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Simple Completion Problem

Hermitian positive semidefinite completion

Given: A = A∗ � 0, with diag(A) > 0.
Consider the completion problem

max {det(B) : B � 0, diag(B) = diag(A)} .

(Hadamard’s Inequality: det(B) ≤
∏n

i=1 Bii ) implies maximum
occurs when B−1, and so B, is diagonal.

Proof? Optimum is interior! Differentiate log-det !!

0 = ∇

(

log det(B) +
∑

i

λi trace Eii(B − A)

)

= B−1 +
∑

i

λiEii

I.e., B−1 must be diagonal.
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Banded Completions

2k + 1 bands are specified in A

aij∀|i − j | ≤ k are fixed; all principal submatrices within 2k + 1
bands are positive definite.
THEOREM (Dym and Gohberg, 1981)

1 If
Dk =

{

B : B � 0, bij = aij ,∀|i − j | ≤ k
}

,

then Dk 6= ∅.

2 max {det(B) : B ∈ Dk} occurs at the unique matrix B ∈ Dk

having the property that for all |i − j | ≥ k + 1, the (i , j)-entry
of B−1 equals 0.
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Partial Hermitian Matrix, A = A∗, Completion

components Aij , ij ∈ E are specified (fixed) (others free)

A = A(G), undirected graph G = (N, E )

positive semidefinite completion problem

find components Aij , ij /∈ E , such that the resulting matrix
A � 0, is positive semidefinite.
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Chordal Graphs

Definitions:
1 chordal graph: no minimal cycles of length ≥ 4.

2 A graph G is completable if and only if any G -partial
positive definite matrix has a positive definite completion.

THEOREMS (GJSW, 1984)

1 G is completable if and only if G is chordal.
2 Suppose that diag(A) is fixed and A(G ) has a positive

definite completion. Then there is a unique such
completion, B, with maximum determinant; and it is
characterized by B−1 having 0 components in positions
corresponding to all kl /∈ E .
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Nearest Matrix Problems

Best Approximate Completion Problem

Let H = HT ≥ 0 be matrix of weights with diag(H) > 0; let
A = A∗ be given given Hermitian matrix; let L be a linear
transformation;

f (P) := ‖H ◦ (A − P)‖2
F ,

(Hadamard product, Frobenius norm)

(AC)
µ∗ := min f (P)

subject to LP = b
P � 0,

6



DUALITY and OPTIMALITY

Optimal Solution P̄ of AC in Unconstrained Case

∇f (P̄) ∈ (Sn
+ − P̄)+ (polar cone)

THEOREM

The matrix P̄ � 0 solves AC if and only if

trace(H(2) ◦ (P̄ − A))(P − P̄) ≥ 0, ∀P � 0,

where H(2) = H ◦ H is the Hadamard squared term.
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COROLLARY

COROLLARIES
1 If H = E , the matrix of ones, then the (unique) optimal

solution of AC is P̄ = A≻, where A≻ is the positive part of A
in the Loewner partial order.

2 If H ≻ 0, then the (unique) optimal solution P̄ of AC is the
solution of

H ◦ P̄ = (H ◦ A)≻.
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General Constrained Case

Lagrangian

For Λ ∈ Hn (Hermitian) and y ∈ Cm, let

L(P, y ,Λ) = f (P) + 〈y ,b − LP〉 − traceΛP

denote the Lagrangian of AC.
primal program AC is equivalent to

µ∗ = min
P

max
y

Λ�0

L(P, y ,Λ).

Assume generalized Slater’s constraint qualification

∃ P ≻ 0 with LP = b ,

holds for AC.
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Duals

Lagrangian Dual

Then
µ∗ = max

y
Λ�0

min
P

L(P, y ,Λ)

differentiate and get the Wolfe dual

(DAC)

µ∗ := max f (P) + 〈y ,b −LP〉 − traceΛP
subject to ∇f (P)− L∗y − Λ = 0

Λ � 0.
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THEOREM

Primal-Dual Framework!!

The matrix P̄ � 0 and vector-matrix ȳ , Λ̄ � 0 solve AC and DAC
if and only if

LP̄ = b primal feas
2H(2) ◦ (P̄ − A)− L∗ȳ − Λ̄ = 0 dual feas

trace Λ̄P̄ = 0 compl slack

compl slack value= duality gap value
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Optimal solution of AC

Solve the two equations

P̄ − (P̄ − 2H(2) ◦ (P̄ − A) + L∗y)≻ = 0

and
L
(

P̄ − 2H(2) ◦ (P̄ − A) + L∗y
)

≻
= b.

Suppose A = 0 and H = 1√
2
E .

the optimal solution of AC is:

P̄ = (L∗y)≻,

where
L (L∗y)≻ = b.
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L = 0 case

Unconstrained - Using only Weights

2H(2) ◦ (P − A)− Λ = 0 dual feas
−P + µΛ−1 = 0 perturbed compl slack

Note
Hii = 0 (Pii free ) ⇒ Λii = 0

(dual variable Λ takes role of P−1 )
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Primal-Dual Interior-Point Algorithms

Linearization of the second equation

−(P + h) + µΛ−1 − µΛ−1lΛ−1 = 0

We get
h = µΛ−1 − µΛ−1lΛ−1 − P.

and

l =
1
µ
{−Λ(P + h)Λ}+ Λ

Linearization of the dual feasibility equation

2H(2) ◦ h − l = −(2H(2) ◦ (P − A)− Λ).
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Dual-Step-First

Eliminate the primal step h and solve for the dual step l

l = 2H(2) ◦ h + (2H(2) ◦ (P − A)− Λ)

= 2H(2) ◦ (µΛ−1 − µΛ−1lΛ−1 − P)

+(2H(2) ◦ (P − A)− Λ).

Newton equation

2H(2) ◦ (µΛ−1lΛ−1) + l = 2H(2) ◦ (µΛ−1 − A)− Λ.

or equivalently
[

2 Diag(vec(H(2))µ(Λ−1 ⊗ Λ−1) + I
]

vec(l)
= vec

(

2H(2) ◦ (µΛ−1 − A)− Λ
)

.
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Matrix Representations

F denotes k × 2 matrix with row s denoting the s-th nonzero
element of H

for s = 1, . . . , k : (Fs1,Fs2)s=1,...k =
{

ij : Hij 6= 0
}

.

(kl , ij) component of the Hadamard-Kronecker product of
2H(2) ◦ (µΛ−1lΛ−1)

2µ trace Ekl
(

H(2) ◦ Λ−1EijΛ
−1
)

= 2µ trace eket
l

(

H(2) ◦ Λ−1eiet
jΛ

−1
)

= 2µ trace et
l

(

H(2) ◦ Λ−1
:,i Λ

−1
j :

)

ek

= 2µH(2)
lk Λ−1

li Λ−1
jk .

This can be “vectorized” in MATLAB. The “sparsity” (free
variables of A) of H can be exploited.
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Primal-Step-First

Many elements of H are sufficiently large

eliminate l and solve for h first.

2H(2) ◦ h +
1
µ
ΛhΛ = Λ−

1
µ
ΛPΛ−

(

2H(2) ◦ (P − A)− Λ
)

or equivalently

[

2 Diag(vec(H(2)) + 1
µ
(Λ⊗ Λ)

]

vec(h)

vec
(

Λ− 1
µ
ΛPΛ− (2H(2) ◦ (P − A)− Λ)

)

.

The (kl , ij) component of the Kronecker product Λ⊗ Λ is found
from

trace EklΛEijΛ = trace eket
lΛeie

t
jΛ = ΛliΛjk .

This can be “vectorized” in MATLAB. The “infinities” (fixed
variables of A) of H can be exploited.
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The Diagonal of P and H

dual feasibility
2H(2) ◦ (P − A)− Λ = 0

For Λ ≻ 0, we cannot fix (Pii = Aii ) or free (Hii = 0) the diagonal
of A
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