Semidefinite Programming and Applications to Computationally Hard Optimization Problems

Henry Wolkowicz

Dept. of Combinatorics and Optimization University of Waterloo

CO769/2010

Sensor Network Localization, SNL

SNL, Special Case of EDMC?

n ad hoc wireless sensors (nodes) to locate in R^r,
 (r is embedding dimension;

sensors $p_i \in \mathbb{R}^r, i \in V := 1, ..., n$)

m of the sensors are anchors, *p_i*, *i* = *n* - *m* + 1,..., *n*) (e.g. using GPS)

• pairwise distances known within radio range *R*, $D_{ij} = ||p_i - p_j||^2, ij \in E$

Current Techniques: Nearest, Weighted, SDP Approx.

$$\begin{split} &\min_{Y\succeq 0, Y\in\Omega} \|H\circ (\mathcal{K}(Y)-D)\|\\ &\text{SDP program is: Expensive/low accuracy/implicitly highly}\\ &\text{degenerate (cliques restrict ranks of feasible Ys)} \end{split}$$

Applications

Tracking Humans/Animals/Equipment

- monitoring: natural habitat; earthquakes and volcanos; weather and ocean currents.
- military, tracking of goods, vehicle positions, surveillance, (where open-air positioning is not feasible), random deployment in inaccessible terrains or disaster relief operations

sensors everywhere - by 2084! Lobster migration

Underlying Graph Realization/Partial EDM

Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \omega)$

- node set $\mathcal{V} = \{1, \ldots, n\}$
- edge set $(i, j) \in \mathcal{E}$; $\omega_{ij} = \|\mathbf{p}_i \mathbf{p}_j\|^2$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of *G* in ℝ^r: a mapping of node v_i → p_i ∈ ℝ^r with squared distances given by ω.

Corresponding Partial Euclidean Distance Matrix, EDM

$$\mathcal{D}_{ij} = \left\{ egin{array}{cc} d_{ij}^2 & ext{if} & (i,j) \in \mathcal{E} \ 0 & ext{otherwise}, \end{array}
ight.$$

 $d_{ij}^2 = \omega_{ij}$ are known squared Euclidean distances between sensors p_i, p_j ; anchors correspond to a clique.

Sensor Localization Problem/Partial EDM

SDP: Cone and Faces

S_{+}^{k} , Cone of SDP matrices in \mathcal{S}^{k}

- inner product $\langle A, B \rangle = \text{trace } AB$
- Löwner (psd) partial order $A \succeq B, A \succ B$

Faces of cone K

- $F \subseteq K$ is a <u>face of K</u>, denoted $F \subseteq K$, if $(x, y \in K, \frac{1}{2}(x+y) \in F) \implies (\operatorname{cone}\{x, y\} \subseteq F).$
- $F \lhd K$, if $F \trianglelefteq K$, $F \neq K$; F is proper face if $\{0\} \neq F \lhd K$.
- $F \leq K$ is exposed if: intersection of K with a hyperplane.
- face(S) denotes smallest face of K that contains set S.

Facial Structure of SDP Cone

S^k_+ is a Facially Exposed Cone

All faces are exposed.

Faces of S^k_+ Equivalence to Subspaces of \mathbb{R}^k

• face $F \leq S_+^k$ is determined by range of any, $S \in \text{relint } F$,

i.e. let $S = U\Gamma U^T$ be compact spectral decomposition, with diagonal matrix of eigenvalues $\Gamma \in S_{++}^t$, then:

(*F* associated with
$$\mathcal{R}(U)$$

• dim F = t(t+1)/2.

 $F = U \mathcal{S}^t_+ U^T$

Further Notation

Matrix with Fixed Principal Submatrix

For $Y \in S^n$, $\alpha \subseteq \{1, ..., n\}$: $Y[\alpha]$ denotes principal submatrix formed from rows & cols with indices α .

Sets with Fixed Principal Submatrices

If $|\alpha| = k$ and $\overline{Y} \in S^k$, then: $S^n(\alpha, \overline{Y}) := \{ Y \in S^k : Y[\alpha] = \overline{Y} \},$ $S^n_+(\alpha, \overline{Y}) := \{ Y \in S^k_+ : Y[\alpha] = \overline{Y} \}$ i.e. the subset of matrices $Y \in S^k$ ($Y \in S^k_+$) with principal submatrix $Y[\alpha]$ fixed to \overline{Y} .

SNL Connection to SDP (Lin. Trans., Adjoints)

$v = diag(S) \in \mathbb{R}^n$, $S = Diag(v) \in S^n$

diag = Diag^{*} (adjoint) for $B \in S^n$, offDiag(B) := B - Diag(diag(B))

$D = \mathcal{K}(B) \in \mathcal{E}^n, B = \mathcal{K}^{\dagger}(D) \in \mathcal{S}^n \cap \mathcal{S}_C$

Let $P^T = \begin{bmatrix} p_1 & p_2 & \dots & p_n \end{bmatrix} \in \mathcal{M}^{r \times n}$; $B := PP^T \in S^n$; $D \in \mathcal{E}^n$ be corresponding EDM. (from S^n) $\mathcal{K}(B) := \mathcal{D}_e(B) - 2B$ $:= \operatorname{diag}(B) e^T + e \operatorname{diag}(B)^T - 2B$ $= \left(p_i^T p_i + p_j^T p_j - 2p_i^T p_j \right)_{i,j=1}^n$

$$= (\|p_i - p_j\|_2^2)_{i,j=1}^n \\ = D (\text{to } \mathcal{E}^n).$$

$\mathcal{K}:\mathcal{S}^n_+\cap\mathcal{S}_C\to\mathcal{E}^n$

Linear Transformations: $\mathcal{D}_{v}(B), \mathcal{K}(B), \mathcal{T}(D)$

- allow: $\mathcal{D}_v(B) := \operatorname{diag}(B) v^T + v \operatorname{diag}(B)^T$; $\mathcal{D}_v(y) := yv^T + vy^T$
- adjoint $\mathcal{K}^*(D) = 2(\text{Diag}(De) D)$.
- \mathcal{K} is 1-1, onto between centered and hollow subspaces: $\mathcal{S}_C := \{B \in S^n : Be = 0\};$ $\mathcal{S}_H := \{D \in S^n : diag(D) = 0\} = \mathcal{R} \text{ (offDiag)}$
- $J := I \frac{1}{n}ee^{T}$ (orthogonal projection onto $M := \{e\}^{\perp}$);

• $\mathcal{T}(D) := -\frac{1}{2}J \operatorname{offDiag}(D)J \quad (= \mathcal{K}^{\dagger}(D))$

Properties of Linear Transformations

$\mathcal{K}, \mathcal{T}, \mathsf{Diag}, \mathcal{D}_e$

$$\begin{split} \mathcal{R}\left(\mathcal{K}\right) &= \mathcal{S}_{H}; \qquad \quad \frac{\mathcal{N}\left(\mathcal{K}\right) = \mathcal{R}\left(\mathcal{D}_{e}\right)}{\mathcal{N}\left(\mathcal{K}^{*}\right) = \mathcal{R}\left(\mathcal{T}\right) = \mathcal{S}_{C};} \qquad \quad \mathcal{N}\left(\mathcal{K}^{*}\right) = \mathcal{N}\left(\mathcal{T}\right) = \mathcal{R}\left(\mathsf{Diag}\right); \end{split}$$

 $\mathcal{S}^{n} = \mathcal{S}_{H} \oplus \mathcal{R} (\mathsf{Diag}) = \mathcal{S}_{C} \oplus \mathcal{R} (\mathcal{D}_{e}).$

 $\mathcal{T}(\mathcal{E}^n) = \mathcal{S}_+^n \cap \mathcal{S}_C \quad \underline{\text{and}} \quad \mathcal{K}(\mathcal{S}_+^n \cap \mathcal{S}_C) = \mathcal{E}^n.$

Rank minimization heuristics for the EDM completion problem

heuristic to encourage low rank solution of semidefinite relaxation, Weinberger, 2004

- try to flatten the graph associated with partial EDM;
- push the nodes of the graph away from each other as much as possible;
- analogy: a loose string on the table can occupy two dimensions, but the same string pulled taut occupies just one dimension.

Low Rank

maximize the objective function

$$\sum_{i,j=1}^{n} \| \boldsymbol{p}_i - \boldsymbol{p}_j \|^2 = \boldsymbol{e}^T \, \mathcal{K}(\boldsymbol{P} \boldsymbol{P}^T) \boldsymbol{e}, \quad \boldsymbol{P} := \boldsymbol{P}$$

s.t. distance constraints holding.

Include centering $P^T e = 0$

 $\begin{array}{l} e^{T} \mathcal{K}(PP^{T})e = \langle ee^{T}, \mathcal{K}(PP^{T}) \rangle = \langle \mathcal{K}^{*}(ee^{T}), PP^{T} \rangle = \\ \langle 2(\text{Diag}(ee^{T}e) - ee^{T}), PP^{T} \rangle = \langle 2(nI - ee^{T}), PP^{T} \rangle = \\ \langle 2nI, PP^{T} \rangle - \langle ee^{T}, PP^{T} \rangle = 2n \cdot \text{trace}(PP^{T}) \\ \text{and trace}(PP^{T}) = \sum_{i=1}^{n} \|p_{i}\|^{2} \\ \text{so, pushing nodes away from each other is equivalent to} \\ \text{pushing nodes away from origin} \end{array}$

Regularization

regularized semidefinite relaxation of the low-dimensional Euclidean distance matrix completion problem

assume points centered at origin; normalize by dividing by 2n; substitute $Y = PP^T$:

$$\begin{array}{ll} \text{maximize} & \text{trace}(Y) \\ \text{subject to} & H \circ \mathcal{K}(Y) = H \circ D \\ & Y \in \mathcal{S}^n_+ \cap \mathcal{S}^n_C. \end{array}$$

Nuclear Norm Heuristic for Rank Minimization

nuclear norm of a matrix $X \in \mathbb{R}^{m \times n}$

 $\begin{aligned} \|X\|_* &:= \sum_{i=1}^k \sigma_i(X), \\ \sigma_i(X) & \text{ is } i^{\text{th}} \text{ largest singular value of } X, \text{ rank } (X) = k. \end{aligned}$

nuclear norm of symmetric matrix $Y \in S^n$ is

 $\|\mathbf{Y}\|_* = \sum_{i=1}^n |\lambda_i(\mathbf{Y})|.$

trace min vs max

numerical tests show min (max) yields high (low) rank alternatively, try max log-det heuristic

Single Clique/Facial Reduction for SNL

$ar{D} \in \mathcal{E}^{k}$, $lpha \subseteq 1$: n, |lpha| = k

Define $\mathcal{E}^n(\alpha, \overline{D}) := \{ D \in \mathcal{E}^n : D[\alpha] = \overline{D} \}.$

Given \overline{D} ; find a corresponding $B \succeq 0$; find the corresponding face; find the corresponding subspace.

Basic Theorem for Single Clique/Facial Reduction

THEOREM 1: Single Clique Reduction

Let $\overline{D} := D[1:k] \in \mathcal{E}^k$, k < n, with embedding dimension $t \le r$, and $B := \mathcal{K}^{\dagger}(\overline{D}) = \overline{U}_B S \overline{U}_B^T$, where $\overline{U}_B \in \mathcal{M}^{k \times t}$, $\overline{U}_B^T \overline{U}_B = I_t$, and $S \in S_{++}^t$. Furthermore, let $U_B := [\overline{U}_B \quad \frac{1}{\sqrt{k}}e] \in \mathcal{M}^{k \times (t+1)}$, $U := \begin{bmatrix} U_B & 0\\ 0 & I_{n-k} \end{bmatrix}$, and let $\begin{bmatrix} V & \frac{U^T e}{\|U^T e\|} \end{bmatrix} \in \mathcal{M}^{n-k+t+1}$ be orthogonal. Then: face $\mathcal{K}^{\dagger} \left(\mathcal{E}^n(1:k, \overline{D}) \right) = \left(U S_+^{n-k+t+1} U^T \right) \cap S_C = (UV) S_+^{n-k+t} (UV)^T$

Note that we add $\frac{1}{\sqrt{k}}e$ to represent $\mathcal{N}(\mathcal{K})$; then we use *V* to eliminate *e* to recover *centered* face.

Positive Integers for Intersecting Cliques

For each clique $|\alpha| = k$, we get a corresponding face/subspace $(k \times r \text{ matrix})$ representation. We now see how to handle two cliques, α_1, α_2 , that intersect.

Two (Intersecting) Clique Reduction/Subsp. Repres.

THEOREM 2: Clique Intersection Reduction/Subsp. Repres.

$$\begin{array}{ll} \alpha_1 := 1 : (\bar{k}_1 + \bar{k}_2), & \alpha_2 := (\bar{k}_1 + 1) : (\bar{k}_1 + \bar{k}_2 + \bar{k}_3) \\ k_1 := |\alpha_1| = \bar{k}_1 + \bar{k}_2, & k_2 := |\alpha_2| = \bar{k}_2 + \bar{k}_3, \\ k := \bar{k}_1 + \bar{k}_2 + \bar{k}_3. \end{array}$$

For i = 1, 2, let $\overline{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}$, with embedding dimension t_i , and $B_i := \mathcal{K}^{\dagger}(\overline{D}_i) = \overline{U}_i S_i \overline{U}_i^T$, where $\overline{U}_i \in \mathcal{M}^{k_i \times t_i}$, $\overline{U}_i^T \overline{U}_i = I_{t_i}$, and $S_i \in S_{++}^{t_i}$. Furthermore, for i = 1, 2, let $U_i := \begin{bmatrix} \overline{U}_i & \frac{1}{\sqrt{k_i}}e \end{bmatrix} \in \mathcal{M}^{k_i \times (t_i+1)}$, and let $\overline{U} \in \mathcal{M}^{k \times (t+1)}$ satisfy $\mathcal{R}(\overline{U}) = \mathcal{R}\left(\begin{bmatrix} U_1 & 0 \\ 0 & I_{\overline{k_3}} \end{bmatrix} \right) \cap \mathcal{R}\left(\begin{bmatrix} I_{\overline{k_1}} & 0 \\ 0 & U_2 \end{bmatrix} \right)$, with $\overline{U}^T \overline{U} = I_{t+1}$ cont. . .

Two (Intersecting) Clique Reduction, cont...

THEOREM 2 Nonsing. Clique Inters. cont... cont...with $\mathcal{R}(\bar{U}) = \mathcal{R}\left(\begin{vmatrix} U_1 & 0 \\ 0 & I_{\bar{k}_1} \end{vmatrix} \right) \cap \mathcal{R}\left(\begin{vmatrix} I_{\bar{k}_1} & 0 \\ 0 & U_2 \end{vmatrix} \right), \text{ with } \bar{U}^T \bar{U} = I_{t+1},$ let $U := \begin{bmatrix} U & 0 \\ 0 & I_{n-k} \end{bmatrix} \in \mathcal{M}^{n \times (n-k+t+1)}$ and let $\begin{bmatrix} V & \frac{U^T e}{||U^T e||} \end{bmatrix} \in \mathcal{M}^{n-k+t+1}$ be orthogonal. Then $\frac{\bigcap_{i=1}^{2} \operatorname{face} \mathcal{K}^{\dagger} \left(\mathcal{E}^{n}(\alpha_{i}, \overline{D}_{i}) \right)}{= (U \mathcal{S}_{+}^{n-k+t+1} U^{T}) \cap \mathcal{S}_{C}} = (U \mathcal{V}) \mathcal{S}_{+}^{n-k+t} (U \mathcal{V})^{T}$

Basic work: find \overline{U} to repres. inters. of 2 subspaces.

Two (Intersecting) Clique Reduction Figure

Completion: missing distances can be recovered if desired.

Two (Intersecting) Clique Explicit Completion

COR. Intersection with Embedding Dim. r/Completion

Hypotheses of Theorem 2 holds. Let $\overline{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}$, for i = 1, 2, $\beta \subseteq \alpha_1 \cap \alpha_2, \gamma := \alpha_1 \cup \alpha_2, \bar{D} := D[\beta], B := \mathcal{K}^{\dagger}(\bar{D}), \quad \bar{U}_{\beta} := \bar{U}(\beta, :),$ where $\bar{U} \in \mathcal{M}^{k \times (t+1)}$ satisfies intersection equation of Theorem 2. Let $\begin{bmatrix} \overline{V} & \overline{U^T e} \\ \| \overline{U^T e} \| \end{bmatrix} \in \mathcal{M}^{t+1}$ be orthogonal. Let $Z := (J \overline{U}_{\beta} \overline{V})^{\dagger} B((J \overline{U}_{\beta} \overline{V})^{\dagger})^{T}$. If the embedding dimension for \overline{D} is r, THEN t = r in Theorem 2, and $Z \in S_{\perp}^{r}$ is the unique solution of the equation $(J\bar{U}_{\beta}\bar{V})Z(J\bar{U}_{\beta}\bar{V})^{T} = B$, and the exact completion is

 $D[\gamma] = \mathcal{K}\left((\bar{U}\bar{V})Z(\bar{U}\bar{V})^{T}\right)$

2 (Inters.) Clique Red. Figure/Singular Case

Two (Intersecting) Clique Reduction Figure/Singular Case

Use *R* as lower bound in singular/nonrigid case.

Two (Inters.) Clique Explicit Compl.; Sing. Case

COR. Clique-Sing.; Intersect. Embedding Dim. r-1

Hypotheses of previous COR holds. For i = 1, 2, let $\beta \subset \delta_i \subseteq \alpha_i$, $A_i := J\overline{U}_{\delta_i}\overline{V}$, where $\overline{U}_{\delta_i} := \overline{U}(\delta_i, :)$, and $B_i := \mathcal{K}^{\dagger}(D[\delta_i])$. Let $\overline{Z} \in S^t$ be a particular solution of the linear systems

$$\begin{array}{rcl} \mathsf{A}_1 Z \mathsf{A}_1^T &=& \mathsf{B}_1 \\ \mathsf{A}_2 Z \mathsf{A}_2^T &=& \mathsf{B}_2. \end{array}$$

If the embedding dimension of $D[\delta_i]$ is r, for i = 1, 2, but the embedding dimension of $\overline{D} := D[\beta]$ is r - 1, then the following holds. cont...

2 (Inters.) Clique Expl. Compl.; Degen. cont...

COR. Clique-Degen. cont...

The following holds:

• dim
$$\mathcal{N}(A_i) = 1$$
, for $i = 1, 2$.

2 For *i* = 1, 2, let *n_i* ∈ *N* (*A_i*), ||*n_i*||₂ = 1, and Δ*Z* := *n*₁*n*₂^{*T*} + *n*₂*n*₁^{*T*}. Then, *Z* is a solution of the linear systems if and only if $Z = \bar{Z} + \tau \Delta Z$, for some $\tau \in \mathcal{R}$

■ There are at most two nonzero solutions, τ_1 and τ_2 , for the generalized eigenvalue problem $-\Delta Z v = \tau \overline{Z} v$, $v \neq 0$. Set $Z_i := \overline{Z} + \frac{1}{\tau_i} \Delta Z$, for i = 1, 2. Then the exact completion is one of $D[\gamma] \in \{\mathcal{K}(\overline{U}\overline{V}Z_i\overline{V}^T\overline{U}^T) : i = 1, 2\}$

Clique Initialization

LEMMA Clique Initialization (by triangle inequality)

For each $i \in \{1, ..., n\}$, use half the radio range and define the set

$$C_i := \left\{ j \in \{1, \dots, n\} : D_{ij} \le (R/2)^2 \right\}.$$

Then each C_i corresponds to a clique of sensors that are within radio range of each other.

Current Set of Cliques, $\{C_i\}_{i \in C}$

indices $\mathcal{C} \subseteq 1$: *n* corresponding to at most *n* cliques $\{C_i\}_{i \in \mathcal{C}}$.

Node Absorbtion

Clique C_i Absorbs Node j C_i 1

Clique Absorption

COROLLARY Clique Absorption

Let C_k , for $k \in C$, be a given clique with node $l \notin C_k$, $\beta := \{j_1, j_2, j_3\} \subseteq C_k$, and $\max_{i=1,2,3} D_{|j_i|} \leq R^2$. If rank $\mathcal{K}^{\dagger}(D[\beta]) = r$,

then *I* can be absorbed by the clique C_k ; and, we can complete the missing elements in column (row) *I* of $D[C_k \cup \{l\}]$.

COROLLARY Clique Absorption-Degenerate

Similar to the degenerate case for the intersection, we can use the lower bound and obtain clique absorption for the case that the embedding dimension is only r - 1.

Initialize

$$C_i := \left\{ j : (D_{
ho})_{ij} < (R/2)^2 \right\}, \text{ for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bnds)
- For |C_i ∩ N (j)| = r, do Non-Rigid Node Absorp. (lower bnds)

Finalize

When \exists a clique containing all anchors, use computed facial representation and positions of anchors to solve for *X*

Initialize

$$C_i := \left\{ j : (D_{
ho})_{ij} < (R/2)^2
ight\}, \quad ext{for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bnds)
- For |C_i ∩ N (j)| = r, do Non-Rigid Node Absorp. (lower bnds)

Finalize

When \exists a clique containing all anchors, use computed facial representation and positions of anchors to solve for *X*

Initialize

$$C_i := \left\{ j : (D_{
ho})_{ij} < (R/2)^2 \right\}, \text{ for } i = 1, \dots, n$$

Iterate

- For $|C_i \cap C_j| \ge r + 1$, do Rigid Clique Union
- For $|C_i \cap \mathcal{N}(j)| \ge r + 1$, do Rigid Node Absorption
- For $|C_i \cap C_j| = r$, do Non-Rigid Clique Union (lower bnds)
- For |C_i ∩ N (j)| = r, do Non-Rigid Node Absorp. (lower bnds)

Finalize

When \exists a clique containing all anchors, use computed facial representation and positions of anchors to solve for *X*

Results

Rigid Clique Union				Rigid Clique Union and Node Absorption							
n/R 2000 4000 6000 8000 10000	0.7 0.6 1 7 1 1 1 1 1 1 1 1 1 1	0.5 0 91 3 1 - 1 1 1	0.4 162 1 1 1 1		r 2 4 6 8	n / R 2000 2000 2000 2000 2000	0.7 1 1 1 1 1	0.6 1 1 1 1 1	0.5 2 1 1 1 1	0.4 78 1 1 1 1	
Remaining Cliques					Remaining Cliques						
n/R 0 2000 4 4000 9 6000 16 8000 22 10000 38	.7 0.6 .8 4.6 .2 9.4 5.0 14.7 2.9 22.5 3.3 32.7	0.5 4.2 9.1 15.3 20.9 29.1	0.4 4.1 9.2 14.9 21.0 30.7		n/ 200 400 600 800 1000	R 00 00 00 00 00	0.7 4.9 9.2 16.1 22.7 32.5 CP	0.6 4.9 9.5 15.1 22.4 32.4	0.5 6.1 9.1 15.1 21.0 28.8	0.4 13.2 9.8 14.8 21.3 30.6	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} 0.6 \\ -10.8 \\ -11.0 \\ -10.7 \\ -11.0 \\ -11.0 \\ -11.0 \\ -11.0 \end{array}$	0.5 - -10.5 -10.6 -10.7 -10.2	0.4 -9.6 -10.0 -9.2 -10.4	1 2 2 6 8 1	n / R 2000 4000 5000 3000 0000	0. -1(-1(-1) -1)	7 0.1 0.9 1.6 1.1 1.0	0.6 -10.8 -11.0 -10.7 -11.0 -11.0	0.5 -9.8 -10.5 -10.6 -10.7 -10.2		0.4 -8.8 -9.6 10.0 -9.2 10.4
Max log(Error)				Max log(Error)							

EDM Completion Problem, EDMC

4

given certain fixed elements of a EDM matrix A
the other elements are unknown (free)
complete this matrix to an EDM

$$S = \{(i,j) : A_{i,j} = \frac{1}{\sqrt{2}}b_k \text{ is known, fixed, } i < j\}, |S| = m,$$

$$\mu^* := \min_{\substack{k \in \mathbb{Z} \\ \text{subject to}}} f(X) := \frac{1}{2}||X||_F^2$$

$$A(X) = b$$

$$X \succeq 0,$$

constraint $\mathcal{A} = \mathcal{I} \cdot \mathcal{L} : \mathcal{S}^{n-1} \to \mathbb{R}^{|S|}$ yields interpolation conditions

$$\mathcal{A}(X)_{ij} = \text{trace } E_{ij}\mathcal{L}(X) = b_k, \quad \forall k \cong (ij) \in S_{ij}$$

Duality/Optimality for EDMC

strict convexity, coercivity implies compact level sets
EDMC attained and no duality gap (actually primal and dual attainment)
Lagrangian dual

$$\mu^* = \nu^* := \max_{\Lambda \succeq 0, y \in \mathbb{R}^{|S|}} \min_{X} \frac{1}{2} \|X\|_F^2 + y^T (b - \mathcal{A}(X)) - \operatorname{trace} \Lambda X$$

characterization of optimality

THEOREM Suppose that the feasible set of EDMC is not the empty set. Then the optimal solution of EDMC is $D = \mathcal{L}([\mathcal{A}^*(y)]_+)$, where *y* is the unique solution of the single equation

$$\mathcal{A}\left([\mathcal{A}^*(\mathbf{y})]_+\right)=\mathbf{b},$$

and B_+ denotes the projection of the symmetric matrix $B \in S^{n-1}$ onto the cone \mathcal{P}_{n-1} .

Proof

optimality conditions after differentiation

$$egin{aligned} X &= \mathcal{A}^*(y) + \Lambda \succeq 0, & \Lambda \succeq 0, & ext{dual feasibility} \ \mathcal{A}(X) &= b & ext{primal feasibility} \ \Lambda X &= 0 & ext{complementary slackness} \end{aligned}$$

This means that $\mathcal{A}^*(y) = X - \Lambda$, where both $X \succeq 0, \Lambda \succeq 0$, and $\Lambda X = 0$. Therefore the three symmetric matrices $W = \mathcal{A}^*(y), X, \Lambda$ are mutually diagonalizable. We write $X = PD_X P^T, \Lambda = PD_\Lambda P^T$, i.e. we conclude that $W = \mathcal{A}^*(y) = P(D_X - D_\Lambda) P^T, D_X D_\Lambda = 0$. Therefore $[\mathcal{A}^*(y)]_+ = PD_X P^T = X$. QED

Efficient/Explicit Solution if $y \ge 0$

large class (generic?) can be solved in polytime.

COROLLARY The linear operator A is onto and AA^* is nonsingular. Suppose that $y = (AA^*)^{-1}b \in \mathbb{R}^m_+$. Then

$$D = \mathcal{L} \left(\mathcal{A}^*(\mathbf{y}) \right)$$

is the unique solution of EDMC.

Proof: That \mathcal{A} is onto follows from the definitions.

If $y \ge 0$, then the matrix $\mathcal{I}(y) \ge 0$ with 0 diagonal. Therefore, $X = \mathcal{L}^*(\mathcal{I}(y))$ is diagonally dominant with nonnegative diagonal, i.e. $X \succeq 0$ by Gersgorin's disk theorem. This implies that *D* is a distance matrix and it satisfies the interpolation conditions, i.e. it satisfies the optimality conditions in the Theorem. QED

Numerics: dim vs dens with # of failures in 100 tests

 $y = A^{\dagger}b \ge 0$ may not hold in general, we still get a distance matrix *D*, i.e. $A^*(y) \succeq 0$, n = 10 : 10 : 100; density .1 : .1 : .8.

<i>n</i> \density	.1	.2	.3	.4	.5	.6	.7	.8 \
10	19	27	29	25	32	27	20	38
20	6	20	23	22	27	21	28	28
30	8	8	9	9	11	16	17	24
40	2	2	6	5	14	17	20	17
50	2	0	2	8	7	8	15	12
60	1	1	1	1	3	8	15	11
70	2	0	3	1	5	7	6	15
80	1	0	0	4	2	4	9	9
90	1	0	0	1	3	2	5	6
100	0	0	0	0	1	6	5	5 /

Summary

- Many hard (combinatorial) problems can be modelled using quadratic objectives and constraints, QQPs.
- QQPs are generally NP-hard problems. But, the Lagrangian relaxation can be solved efficiently using the equivalent SDP (relaxation).
- The special structure of the SDP relaxations can be exploited in order to get efficient solutions for large scale problems.
- Many SDP relaxations of combinatorial problems are degenerate. But, this degeneracy can be exploited. In particular, the SDP relaxation of SNL is highly (implicitly) degenerate. This degeneracy allows for a fast, accurate solution technique.

Thanks for your attention!

Semidefinite Programming and Applications to Computationally Hard Optimization Problems

Henry Wolkowicz

Dept. of Combinatorics and Optimization University of Waterloo

CO769/2010