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Motivation: Loss of Slater CQ/Facial reduction

optimization algorithms rely on the KKT system;
and require that some constraint qualification (CQ) holds
(Slater’s CQ for convex conic optimization)

However, surprisingly many conic opt, SDP relaxations,
instances arising from applications (QAP, GP, strengthened MC, SNL,
POP, Molecular Conformation)
do not satisfy Slater’s CQ/are degenerate

lack of Slater’s CQ results in: unbounded dual solutions;
theoretical and numerical difficulties,
in particular for primal-dual interior-point methods.

solution:
- theoretical facial reduction (Borwein, W.’81[2])
- preprocess for regularized smaller problem (Cheung, Schurr, W.’11[4])
- take advantage of degeneracy

(Krislock, W.’10[7]; Krislock, Rendl, W.’10[6])
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Outline: Regularization/Facial Reduction

1 Preprocessing/Regularization
Abstract convex program

LP case
CP case

Cone optimization/SDP case

2 Applications: QAP, GP, SNL, Molecular conformation ...
SNL; highly (implicit) degenerate/low rank solutions
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Abstract convex program
Cone optimization/SDP case

Background/Abstract convex program

(ACP) inf
x

f (x) s.t. g(x) �K 0, x ∈ Ω

where:

f : Rn → R convex; g : Rn → R
m is K -convex

K ⊂ R
m closed convex cone; Ω ⊆ R

n convex set
a �K b ⇐⇒ b − a ∈ K
g(αx + (1 − αy)) �K αg(x) + (1 − α)g(y),

∀x , y ∈ R
n, ∀α ∈ [0, 1]

Slater’s CQ: ∃ x̂ ∈ Ω s.t. g(x̂) ∈ − int K (g(x) ≺K 0)

guarantees strong duality

essential for efficiency/stability in primal-dual interior-point
methods
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Abstract convex program
Cone optimization/SDP case

Case of Linear Programming, LP

Primal-Dual Pair: A,m × n / P = {1, . . . ,n} constr. matrix/set

(LP-P)
max b⊤y
s.t. A⊤y ≤ c

(LP-D)
min c⊤x
s.t. Ax = b, x ≥ 0.

Slater’s CQ for (LP-P) / Theorem of alternative

∃ŷ s.t. c − A⊤ŷ > 0,
((

c − A⊤ŷ
)

i > 0,∀i ∈ P = P<
)

iff
Ad = 0, c⊤d = 0, d ≥ 0 =⇒ d = 0 (∗)

implicit equality constraints: i ∈ P=

Finding solution 0 6= d∗ to (∗) with max number of non-zeros
determines

d∗
i > 0 =⇒ (c − A⊤y)i = 0,∀y ∈ F y (i ∈ P=)
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Abstract convex program
Cone optimization/SDP case

Rewrite implicit-equalities to equalities/ Regularize LP

Facial Reduction: A⊤y ≤f c; minimal face f E R
n
+

(LPreg -P)
max b⊤y
s.t. (A<)⊤y ≤ c<

(A=)⊤y = c=
(LPreg -D)

min (c<)⊤x< + (c=)⊤x=

s.t.
[

A< A=
]

(

x<

x=

)

= b

x< ≥ 0, x= free

Mangasarian-Fromovitz CQ (MFCQ) holds

(after deleting redundant equality constraints!)
(

i ∈ P< i ∈ P=

∃ŷ : (A<)⊤ŷ < c< (A=)⊤ŷ = c=

)

(A=)⊤ is onto

MFCQ holds iff dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior
point methods! Modelling issue?
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Abstract convex program
Cone optimization/SDP case

Facial Reduction

Linear Programming Example, x ∈ R
5

min
(

2 6 −1 −2 7
)

x

s.t.
[

1 1 1 1 0
1 −1 −1 0 1

]

x =

(

1
−1

)

x ≥ 0

Sum the two constraints:
2x1 + x4 + x5 = 0 =⇒ x1 = x4 = x5 = 0.

yields the equivalent simplified problem in a smaller face

min
(

6 −1
)

(

x2

x3

)

s.t.
[

1 1
]

(

x2

x3

)

= 1

x2, x3 ≥ 0, x1 = x4 = x5 = 0
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Abstract convex program
Cone optimization/SDP case

Case of ordinary convex programming, CP

(CP) sup
y

b⊤y s.t. g(y) ≤ 0,

where

b ∈ R
m; g(y) =

(

gi(y)
)

∈ R
n, gi : R

m → R convex ∀i ∈ P

Slater’s CQ: ∃ ŷ s.t. gi(ŷ) < 0,∀i (implies MFCQ)

Slater’s CQ fails implies implicit equality constraints exist,
i.e.:
P= := {i ∈ P : g(y) ≤ 0 =⇒ gi(y) = 0} 6= ∅
Let P< := P\P= and
g< := (gi)i∈P< ,g= := (gi)i∈P=
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Abstract convex program
Cone optimization/SDP case

Rewrite implicit equalities to equalities/ Regularize CP

(CP) is equivalent to g(y) ≤f 0, f is minimal face

(CPreg)
sup b⊤y
s.t. g<(y) ≤ 0

y ∈ F = or (g=(y) = 0)

where F= := {y : g=(y) = 0}. Then
F = = {y : g=(y) ≤ 0}, so is a convex set!

Slater’s CQ holds for (CPreg) ∃ŷ ∈ F = : g<(ŷ) < 0

modelling issue again?
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Abstract convex program
Cone optimization/SDP case

Faithfully convex case

Faithfully convex function f (Rockafellar70 [8])

f affine on a line segment only if affine on complete line
containing the segment (e.g. analytic convex functions)

F= = {y : g=(y) = 0} is an affine set

Then:
F= = {y : Vy = Vŷ} for some ŷ and full-row-rank matrix V .
Then MFCQ holds for

(CPreg)
sup b⊤y
s.t. g<(y) ≤ 0

Vy = Vŷ
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Abstract convex program
Cone optimization/SDP case

Semidefinite Programming, SDP

K = Sn
+ = K ∗ nonpolyhedral cone!

(SDP-P) vP = sup
y∈Rm

b⊤y s.t. g(y) := A∗y − c �Sn
+

0

(SDP-D) vD = inf
x∈Sn

〈c, x〉 s.t. Ax = b, x �Sn
+

0

where

PSD cone Sn
+ ⊂ Sn symm. matrices

c ∈ Sn , b ∈ R
m

A : Sn → R
m is a linear map, with adjoint A∗
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Abstract convex program
Cone optimization/SDP case

Slater’s CQ/Theorem of Alternative

Assume that ∃ ỹ s.t. c −A ∗ỹ � 0.

∃ ŷ s.t. s = c −A∗ŷ ≻ 0

holds iff

Ad = 0, 〈c,d〉 = 0, d � 0 =⇒ d = 0 (∗)
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Abstract convex program
Cone optimization/SDP case

Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of K , denoted F E K , if
x , y ∈ K and x + y ∈ F =⇒ x , y ∈ F
(F ⊳ K proper face)

Conjugate Face

If F E K , the conjugate face (or complementary face) of F is
F c := F⊥ ∩ K ∗ E K ∗

If x ∈ ri(F ), then F c = {x}⊥ ∩ K ∗.

Minimal Faces

fP := faceF s
P E K , F s

P is primal feasible set
fD := faceF x

D E K ∗, F x
D is dual feasible set
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Abstract convex program
Cone optimization/SDP case

Regularization Using Minimal Face

Borwein-W.’81 [2], fP = faceF s
P

(SDP-P) is equivalent to the regularized

(SDPreg-P) vRP := sup
y

{〈b, y〉 : A ∗y �fP c}

(slack s = c −A
∗y ∈ fp )

Lagrangian Dual DRP Satisfies Strong Duality:

(SDPreg-D) vDRP := inf
x

{〈c, x〉 : A x = b, x �f∗P
0}

= vP = vRP

and vDRP is attained.
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Abstract convex program
Cone optimization/SDP case

SDP Regularization process

Alternative to Slater CQ

Ad = 0, 〈c,d〉 = 0, 0 6= d �Sn
+

0 (∗)

Determine a proper face f ⊳ Sn
+

Let d solve (∗) with d = Pd+P⊤, d+ ≻ 0, and [P Q] ∈ R
n×n

orthogonal. Then

c −A∗y �Sn
+

0 =⇒ 〈c −A∗y ,d∗〉 = 0

=⇒ F s
P ⊆ Sn

+ ∩ {d∗}⊥ = QS n̄
+ Q⊤

⊳ Sn
+

(implicit rank reduction, n̄ < n)
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Abstract convex program
Cone optimization/SDP case

Regularizing SDP

at most n − 1 iterations to satisfy Slater’s CQ.

to check Theorem of Alternative

Ad = 0, 〈c,d〉 = 0, 0 6= d �Sn
+

0, (∗)

use auxiliary problem

(AP) min
δ,d

δ s.t.

∥

∥

∥

∥

[

Ad
〈c,d〉

]∥

∥

∥

∥

2
≤ δ,

trace(d) =
√

n,

d � 0.

Both (AP) and its dual satisfy Slater’s CQ.
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Abstract convex program
Cone optimization/SDP case

Regularizing SDP

Minimal face containing Fs
P := {s : s = c −A ∗y � 0}

fP = QS n̄
+ Q⊤

for some n × n orthogonal matrix U = [P Q]

(SPD-P) is equivalent to

sup
y

b⊤y s.t. g≺(y) � 0, g=(y) = 0,

where
g≺(y) := Q⊤(A∗y − c)Q

g=(y) :=
[

P⊤(A∗y − c)P
P⊤(A∗y − c)Q + Q⊤(A∗y − c)P

]

.

Slater’s CQ holds for the reduced program:
∃ ŷ s.t. g≺(y) ≺ 0 and g=(y) = 0.
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Abstract convex program
Cone optimization/SDP case

Conclusion Part I

Minimal representations of the data regularize (P);
use min. face fP (and/or implicit rank reduction)

goal: a backwards stable preprocessing algorithm to
handle (feasible) conic problems for which Slater’s CQ
(almost) fails
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SNL; highly (implicit) degenerate/low rank solutions

Part II: Applications of SDP where Slater’s CQ fails

Instances of SDP relaxations of NP-hard combinatorial
optimization problems with row and column sum and 0,1
constraints

Quadratic Assignment (Zhao-Karish-Rendl-W.’96 [10])

Graph partitioning (W.-Zhao’99 [9])

Low rank problems

Sensor network localization (SNL) problem
(Krislock-W.’10[7], Krislock-Rendl-W.’10[6])

Molecular conformation (Burkowski-Cheung-W.’11 [3])

general SDP relaxation of low-rank matrix completion
problem
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SNL; highly (implicit) degenerate/low rank solutions

SNL (K-W10[7],K-R-W10[6])

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry;
easy to describe - dates back to Grasssmann 1886

r : embedding dimension

n ad hoc wireless sensors p1, . . . ,pn ∈ R
r to locate in R

r ;

m of the sensors pn−m+1, . . . ,pn are anchors (positions
known, using e.g. GPS)

pairwise distances Dij = ‖pi − pj‖2, ij ∈ E , are known
within radio range R > 0

P⊤ =
[

p1 . . . pn
]

=
[

X⊤ A⊤] ∈ R
r×n
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SNL; highly (implicit) degenerate/low rank solutions

Sensor Localization Problem/Partial EDM

Sensors ◦ and Anchors

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10
Initial position of points

 # sensors n = 300,     # anchors m = 9,     radio range R = 1.2

 

 
sensors
anchors
sens−anch
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SNL; highly (implicit) degenerate/low rank solutions

Underlying Graph Realization/Partial EDM NP-Hard

Graph G = (V , E , ω)

node set V = {1, . . . ,n}
edge set (i , j) ∈ E ; ωij = ‖pi − pj‖2 known approximately

The anchors form a clique (complete subgraph)

Realization of G in R
r : a mapping of nodes vi 7→ pi ∈ R

r

with squared distances given by ω.

Corresponding Partial Euclidean Distance Matrix, EDM

Dij =

{

d2
ij if (i , j) ∈ E

0 otherwise (unknown distance),

d2
ij = ωij are known squared Euclidean distances between

sensors pi ,pj ; anchors correspond to a clique.
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SNL; highly (implicit) degenerate/low rank solutions

Connections to Semidefinite Programming (SDP)

D = K (B) ∈ En, B = K †(D) ∈ Sn ∩ SC (centered Be = 0)

P⊤ =
[

p1 p2 . . . pn
]

∈ M r×n;
B := PP⊤ ∈ Sn

+ (Gram matrix of inner products);

rank B = r ; let D ∈ En corresponding EDM ; e =
(

1 . . . 1
)⊤

(to D ∈ En) D =
(

‖pi − pj‖2
2

)n
i ,j=1

=
(

pT
i pi + pT

j pj − 2pT
i pj

)n

i ,j=1

= diag (B)e⊤ + e diag (B)⊤ − 2B
=: De(B)− 2B
=: K (B) (from B ∈ Sn

+ ).
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SNL; highly (implicit) degenerate/low rank solutions

Euclidean Distance Matrices and Semidefinite
Matrices

Moore-Penrose Generalized Inverse K†

B � 0 =⇒ D = K(B) = diag (B)e⊤ + e diag (B)⊤ − 2B∈ E
D ∈ E =⇒ B = K†(D) = −1

2JoffDiag (D) J� 0,De = 0

Theorem (Schoenberg, 1935)

A (hollow) matrix D (with diag (D) = 0,D ∈ SH) is a
Euclidean distance matrix
if and only if

B = K†(D) � 0.

And
embdim (D) = rank

(

K†(D)
)

, ∀D ∈ En
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SNL; highly (implicit) degenerate/low rank solutions

Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

minB�0 ‖H ◦ (K (B)− D)‖; rank B = r ;
typical weights: Hij = 1/

√

Dij , if ij ∈ E , Hij = 0 otherwise.

with rank constraint: a non-convex, NP-hard program

SDP relaxation is convex, BUT: expensive/low
accuracy/implicitly highly degenerate (cliques restrict ranks
of feasible Bs)

Instead: (Shall) Take Advantage of Degeneracy!

clique α, |α| = k (corresp. D[α]) with embed. dim. = t ≤ r < k
=⇒ rankK †(D[α]) = t ≤ r =⇒ rank B[α] ≤ rankK †(D[α]) + 1
=⇒ rank B = rankK †(D) ≤ n − (k − t − 1) =⇒
Slater’s CQ (strict feasibility) fails
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SNL; highly (implicit) degenerate/low rank solutions

Basic Single Clique/Facial Reduction

Matrix with Fixed Principal Submatrix

For Y ∈ Sn , α ⊆ {1, . . . ,n}: Y [α] denotes principal submatrix
formed from rows & cols with indices α.

D̄ ∈ E k , α ⊆ 1 :n, |α| = k

Define En(α, D̄) :=
{

D ∈ En : D[α] = D̄
}

.

Given D̄; find a corresponding B � 0; find the corresponding
face; find the corresponding subspace.

if α = 1 : k ; embedding dim embdim (D̄) = t ≤ r

D =

[

D̄ ·
· ·

]

.
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SNL; highly (implicit) degenerate/low rank solutions

BASIC THEOREM for Single Clique/Facial Reduction

THEOREM 1: Single Clique/Facial Reduction

Let: D̄ := D[1 :k ] ∈ Ek , k < n, embdim (D̄) = t ≤ r ;
B := K †(D̄) = ŪBSŪ⊤

B , ŪB ∈ M k×t , Ū⊤
B ŪB = It , S ∈ S⊤

++;

UB :=
[

ŪB
1√
k
e
]

∈ M k×(t+1), U :=

[

UB 0
0 In−k

]

, and
[

V U⊤e
‖U⊤e‖

]

∈ M n−k+t+1 orthogonal. Then:

faceK † (En(1 :k , D̄)
)

=
(

USn−k+t+1
+ U⊤

)

∩ SC

= (UV )Sn−k+t
+ (UV )⊤

Note that the minimal face is defined by the subspace
L = R (UV ). We add 1√

k
e to represent N (K ); then we use V

to eliminate e to recover a centered face.
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SNL; highly (implicit) degenerate/low rank solutions

Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

U1 =





U ′
1 0

U ′′
1 0

0 I



 and U2 =





I 0
0 U ′′

2
0 U ′

2





Then:

U :=





U ′
1

U ′′
1

U ′
2(U

′′
2 )

†U ′′
1



 or U :=





U ′
1(U

′′
1 )

†U ′′
2

U ′′
2

U ′
2





(Q1 =: (U ′′
1 )

†U ′′
2 ,Q2 = (U ′′

2 )
†U ′′

1 orthogonal/rotation)
(Efficiently) satisfies

R (U) = R (U1) ∩R (U2)
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SNL; highly (implicit) degenerate/low rank solutions

Two (Intersecting) Clique Explicit Delayed Completion

COR. Intersection with Embedding Dim. r /Completion

Hypotheses of Theorem 2 holds. Let D̄i := D[αi ] ∈ E ki , for
i = 1,2, β ⊆ α1 ∩ α2, γ := α1 ∪ α2, D̄ := D[β],B :=
K †(D̄), Ūβ := Ū(β, :), where Ū ∈ M k×(t+1) satisfies

intersection equation of Theorem 2. Let
[

V̄ Ū⊤e
‖Ū⊤e‖

]

∈ M t+1

be orthogonal. Let Z := (JŪβV̄ )†B((JŪβV̄ )†)⊤ . If the

embedding dimension for D̄ is r , THEN t = r in Theorem 2, and
Z ∈ S r

+ is the unique solution of the equation
(JŪβV̄ )Z (JŪβV̄ )⊤ = B, and the exact completion is

D[γ] = K
(

PP⊤) where P := UVZ
1
2 ∈ R

|γ|×r
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SNL; highly (implicit) degenerate/low rank solutions

Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

Given P =

[

P1

P2

]

∈ R
n×r such that D = K (PP⊤)

Solve the orthogonal Procrustes problem:

min ‖A − P2Q‖
s.t. Q⊤Q = I

P⊤
2 A = UΣV⊤ SVD decomposition; set Q = UV⊤;

(Golub/Van Loan79[5], Algorithm 12.4.1)

Set X := P1Q
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SNL; highly (implicit) degenerate/low rank solutions

Summary: Facial Reduction for Cliques

Using the basic theorem: each clique corresponds to a
Gram matrix/corresponding subspace/corresponding face
of SDP cone (implicit rank reduction)

In the case where two cliques intersect, the union of the
cliques correspond to the (efficiently computable)
intersection of the corresponding faces/subspaces

Finally, the positions are determined using a Procrustes
problem
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SNL; highly (implicit) degenerate/low rank solutions

Results - Data for Random Noisless Problems

2.16 GHz Intel Core 2 Duo, 2 GB of RAM

Dimension r = 2

Square region: [0,1]× [0,1]

m = 9 anchors

Using only Rigid Clique Union and Rigid Node Absorption

Error measure: Root Mean Square Deviation

RMSD =

(

1
n

n
∑

i=1

‖pi − ptrue
i ‖2

)1/2
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SNL; highly (implicit) degenerate/low rank solutions

Results - Large n (SDP size O(n2))

n # of Sensors Located
n # sensors \ R 0.07 0.06 0.05 0.04

2000 2000 2000 1956 1374
6000 6000 6000 6000 6000

10000 10000 10000 10000 10000

CPU Seconds
# sensors \ R 0.07 0.06 0.05 0.04

2000 1 1 1 3
6000 5 5 4 4

10000 10 10 9 8

RMSD (over located sensors)
n # sensors \ R 0.07 0.06 0.05 0.04

2000 4e−16 5e−16 6e−16 3e−16
6000 4e−16 4e−16 3e−16 3e−16
10000 3e−16 5e−16 4e−16 4e−16
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SNL; highly (implicit) degenerate/low rank solutions

Results - N Huge SDPs Solved

Large-Scale Problems

# sensors # anchors radio range RMSD Time
20000 9 .025 5e−16 25s
40000 9 .02 8e−16 1m 23s
60000 9 .015 5e−16 3m 13s

100000 9 .01 6e−16 9m 8s

Size of SDPs Solved: N =

(

n
2

)

(# vrbls)

En(density of G ) = πR2; M = En(|E |) = πR2N (# constraints)
Size of SDP Problems:
M =

[

3,078,915 12,315,351 27,709,309 76,969,790
]

N = 109
[

0.2000 0.8000 1.8000 5.0000
]
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SNL; highly (implicit) degenerate/low rank solutions

Molecular conformation

- protein structure prediction problems;
- work with Babak et. al.11[1];
- side chain packing.
(see pages 8-22 in alternate pdf file)
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SNL; highly (implicit) degenerate/low rank solutions

Summary Part II

Instances of degeneracy/failurs of Slater’s CQ occur in
many applications

SDP relaxation of SNL is highly (implicitly) degenerate:
The feasible set of this SDP is restricted to a low dim. face
of the SDP cone, causing the Slater’s CQ (strict feasibility)
to fail

We take advantage of this degeneracy by finding explicit
representations of intersections of faces of the SDP cone
corresponding to unions of intersecting cliques

Without using an SDP-solver (eg. SeDuMi or SDPT3), we
quickly compute the exact solution to the SDP relaxation
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SNL; highly (implicit) degenerate/low rank solutions
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