# Matrix Completions 

Henry Wolkowicz

Dept. of Combinatorics and Optimization University of Waterloo

## CO769/2013

## Simple Completion Problem

Hermitian positive semidefinite completion
Given: $A=A^{*} \succeq 0$, with $\operatorname{diag}(A)>0$.
Consider the completion problem

$$
\max \{\operatorname{det}(B): B \succeq 0, \operatorname{diag}(B)=\operatorname{diag}(A)\}
$$

(Hadamard's Inequality: $\left.\operatorname{det}(B) \leq \prod_{i=1}^{n} B_{i i}\right)$ implies maximum occurs when $B^{-1}$, and so $B$, is diagonal.

Proof? Optimum is interior! Differentiate log-det !!

$$
0=\nabla\left(\log \operatorname{det}(B)+\sum_{i} \lambda_{i} \operatorname{trace} E_{i i}(B-A)\right)=B^{-1}+\sum_{i} \lambda_{i} E_{i i}
$$

l.e., $B^{-1}$ must be diagonal.

## Banded Completions

## bands are specified in

$a_{i j} \forall|i-j| \leq k$ are fixed; all principal submatrices within $2 k+1$ bands are positive definite. THEOREM (Dym and Gohberg, 1981)
(1) If

$$
\mathcal{D}_{k}=\left\{B: B \succeq 0, b_{i j}=a_{i j}, \forall|i-j| \leq k\right\},
$$

then $\mathcal{D}_{k} \neq \emptyset$.
(2) max $\left\{\operatorname{det}(B): B \in \mathcal{D}_{k}\right\}$ occurs at the unique matrix $B \in \mathcal{D}_{k}$ having the property that for all $|i-j| \geq k+1$, the $(i, j)$-entry of $B^{-1}$ equals 0 .

## Partial Hermitian Matrix, $A=A^{*}$, Completion

components $A_{i j}, i j \in \mathcal{E}$ are specified (fixed) (others free)

$$
A=A(\mathcal{G}), \quad \text { undirected graph } \mathcal{G}=(N, \mathcal{E})
$$

positive semidefinite completion problem
find components $A_{i j}, i j \notin \mathcal{E}$, such that the resulting matrix $A \succeq 0$, is positive semidefinite.

## Chordal Graphs

## Definitions:

(1) chordal graph: no minimal cycles of length $\geq 4$.
(2) A graph $\mathcal{G}$ is completable if and only if any $\mathcal{G}$-partial positive definite matrix has a positive definite completion.

## (GJSW, 1984)

(1) $\mathcal{G}$ is completable if and only if $\mathcal{G}$ is chordal.
(2) Suppose that $\operatorname{diag}(A)$ is fixed and $A(\mathcal{G})$ has a positive definite completion. Then there is a unique such completion, $B$, with maximum determinant; and it is characterized by $B^{-1}$ having 0 components in positions corresponding to all $k l \notin \mathcal{E}$.

## Nearest Matrix Problems

## Best Approximate Completion Problem

Let $H=H^{\top} \geq 0$ be matrix of weights with $\operatorname{diag}(H)>0$; let $A=A^{*}$ be given given Hermitian matrix; let $\mathcal{L}$ be a linear transformation;

$$
f(P):=\|H \circ(A-P)\|_{F}^{2}
$$

(Hadamard product, Frobenius norm)

$$
\begin{array}{lll} 
& \mu^{*}:= & \min \\
\text { (AC) } & f(P) \\
& & \\
& & P \succeq 0
\end{array}
$$

## Optimal Solution $\bar{P}$ of AC in Unconstrained Case

$$
\nabla f(\bar{P}) \in\left(\mathcal{S}_{+}^{n}-\bar{P}\right)^{+} \quad(\text { polar cone })
$$

The matrix $\bar{P} \succeq 0$ solves AC if and only if

$$
\operatorname{trace}\left(H^{(2)} \circ(\bar{P}-A)\right)(P-\bar{P}) \geq 0, \forall P \succeq 0
$$

where $H^{(2)}=H \circ H$ is the Hadamard squared term.

## COROLLARIES

(1) If $H=E$, the matrix of ones, then the (unique) optimal solution of AC is $\bar{P}=A_{\succ}$, where $A_{\succ}$ is the positive part of $A$ in the Loewner partial order.
(2) If $H \succ 0$, then the (unique) optimal solution $\bar{P}$ of $A C$ is the solution of

$$
H \circ \bar{P}=(H \circ A)_{\succ} .
$$

## General Constrained Case

## Lagrangian

For $\Lambda \in \mathcal{H}^{n}$ (Hermitian) and $y \in \mathcal{C}^{m}$, let

$$
L(P, y, \Lambda)=f(P)+\langle y, b-\mathcal{L} P\rangle-\operatorname{trace} \wedge P
$$

denote the Lagrangian of AC. primal program $A C$ is equivalent to

$$
\mu^{*}=\min _{P} \max _{\substack{घ \\ \Lambda \geq 0}} L(P, y, \Lambda) .
$$

Assume generalized Slater's constraint qualification

$$
\exists P \succ 0 \text { with } \mathcal{L} P=b \text {, }
$$

holds for AC.

## Duals

## Lagrangian Dual

## Then

$$
\mu^{*}=\max _{\substack{y \\ \Lambda \succeq 0}} \min _{P} L(P, y, \Lambda)
$$

differentiate and get the Wolfe dual
(DAC)

$$
\begin{array}{cc}
\mu^{*}:= & \max \\
\text { subject to } & f(P)+\langle y, b-\mathcal{L} P\rangle-\operatorname{trace} \wedge P \\
\nabla f(P)-\mathcal{L}^{*} y-\Lambda=0 \\
\Lambda \succeq 0 .
\end{array}
$$

## Primal-Dual Framework!!

The matrix $\bar{P} \succeq 0$ and vector-matrix $\bar{y}, \bar{\Lambda} \succeq 0$ solve AC and DAC if and only if

$$
\begin{array}{cc}
\mathcal{L} \bar{P}=b & \text { primal feas } \\
2 H^{(2)} \circ(\bar{P}-A)-\mathcal{L}^{*} \bar{y}-\bar{\Lambda}=0 & \text { dual feas } \\
\text { trace } \bar{\Lambda} \bar{P}=0 & \text { compl slack }
\end{array}
$$

compl slack value= duality gap value

## Optimal solution of AC

## Solve the two equations

$$
\bar{P}-\left(\bar{P}-2 H^{(2)} \circ(\bar{P}-A)+\mathcal{L}^{*} y\right)_{\succ}=0
$$

and

$$
\mathcal{L}\left(\bar{P}-2 H^{(2)} \circ(\bar{P}-A)+\mathcal{L}^{*} y\right)_{\succ}=b .
$$

## Suppose $A=0$ and $H$

the optimal solution of $A C$ is:

$$
\bar{P}=\left(\mathcal{L}^{*} y\right)_{\succ},
$$

where

$$
\mathcal{L}\left(\mathcal{L}^{*} y\right)_{\succ}=b
$$

## $\mathcal{L}=0$ case

Unconstrained - Using only Weights

$$
\begin{array}{cc}
2 H^{(2)} \circ(P-A)-\Lambda=0 & \text { dual feas } \\
-P+\mu \Lambda^{-1}=0 & \text { perturbed compl slack }
\end{array}
$$

Note

$$
H_{i i}=0\left(P_{i i} \text { free }\right) \Rightarrow \Lambda_{i i}=0
$$

(dual variable $\wedge$ takes role of $P^{-1}$ )

## Primal-Dual Interior-Point Algorithms

Linearization of the second equation

$$
-(P+h)+\mu \Lambda^{-1}-\mu \Lambda^{-1} / \Lambda^{-1}=0
$$

We get

$$
h=\mu \Lambda^{-1}-\mu \Lambda^{-1} / \Lambda^{-1}-P
$$

and

$$
I=\frac{1}{\mu}\{-\Lambda(P+h) \wedge\}+\Lambda
$$

Linearization of the dual feasibility equation

$$
2 H^{(2)} \circ h-I=-\left(2 H^{(2)} \circ(P-A)-\Lambda\right)
$$

## Dual-Step-First

Eliminate the primal step $h$ and solve for the dual step

$$
\begin{aligned}
I= & 2 H^{(2)} \circ h+\left(2 H^{(2)} \circ(P-A)-\Lambda\right) \\
= & 2 H^{(2)} \circ\left(\mu \Lambda^{-1}-\mu \Lambda^{-1} / \Lambda^{-1}-P\right) \\
& +\left(2 H^{(2)} \circ(P-A)-\Lambda\right) .
\end{aligned}
$$

Newton equation

$$
2 H^{(2)} \circ\left(\mu \Lambda^{-1} I \Lambda^{-1}\right)+I=2 H^{(2)} \circ\left(\mu \Lambda^{-1}-A\right)-\Lambda .
$$

or equivalently

$$
\begin{gathered}
{\left[2 \operatorname{Diag}\left(\operatorname{vec}\left(H^{(2)}\right) \mu\left(\Lambda^{-1} \otimes \Lambda^{-1}\right)+I\right] \operatorname{vec}(I)\right.} \\
\quad=\operatorname{vec}\left(2 H^{(2)} \circ\left(\mu \Lambda^{-1}-A\right)-\Lambda\right)
\end{gathered}
$$

## Matrix Representations

$F$ denotes $k \times 2$ matrix with row $s$ denoting the s-th nonzero
element of $H$
for $s=1, \ldots, k:\left(F_{s 1}, F_{s 2}\right)_{s=1, \ldots k}=\left\{i j: H_{i j} \neq 0\right\}$.
(kl, ij) component of the Hadamard-Kronecker product of $2 H^{(2)} \circ\left(\mu \Lambda^{-1} / \Lambda\right.$
$2 \mu \operatorname{trace} E_{k l}\left(H^{(2)} \circ \Lambda^{-1} E_{i j} \Lambda^{-1}\right)$

$$
\begin{aligned}
& =2 \mu \text { trace } e_{k} e_{l}^{t}\left(H^{(2)} \circ \Lambda^{-1} e_{i} e_{j}^{t} \Lambda^{-1}\right) \\
& =2 \mu \text { trace } e_{l}^{t}\left(H^{(2)} \circ \Lambda_{:, i}^{-1} \Lambda_{j:}^{-1}\right) e_{k} \\
& =2 \mu H_{l k}^{(2)} \Lambda_{l i}^{-1} \Lambda_{j k}^{-1} .
\end{aligned}
$$

This can be "vectorized" in MATLAB. The "sparsity" (free variables of $A$ ) of $H$ can be exploited.

## Primal-Step-First

## Many elements of $H$ are sufficiently large

eliminate / and solve for $h$ first.

$$
2 H^{(2)} \circ h+\frac{1}{\mu} \Lambda h \Lambda=\Lambda-\frac{1}{\mu} \Lambda P \Lambda-\left(2 H^{(2)} \circ(P-A)-\Lambda\right)
$$

or equivalently

$$
\begin{aligned}
& {\left[2 \operatorname{Diag}\left(\operatorname{vec}\left(H^{(2)}\right)+\frac{1}{\mu}(\Lambda \otimes \Lambda)\right] \operatorname{vec}(h)\right.} \\
& \quad \operatorname{vec}\left(\Lambda-\frac{1}{\mu} \Lambda P \Lambda-\left(2 H^{(2)} \circ(P-A)-\Lambda\right)\right)
\end{aligned}
$$

The $(k l, i j)$ component of the Kronecker product $\Lambda \otimes \Lambda$ is found from

$$
\operatorname{trace} E_{k l} \wedge E_{i j} \Lambda=\operatorname{trace} e_{k} e_{l}^{t} \wedge e_{i} e_{j}^{t} \Lambda=\Lambda_{l i} \Lambda_{j k} .
$$

This can be "vectorized" in MATLAB. The "infinities" (fixed variables of $A$ ) of $H$ can be exploited.

## The Diagonal of $P$ and $H$

dual feasibility

$$
2 H^{(2)} \circ(P-A)-\Lambda=0
$$

For $\wedge \succ 0$, we cannot fix $\left(P_{i i}=A_{i j}\right)$ or free $\left(H_{i i}=0\right)$ the diagonal of $A$

## Thanks for your attention!

# Matrix Completions 

Henry Wolkowicz

Dept. of Combinatorics and Optimization University of Waterloo

CO769/2013

