What are EDMs?

pre-distance matrix (or dissimilarity matrix)
ia an $n \times n$ symmetric matrix $D=\left(d_{i j}\right)$ with nonnegative elements and zero diagonal

Euclidean distance matrix (EDM)

is a pre-distance matrix such that there exists points $x^{1}, x^{2}, \ldots, x^{n}$ in \mathbb{R}^{r} such that

$$
d_{i j}=\left\|x^{i}-x^{j}\right\|^{2}, \quad i, j=1,2, \ldots, n
$$

The smallest value of r is called the embedding dimension of D. (r is always $\leq n-1$)

EDM Completion

The Problem

Given a partial symmetric matrix A with certain elements specified, the Euclidean distance matrix completion problem (EDMCP) consists in finding the unspecified elements of A that make A a EDM.

WHY?

e.g.:

- shape of enzyme determines chemical function; Once shape known, then proper drug can be designed (molecular conformation).
- protein folding; multidimensional scaling; etc..

Approximate EDMCP

weighted, closest Euclidean distance matrix problem
let: A be a pre-distance matrix; H be an $n \times n$ symmetric matrix with nonnegative elements; the objective function

$$
f(D):=\|H \circ(A-D)\|_{F}^{2},
$$

Then

$$
\left(C D M_{0}\right)^{\mu^{*}:=} \min _{\text {subject to }} \quad f(D)
$$

where \mathcal{E} denotes the cone of EDMs.

DISTANCE GEOMETRY

Characterization of EDM

A pre-distance matrix D is a EDM if and only if
D is negative semidefinite on
$M_{v}:=\left\{x \in \mathbb{R}^{n}: x^{t} v=0\right\}=\{v\}^{\perp}$,
where we set $v=e$, the vector of all ones.

orthogonal projection onto M_{v},

Define $V n \times(n-1)$, full column rank such that $V^{t} V=0$. Then

$$
J:=V V^{\dagger}=I-\frac{v V^{t}}{\|v\|^{2}}
$$

is the orthogonal projection onto M_{V}, where V^{\dagger} denotes Moore-Penrose generalized inverse.

Linear Transformations/subspaces

centered and hollow subspaces

$$
\begin{aligned}
& \mathcal{S}_{C}:=\left\{B \in \mathcal{S}^{n}: B e=0\right\}, \\
& \mathcal{S}_{H}:=\left\{D \in \mathcal{S}^{n}: \operatorname{diag}(D)=0\right\} .
\end{aligned}
$$

two linear operators

$$
\begin{gathered}
\mathcal{K}(B):=\operatorname{diag}(B) e^{t}+e \operatorname{diag}(B)^{t}-2 B, \\
\mathcal{T}(D):=-\frac{1}{2} J D J .
\end{gathered}
$$

The operator $-2 \mathcal{T}$ is an orthogonal projection onto \mathcal{S}_{C}. THEOREM The linear operators satisfy
$\mathcal{K}\left(\mathcal{S}_{C}\right)=\mathcal{S}_{H}, \quad \mathcal{T}\left(\mathcal{S}_{H}\right)=\mathcal{S}_{C}$, and $\mathcal{K}_{\mid \mathcal{S}_{C}}$ and $\mathcal{T}_{\mid \mathcal{S}_{H}}$ are inverses of each other.

Characterization of EDMs

Using \mathcal{T}

A hollow matrix D is EDM if and only if
$B=\mathcal{T}(D) \succeq 0$ (positive semidefinite)

Using \mathcal{K}

D is EDM if and only if
$D=\mathcal{K}(B)$, for some B with $B e=0$ and $B \succeq 0$.
THEN: embedding dimension r EQUALS rank B.
with $B=X X^{t}$, then coordinates of points $x^{1}, x^{2}, \ldots, x^{n}$ that generate D are given in rows of X and $B e=0$ implies origin coincides with centroid of points.

Loss of Slater CQ

Difficulty

The cone of EDMs, \mathcal{E}_{n}, has empty interior. And $D \in \mathcal{E}_{n} \Longrightarrow \mathcal{K}^{\dagger}(D) e=0$

Project on Minimal Face

V full column rank $n-1$ with $V^{T} e=0$

$$
V \cdot V^{t}: \mathcal{S}_{n-1} \rightarrow \mathcal{S}_{n} \cap \mathcal{S}_{C}
$$

Define the composite operators

$$
\begin{gathered}
\mathcal{K}_{V}(X):=\mathcal{K}\left(V X V^{t}\right) \\
\mathcal{T} v(D):=V^{\dagger} \mathcal{T}(D)\left(V^{\dagger}\right)^{t}=-\frac{1}{2} V^{\dagger} D\left(V^{\dagger}\right)^{t} .
\end{gathered}
$$

Properties of $\mathcal{K}_{V}, \mathcal{T}{ }_{V}$

$$
\begin{aligned}
& \mathcal{K}_{V}\left(\mathcal{S}^{n-1}\right)=\mathcal{S}_{H}, \\
& \mathcal{T}_{V}\left(\mathcal{S}_{H}\right)=\mathcal{S}^{n-1},
\end{aligned}
$$

and \mathcal{K}_{V} and $\mathcal{T}{ }_{V}$ are inverses of each other on these two spaces.

$$
\begin{aligned}
\mathcal{K}_{V}\left(\mathcal{S}_{+}^{n-1}\right) & =\mathcal{E}_{n}, \\
\mathcal{T}_{V}\left(\mathcal{E}_{n}\right) & =\mathcal{S}_{+}^{n-1} .
\end{aligned}
$$

Summary

objective function

$$
\begin{aligned}
f(X): & =\left\|H \circ\left(A-\mathcal{K}_{V}(X)\right)\right\|_{F}^{2} \\
& =\left\|H \circ \mathcal{K}_{V}(B-X)\right\|_{F}^{2}
\end{aligned}
$$

where $B=\mathcal{T} v(A)$.
(\mathcal{K}_{V} and $\mathcal{T} \vee$ are both linear transformations)

(Re)Define the closest EDM problem

$$
(C D M) \quad \text { subject to } \mathcal{A} X=b
$$

