈ R
m
, t ∈ R

As in LP, Dual of Dual; Use Opt. Strategy of Competing Player

(DD)

d∗ ≤ p∗ := inf trace BY

s.t. A ∗Y =

(

−1
c

)

Y � 0.
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Quadratic Assignment Problem, (QAP)

QAP Problem

n facilities i , l , Ail flow or weight;
n locations j , k , Bjk distances;
Cij location costs

n ≥ 16 considered hard; SDP provides strong (though
expensive) bounds/1998;

Nugent n = 30 solved for first time using weakened SDP
relaxation on computational grids (CONDOR)/2002;

Exploit group symmetry in SDP relaxation of QAP; major
advance in size and efficiency/2007
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QAP Formulation

QAP Applications

designing of facility layouts; VLSI design (location of modules
on chips); campus planning; scheduling; process
communication; turbine balancing; typewriter keyboard design;
many more . . .

QAP Trace Formulation/Model

(QAP) µ
∗ := min

X∈Π
trace AXBX T − 2CX T

A,B,C ∈Mn; Π set of permutaion matrices.

36



Quadratic Assignment Problem, (QAP)

Permutation Matrices

Π = {n × n : (0, 1), row/col sums 1}
=

{

X ∈Mn : X ◦ X = X ,Xe = X T e = e
}

=
{

X ∈Mn : X T X = I,Xe = X T e = e,X ≥ 0
}

=
{

X ∈Mn : X T X = XX T = I,Xe = X T e = e,
X ◦ X = X ,X ≥ 0}

QQP Model of QAP/Add Redundant Constraints

(QAPE )

µ
∗ := min trace AXBX T − 2CX T

s.t. XX T = I,X T X = I
Xe = X T e = e
X 2

ij − Xij = 0, ∀i , j .
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Lagrangian Relaxation of QAP

Find SDP relaxation of QAP by taking dual of dual

(ignore Xe = X T e = e for now)
• Add (0, 1)-constraints to objective function; use Lagrange
multipliers Wij

µO = min
XXT =I

X T X=I

max
W

trace AXBX T − 2CX T +
∑

ij Wij(X 2
ij − Xij)

homogenize obj. fn; multiply by a constrained scalar x0

µO ≥ µR = max
W

min
XXT =XT X=I

x2
0=1

trace
[

AXBX T + W (X ◦ X )T

−x0(2C + W )X T
]

.
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Lagrangian Relaxation/Dual

Grouping: quadratic, linear, constant terms

Lagrange multiplier w0 for constraint on x0; Lagrange multipliers
Sb for XX T = I, So for X T X = I

µO ≥ µR := max
W

min
X , x0

trace
[

AXBX T + W (X ◦ X )T + w0x2
0

+SbXX T + SoX T X
]

− trace x0(2C + W )X T

−w0 − trace Sb − trace So.
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Lagrangian Relaxation/Dual

Vectorize X

define x := vec X , yT := (x0, xT ) and wT := (w0, vec W T )

µR = max
W

min
y

yT
[

LQ + Arrow(w) + B0Diag (Sb)+

O0Diag (So)
]

y
−w0 − trace Sb − trace So
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Linear Transformations

LQ :=

[

0 − vec(C)T

− vec(C) B ⊗ A

]

, (n2 + 1)× (n2 + 1)

Arrow (w) :=

[

w0 −1
2wT

1:n2

−1
2w1:n2 Diag (w1:n2)

]

,

B0Diag (S) :=

[

0 0
0 I ⊗ Sb

]

and

O0Diag (S) :=

[

0 0
0 So ⊗ I

]

.
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Dual of Dual

Hidden Semidefinite Constraint Yields the Equivalend SDP

(DO)
max −w0 − trace Sb − trace So

s.t. LQ + Arrow (w)+
B0Diag (Sb) + O0Diag (So) � 0,

dual of this dual yields the semidefinite relaxation; Y � 0 is
(n2 + 1)× (n2 + 1), the dual matrix variable

(SDPO)
min trace LQY
s.t. b0diag (Y ) = I o0diag (Y ) = I

arrow (Y ) = e0 Y � 0
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Lagrangian Relaxation/Dual

Adjoint Operators

arrow (Y ) := diag(Y )− (0, (Y0,1:n2)T
.

b0diag (Y ) :=
n

∑

k=1

Y(k−1)n+1:kn,(k−1)n+1:kn

[o0diag (Y )]ij := trace Y(i−1)n+1:in,(j−1)n+1:jn
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Direct Approach to SDP Relaxation

Vectorize Permutation Matrix

X ∈ Π; x = vec(X ), c = vec(C).

q(X ) = trace AXBX T − 2CX T

= xT (B ⊗ A)x − 2cT x
= trace xxT (B ⊗ A)− 2cT x
= trace LQYX ,

YX :=

[

1 xT

x xxT

]
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Loss of Slater CQ

Comments

After adding the row/column sum constraints Xe = X T e = e,
we get that Slater’s CQ fails; but we can explicitly regularize, i.e.
find the smallest face/minimal cone. the SDP relaxation
provides strong bounds, but expensive. Exploit group
symmetries/special structure.
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