
EXPLOIT DEGENERACY and FACIAL Structure
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±1 QUADRATIC PROGRAMMING

Formulations

(P) µ∗ := max q(x) := x tQx + ctx ,
x ∈ F := {−1,1}n,

Q n × n symmetric matrix, c ∈ R
n.

Relaxations, K ⊃ F

(RP) f (u) = maxx∈K qu(x) := x t(Q − diag(u))x + ute + ctx ,

Solve Tractable Problem B := minu∈L f (u)
Upper Bound µ∗ ≤ B
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Three Relaxations

relaxed problem RP1

(RP1
v ) f1(v) := max

−1≤x≤1
qv(x).

bound B1 := minQ−diag(v)�0 f1(v).

relaxed problem RP2

(RP2
u) f2(u) := max

||y ||2=n
qu(y).

bound B2 := minut e=0 f2(u) = minu f2(u).
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Bound 3

Qc :=

[

0 1
2ct

1
2c Q

]

.

qc
u(y) := y t(Qc − diag(u))y + ute

relaxed problem RP3

(RP3
u)

f3(u) := max||y ||2=n+1 qc
u(y)

= (n + 1)λmax(Qc − diag(u)) + ute.

bound B3 := minut e=0 f3(u) = minu f3(u).
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BOUND 1 - Convex Quadratic Programming

Consider the shifted function

qv (x) := x t(Q − diag(v))x + v t e + ctx ,

and the relaxed problem

(RP1
v ) f1(v) := max

−1≤x≤1
qv(x).

Then a bound for (P) is

B1 := min
Q−diag(v)�0

f1(v).
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Properties for Bound B1.

1 µ∗ ≤ B1.

2 f1 is convex, finite valued, with subdifferential

∂f1(v) = conv{z = (1− x2
i ) ∈ R

n :
x = (xi) ∈ R

n − 1 ≤ x ≤ 1, f1(v) = qv(x)}.

3 B1 is attained for some v ∈ R
n such that

λmax (Q − diag(v)) = 0.
4

B1 = inf
Q−diag(v)≺0

f1(v).
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Optimality conditions

Lagrangian

L1(v ,Λ) := f1(v) + traceΛ(Q − diag(v)), Λ � 0

Optimality conditions:

0 ∈ ∂f1(v) − diag(Λ) (stationarity)
traceΛ(Q − diag(v)) = 0 (complementary slack)

Λ � 0 (multiplier sign).
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BOUND 2 - Optimization Over Sphere

qu(y) := y t(Q − diag(u))y + ute + cty ,

the second relaxed problem

(RP2
u) f2(u) := max

||y ||2=n
qu(y).

Now a bound for (P) is

B2 := min
ut e=0

f2(u) = min
u

f2(u).
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Properties for bound B2

1 µ∗ ≤ B2.

2 f2 is convex, finite valued, with subdifferential

∂f2(u) = conv{z = (1 − y2
i ) ∈ R

n :

y = (yi ) ∈ R
n, ||y ||2 = n, f2(u) = qv (y)}.

3 The bound B2 is attained for some u ∈ R
n. Moreover, if

B2 > µ∗, then the hard case holds for (RP2
u).
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THEOREM: The bound B1 = B2

In fact

f2(u) = qu(yu)
≥ max(−1≤y≤1) q(u+λe)(y)
= f1(u + λe)

and
B2 = f2(u), with Lagrange multiplier λ for (RP2

u) if and only if
B2 = f2(u) = f1(u + λe) = B1.

152



EXPLOIT DEGENERACY and FACIAL Structure
Clique Initialization and Clique Absorption of a Sensor

THEOREM:
B1 = B2 = B3 = B4

Suppose that f4(v) := max−1≤x≤1 qc
v (x) and

B4 := min
Qc−diag(v)�0

f4(v).

Then
B1 = B2 = B3 = B4.

Corollary

Let B be an (n − 1)× (n − 1) real symmetric matrix, and
consider the perturbation of B given by

A =

(

B −α
)

,
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±1 Quadratic Programming Problem

(P) µ∗ := max q(x) x ∈ F ∩ S

where: F = {±1}n, S ⊂ R
n, F ∩ S 6= ∅

quadr. obj.: q(x) := x tQx − 2ctx , Q ∈ Sn , c ∈ R
n

EXAMPLES

Quadratic Assignment Problem, QAP, (in trace formulation)

(QAP) maxX∈Π q(X ) := trace(AXB − 2C)X t

Max-Cut Problem, MC

(MC) max 1
2

∑

i<j wij(1− xixj), x ∈ F
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HIDDEN SEMIDEFINITE CONSTRAINTS

Trust Region Subproblem (TRS)

µ∗ = min
x

q(x) s.t. x tx = s2 (≤ s2)

= min
x

max
λ

L(x , λ)

≥ max
λ

min
x

L(x , λ)

= max
Q−λ�0

min
x

L(x , λ)

= max
Q−λ�0

h(λ) = µ∗

where

xλ = (Q − λI)†c; h(λ) = L(x,λ) = −ct(Q − λI)†c + λs2

nonconvex objective but min-max = max-min
hidden convexity provides the hidden convex dual program
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Relaxations of ±1-Quadratic Progr.

use perturbations

qu(x) := q(x) + x t Diag(u)x − ute

Relaxation 0:

f0(u) := max
x

qu(x)

µ∗ ≤ B0 := minut e=0 f0(u) = minu f0(u)
= minQ+Diag(u)�0 f0(u)

B0 is Lagrangian dual of original quadratic program in the
following form with ui as Lagrange multipliers

min q(x) s.t. x2
i = 1, ∀i
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Relaxation 1

sphere of radius
√

n

f1(u) := max
||x||2=n

qu(x)

µ∗ ≤ B1 := min
ut e=0

f1(u) = min
u

f1(u)

B1 = min
u

max
x t x=n

qu(x)

= min
u,λ

max
x

qu(x) + λ(x tx − n)

= min
v t e=0

max
x

qv(x), with v = u + λe

= B0
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Relaxation 2

Unit Box

f1(u) := max
|xi |≤1

qu(x)

µ∗ ≤ B2 := min
Q+Diag(u)�0

f2(u) = min
u

f2(u)

B2 = min
u

max
x2

i ≤1
qu(x)

= min
u

min
λ≥0

max
x

qu(x) +
∑

i

λi(1− x2
i )

= B0 after v = u − λ

i.e. same bound again
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Relaxation 1c

Homogenization; sphere radius =
√

n + 1

Qc :=

[

0 −ct

−c Q

]

; qc
u(y) := y t(Qc + diag(u))y − ute

f c
1 (u) := max||y ||2=n+1 qc

u(y)
= (n + 1)λmax(Qc + diag(u))− ute

µ∗ ≤ Bc
1 := minut e=0 f c

1 (u) = minu f c
1 (u)

Bc
1 = minv maxy t y=n+1 qc

v (y) = minv maxy qc
v (y)

= minu,u0 maxx,x0 u0(x2
0 − 1) + x t(Q + Diag(u))x

−2x0ctx − ute
= minu maxx,x2

0=1 x t(Q + Diag(u))x − 2x0ctx − ute

= B0
i.e. same bound again; similarly for Bc

2
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Relaxation 3

Semidefinite SDP (c = 0)

q(x) = x tQx = trace Qxx t , Y = xxT

B3 := max trace QY s.t diag(Y ) = e,Y � 0

The dual is

B3 = min y te s.t. Q − Diag(y) � 0
Q −Diag(y − et y

n e) � et y
n I, with w = y − et y

n e and z = et y
n

B3 = minimize nz
subject to Q − Diag(w) � zI

w te = 0
So: B3 = Bc

1, i.e. all bounds are equal to Lagrangian relaxation
of the equivalent quadratically constrained program. The SDP
relaxation is the dual of the Lagrangian dual.
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Allow more General Perturbations?

qV ,d(x) := x t(Q + V )x + (c + d)tx

THEOREM: Suppose that qV ,d(x) ≥ q(x), ∀x ∈ F .
Then

V = P + U, with P � 0, U is diagonal,
and trace U = 0.

Moreover, there exists a diagonal matrix W , with trace W = 0,
such that

max
x

qV ,d(x) ≥ max
x

qW ,0(x).

�

Therefore, we need only consider diagonal perturbations, i.e.
we have the best quadratic approximation - by duality we have
the best SDP relaxation.
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