What are EDMs?

pre-distance matrix (or dissimilarity matrix)

ia an $n \times n$ symmetric matrix $D = (d_{ij})$ with nonnegative elements and zero diagonal

Euclidean distance matrix (EDM)

is a pre-distance matrix such that there exists points x^1, x^2, \ldots, x^n in \mathbb{R}^r such that

$$d_{ij} = \|x^i - x^j\|^2, \quad i, j = 1, 2, \dots, n_i$$

The smallest value of *r* is called **the embedding dimension** of *D*. (*r* is always $\leq n - 1$)

EDM Completion

The Problem

Given a partial symmetric matrix A with certain elements specified, the Euclidean distance matrix completion problem (EDMCP) consists in finding the unspecified elements of A that make A a EDM.

WHY?

e.g.:

• shape of enzyme determines chemical function; Once shape known, then proper drug can be designed (molecular conformation).

64

protein folding; multidimensional scaling; etc...

Approximate EDMCP

let: *A* be a pre-distance matrix; *H* be an $n \times n$ symmetric matrix with nonnegative elements; the objective function

$$f(D) := \|H \circ (A - D)\|_F^2,$$

Then

$$(CDM_0) \stackrel{\mu^* :=}{\underset{\text{subject to}}{\min}} \frac{f(D)}{D \in \mathcal{E}}.$$

where \mathcal{E} denotes the cone of EDMs.

DISTANCE GEOMETRY

Characterization of EDM

A pre-distance matrix *D* is a EDM if and only if *D* is negative semidefinite on $M_v := \{x \in \mathbb{R}^n : x^t v = 0\} = \{v\}^{\perp}$, where we set v = e, the vector of all ones.

orthogonal projection onto M_{ν} ,

Define $V n \times (n-1)$, full column rank such that $V^t v = 0$. Then

$$J := VV^{\dagger} = I - rac{vv^t}{\|v\|^2}$$

is the orthogonal projection onto M_V , where V^{\dagger} denotes Moore-Penrose generalized inverse.

Linear Transformations/subspaces

centered and hollow subspaces \mathcal{S}_C := { $B \in \mathcal{S}^n : Be = 0$ }, \mathcal{S}_H := { $D \in \mathcal{S}^n : diag(D) = 0$ }.

two linear operators

 $\mathcal{K}(B) := \operatorname{diag}(B) e^t + e \operatorname{diag}(B)^t - 2B,$

 $\mathcal{T}(D) := -\frac{1}{2}JDJ.$

The operator $-2\mathcal{T}$ is an orthogonal projection onto \mathcal{S}_C . **THEOREM** The linear operators satisfy $\mathcal{K}(\mathcal{S}_C) = \mathcal{S}_H, \qquad \mathcal{T}(\mathcal{S}_H) = \mathcal{S}_C,$ and $\mathcal{K}_{|\mathcal{S}_C}$ and $\mathcal{T}_{|\mathcal{S}_H}$ are inverses of each other.

Characterization of EDMs

Using ${\mathcal T}$

A hollow matrix *D* is EDM if and only if $B = T(D) \succeq 0$ (positive semidefinite)

Using ${\cal K}$

D is EDM if and only if $D = \mathcal{K}(B)$, for some *B* with Be = 0 and $B \succeq 0$. THEN: embedding dimension *r* EQUALS rank *B*. with $B = XX^t$, then coordinates of points x^1, x^2, \dots, x^n that generate *D* are given in rows of *X* and Be = 0 implies origin coincides with centroid of points.

Loss of Slater CQ

Difficulty

The cone of EDMs, \mathcal{E}_n , has empty interior. And $D \in \mathcal{E}_n \implies \mathcal{K}^{\dagger}(D)e = 0$

Project on Minimal Face

V full column rank n - 1 with $V^T e = 0$

$$V \cdot V^t : S_{n-1} \to S_n \cap S_C$$

Define the composite operators

$$\mathcal{K}_V(X) := \mathcal{K}(VXV^t),$$

$$\mathcal{T}_V(D) := V^{\dagger} \mathcal{T}(D) (V^{\dagger})^t = -\frac{1}{2} V^{\dagger} D (V^{\dagger})^t.$$

Properties of $\mathcal{K}_V, \mathcal{T}_V$

$$\mathcal{K}_V(\mathcal{S}^{n-1}) = \mathcal{S}_H,$$

$$\mathcal{T}_V(\mathcal{S}_H) = \mathcal{S}^{n-1}$$

and \mathcal{K}_V and \mathcal{T}_V are inverses of each other on these two spaces.

$$\begin{aligned} \mathcal{K}_V(\mathcal{S}^{n-1}_+) &= \mathcal{E}_n, \\ \mathcal{T}_V(\mathcal{E}_n) &= \mathcal{S}^{n-1}_+. \end{aligned}$$

Summary

