> Taking Advantage of Degeneracy in Cone Optimization: with Applications to Sensor Network Localization and Molecular Conformation

> > **Henry Wolkowicz**

Dept. Combinatorics and Optimization, University of Waterloo

February 28, 2013

Motivation: Loss of Slater CQ/Facial reduction

- optimization algorithms rely on the KKT system; and require that some constraint qualification (CQ) holds (Slater's CQ for convex conic optimization)
- <u>However</u>, surprisingly many conic opt, SDP relaxations, instances arising from applications (QAP, GP, strengthened MC, SNL, POP, Molecular Conformation) do not satisfy Slater's CQ/are degenerate
- lack of Slater's CQ results in: unbounded dual solutions; theoretical and numerical difficulties, in particular for *primal-dual interior-point methods*.
- solution:
 - theoretical facial reduction (Borwein, W.'81[2])
 - preprocess for regularized smaller problem (Cheung, Schurr, W.'11[4])
 - take advantage of degeneracy (Krislock, W.'10[7]; Krislock, Rendl, W.'10[6])

Outline: Regularization/Facial Reduction

- Abstract convex program
 - LP case
 - CP case
- Cone optimization/SDP case

Applications: QAP, GP, SNL, Molecular conformation ...
 SNL; highly (implicit) degenerate/low rank solutions

Abstract convex program Cone optimization/SDP case

Background/Abstract convex program

Slater's CQ: $\exists \hat{x} \in \Omega \text{ s.t. } g(\hat{x}) \in - \operatorname{int} K \qquad (g(x) \prec_{\mathcal{K}} 0)$

- guarantees strong duality
- essential for efficiency/stability in primal-dual interior-point methods

Abstract convex program Cone optimization/SDP case

Case of Linear Programming, LP

Primal-Dual Pair: $A, m \times n / P = \{1, ..., n\}$ constr. matrix/set

Slater's CQ for (LP-P) / Theorem of alternative

$$\exists \hat{y} \text{ s.t. } \boldsymbol{c} - \boldsymbol{A}^{\top} \hat{y} > \boldsymbol{0}, \qquad \left(\left(\boldsymbol{c} - \boldsymbol{A}^{\top} \hat{y} \right)_{i} > \boldsymbol{0}, \forall i \in \mathcal{P} = \mathcal{P}^{<} \right)$$
iff

$$Ad = 0, \ c^{\top}d = 0, \ d \ge 0 \implies d = 0$$
 (*)

implicit equality constraints: $i \in \mathcal{P}$

Finding solution $0 \neq d^*$ to (*) with max number of non-zeros determines

$$d_i^* > 0 \implies (c - A^{ op} y)_i = 0, \forall y \in \mathcal{F}^y \quad (i \in \mathcal{P}^=)$$

Abstract convex program Cone optimization/SDP case

Rewrite implicit-equalities to equalities/ Regularize LP

Mangasarian-Fromovitz CQ (MFCQ) holds

(after deleting redundant equality constraints!)

$$\begin{pmatrix} \underline{i \in \mathcal{P}^{<}} & \underline{i \in \mathcal{P}^{=}} \\ \exists \hat{y} : & (\mathcal{A}^{<})^{\top} \hat{y} < \mathbf{c}^{<} & (\mathcal{A}^{=})^{\top} \hat{y} = \mathbf{c}^{=} \end{pmatrix} \qquad (\mathcal{A}^{=})^{\top} \text{ is onto}$$

MFCQ holds iff dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior point methods! Modelling issue?

Abstract convex program Cone optimization/SDP case

Facial Reduction

Linear Programming Example, $\mathbf{x} \in \mathbb{R}^5$

min
$$\begin{pmatrix} 2 & 6 & -1 & -2 & 7 \end{pmatrix} x$$

s.t. $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & -1 & -1 & 0 & 1 \end{bmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $x \ge 0$

Sum the two constraints:

$$2x_1 + x_4 + x_5 = 0 \implies x_1 = x_4 = x_5 = 0.$$

yields the equivalent simplified problem in a smaller face

min
$$\begin{pmatrix} 6 & -1 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$$

s.t. $\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = 1$
 $x_2, x_3 \ge 0, x_1 = x_4 = x_5 = 0$

Abstract convex program Cone optimization/SDP case

Case of ordinary convex programming, CP

(CP)
$$\sup_{y} b^{\top} y \text{ s.t. } g(y) \leq 0,$$

where

- $b \in \mathbb{R}^m$; $g(y) = (g_i(y)) \in \mathbb{R}^n$, $g_i : \mathbb{R}^m \to \mathbb{R}$ convex $\forall i \in \mathbb{P}$
- Slater's CQ: $\exists \hat{y}$ s.t. $g_i(\hat{y}) < 0, \forall i$ (implies MFCQ)
- Slater's CQ fails <u>implies</u> implicit equality constraints exist, i.e.: $\mathcal{P}^{=} := \{i \in \mathcal{P} : g(y) \le 0 \implies g_i(y) = 0\} \neq \emptyset$ Let $\mathcal{P}^{<} := \mathcal{P} \setminus \mathcal{P}^{=}$ and $g^{<} := (g_i)_{i \in \mathcal{P}^{<}}, g^{=} := (g_i)_{i \in \mathcal{P}^{=}}$

Rewrite implicit equalities to equalities/ Regularize CP

Slater's CQ holds for (CP_{reg})

$$\exists \hat{y} \in \mathcal{F}^{=}: g^{<}(\hat{y}) < 0$$

modelling issue again?

Abstract convex program Cone optimization/SDP case

Faithfully convex case

Faithfully convex function f (Rockafellar70 [8])

f affine on a line segment only if affine on complete line containing the segment (e.g. analytic convex functions)

$\mathcal{F}^{=} = \{ y : g^{=}(y) = 0 \}$ is an affine set

Then:

 $\mathcal{F}^{=} = \{ y : Vy = V\hat{y} \}$ for some \hat{y} and full-row-rank matrix V. Then <u>MFCQ holds</u> for

$$(ext{CP}_{ ext{reg}}) egin{array}{c} \sup & b^ op y \ ext{s.t.} & g^<(y) &\leq 0 \ & Vy &= V \hat{y} \end{array}$$

Applications: QAP, GP, SNL, Molecular conformation ...

Abstract convex program Cone optimization/SDP case

Semidefinite Programming, SDP

$K = S_{+}^{n} = K^{*}$ nonpolyhedral cone!

(SDP-P)
$$V_P = \sup_{y \in \mathbb{R}^m} b^\top y \text{ s.t. } g(y) := \mathcal{A}^* y - c \preceq_{\mathcal{S}^n_+} 0$$

(SDP-D) $V_D = \inf_{x \in \mathcal{S}^n} \langle c, x \rangle \text{ s.t. } \mathcal{A}x = b, \ x \succeq_{\mathcal{S}^n_+} 0$

where

- PSD cone $S^n_+ \subset S^n$ symm. matrices
- $\boldsymbol{c} \in \mathcal{S}^n$, $\boldsymbol{b} \in \mathbb{R}^m$
- $\mathcal{A}: \mathcal{S}^n \to \mathbb{R}^m$ is a linear map, with adjoint \mathcal{A}^*

Abstract convex program Cone optimization/SDP case

Slater's CQ/Theorem of Alternative

Assume that $\exists \tilde{y} \text{ s.t. } c - \mathcal{A}^* \tilde{y} \succeq 0.$ $\exists \hat{y} \text{ s.t. } s = c - \mathcal{A}^* \hat{y} \succ 0$ holds <u>iff</u> $\mathcal{A}d = 0, \ \langle c, d \rangle = 0, \ d \succeq 0 \implies d = 0$ (*)

Abstract convex program Cone optimization/SDP case

Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of K, denoted $F \triangleleft K$, if $x, y \in K$ and $x + y \in F \implies x, y \in F$ $(F \triangleleft K \text{ proper face})$

Conjugate Face

If $F \leq K$, the conjugate face (or complementary face) of F is $F^{c} := F^{\perp} \cap K^{*} \triangleleft K^{*}$ If $\mathbf{x} \in \operatorname{ri}(\mathbf{F})$, then $\mathbf{F}^c = \{\mathbf{x}\}^{\perp} \cap \mathbf{K}^*$.

Minimal Faces

 $f_D := \text{face } \mathcal{F}_D^X \trianglelefteq K^*$,

 $f_P := \text{face } \mathcal{F}_P^s \trianglelefteq K, \qquad \mathcal{F}_P^s$ is primal feasible set \mathcal{F}_{D}^{X} is dual feasible set

Abstract convex program Cone optimization/SDP case

Regularization Using Minimal Face

Borwein-W.'81 [2], $f_P = \text{face } \mathcal{F}_P^s$

(SDP-P) is equivalent to the regularized

$$(SDP_{reg}-P) \qquad v_{RP} := \sup_{y} \{ \langle b, y \rangle : \mathcal{A}^* y \preceq_{f_P} c \}$$

(slack $s = c - A^* y \in f_p$)

Lagrangian Dual DRP Satisfies Strong Duality:

$$(\text{SDP}_{reg}\text{-}\text{D}) \quad V_{DRP} := \inf_{x} \{ \langle c, x \rangle : \mathcal{A} x = b, x \succeq_{f_{P}^{*}} 0 \}$$
$$= V_{P} = V_{RP}$$

and *v_{DRP}* is <u>attained</u>.

Abstract convex program Cone optimization/SDP case

SDP Regularization process

Alternative to Slater CQ

$$\mathcal{A} \boldsymbol{d} = \boldsymbol{0}, \; \langle \boldsymbol{c}, \boldsymbol{d}
angle = \boldsymbol{0}, \; \boldsymbol{0} \neq \boldsymbol{d} \succeq_{\mathcal{S}^n_+} \; \boldsymbol{0} \qquad (*)$$

Determine a proper face $f \triangleleft S^n_+$

Let *d* solve (*) with $d = Pd_+P^{\top}$, $d_+ \succ 0$, and $[P \ Q] \in \mathbb{R}^{n \times n}$ orthogonal. Then

$$\begin{array}{rcl} \boldsymbol{c} - \mathcal{A}^* \boldsymbol{y} \succeq_{\mathcal{S}^n_+} \boldsymbol{0} & \Longrightarrow & \langle \boldsymbol{c} - \mathcal{A}^* \boldsymbol{y}, \boldsymbol{d}^* \rangle = \boldsymbol{0} \\ & \Longrightarrow & \mathcal{F}^s_{P} \subseteq \mathcal{S}^n_+ \cap \{ \boldsymbol{d}^* \}^\perp = \mathcal{Q} \mathcal{S}^{\bar{n}}_+ \, \mathcal{Q}^\top \lhd \mathcal{S}^n_+ \end{array}$$

(implicit rank reduction, $\bar{n} < n$)

Abstract convex program Cone optimization/SDP case

Regularizing SDP

- at most n 1 iterations to satisfy Slater's CQ.
- to check Theorem of Alternative

$$\mathcal{A} oldsymbol{d} = oldsymbol{0}, \; \langle oldsymbol{c}, oldsymbol{d}
angle = oldsymbol{0}, \; oldsymbol{0} \neq oldsymbol{d} \succeq_{\mathcal{S}^n_+} oldsymbol{0}, \qquad (*)$$

use auxiliary problem

$$(AP) \qquad \min_{\delta,d} \ \delta \ \text{ s.t. } \left\| \begin{bmatrix} \mathcal{A}d \\ \langle c, d \rangle \end{bmatrix} \right\|_2 \le \delta,$$
$$\operatorname{trace}(d) = \sqrt{n},$$
$$d \succeq 0.$$

• Both (AP) and its dual satisfy Slater's CQ.

Abstract convex program Cone optimization/SDP case

Regularizing SDP

Minimal face containing $\mathcal{F}_{P}^{s} := \{s : s = c - \mathcal{A}^{*}y \succeq 0\}$

$$f_P = \mathcal{Q}\mathcal{S}^{\bar{n}}_+ \mathcal{Q}^{ op}$$

for some $n \times n$ orthogonal matrix $U = [P \ Q]$

(SPD-P) is equivalent to

$$\sup_{y} b^{\top} y \text{ s.t. } g^{\prec}(y) \leq 0, \ g^{=}(y) = 0,$$

where

$$g^{\prec}(y) := Q^{\top}(\mathcal{A}^*y - c)Q$$
$$g^{=}(y) := \begin{bmatrix} P^{\top}(\mathcal{A}^*y - c)P\\ P^{\top}(\mathcal{A}^*y - c)Q + Q^{\top}(\mathcal{A}^*y - c)P \end{bmatrix}.$$

Slater's CQ holds for the reduced program: $\exists \hat{y} \text{ s.t. } g^{\prec}(y) \prec 0 \text{ and } g^{=}(y) = 0.$

Conclusion Part I

Abstract convex program Cone optimization/SDP case

- Minimal representations of the data regularize (P); use min. face f_P (and/or implicit rank reduction)
- goal: a backwards stable preprocessing algorithm to handle (feasible) conic problems for which Slater's CQ (almost) fails

Part II: Applications of SDP where Slater's CQ fails

Instances of SDP relaxations of NP-hard combinatorial optimization problems with row and column sum and 0, 1 constraints

- Quadratic Assignment (Zhao-Karish-Rendl-W.'96 [10])
- Graph partitioning (W.-Zhao'99 [9])

Low rank problems

- Sensor network localization (SNL) problem (Krislock-W.'10[7], Krislock-Rendl-W.'10[6])
- Molecular conformation (Burkowski-Cheung-W.'11 [3])
- general SDP relaxation of low-rank matrix completion problem

SNL; highly (implicit) degenerate/low rank solutions

SNL (K-W10[7],K-R-W10[6])

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry; easy to describe - dates back to Grasssmann 1886

• r : embedding dimension

- *n* ad hoc wireless sensors $p_1, \ldots, p_n \in \mathbb{R}^r$ to locate in \mathbb{R}^r ;
- *m* of the sensors *p*_{n-m+1},..., *p*_n are anchors (positions known, using e.g. GPS)
- pairwise distances $D_{ij} = ||p_i p_j||^2$, $ij \in E$, are known within radio range R > 0

$$P^{\top} = \begin{bmatrix} p_1 & \dots & p_n \end{bmatrix} = \begin{bmatrix} X^{\top} & A^{\top} \end{bmatrix} \in \mathbb{R}^{r \times n}$$

SNL; highly (implicit) degenerate/low rank solutions

Sensor Localization Problem/Partial EDM

Underlying Graph Realization/Partial EDM NP-Hard

Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \omega)$

- node set $\mathcal{V} = \{1, \ldots, n\}$
- edge set $(i, j) \in \mathcal{E}$; $\omega_{ij} = \| p_i p_j \|^2$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of *G* in ℝ^r: a mapping of nodes v_i → p_i ∈ ℝ^r with squared distances given by ω.

Corresponding Partial Euclidean Distance Matrix, EDM

$$\mathcal{D}_{ij} = \left\{ egin{array}{cc} d_{ij}^2 & ext{if} & (i,j) \in \mathcal{E} \ 0 & ext{otherwise} \ (ext{unknown distance}), \end{array}
ight.$$

 $d_{ij}^2 = \omega_{ij}$ are known squared Euclidean distances between sensors p_i, p_j ; anchors correspond to a clique.

Connections to Semidefinite Programming (SDP)

 $D = \mathcal{K}(B) \in \mathcal{E}^n, B = \mathcal{K}^{\dagger}(D) \in \mathcal{S}^n \cap \mathcal{S}_C$ (centered Be = 0) $P^{\top} = \begin{bmatrix} p_1 & p_2 & \dots & p_n \end{bmatrix} \in \mathcal{M}^{r \times n};$ $B := PP^{\top} \in S^n_+$ (Gram matrix of inner products); rank B = r; let $D \in \mathcal{E}^n$ corresponding EDM; $e = (1 \dots 1)^{\top}$ (to $D \in \mathcal{E}^n$) $D = (\|p_i - p_j\|_2^2)_{i = 1}^n$ $= \left(\boldsymbol{p}_i^T \boldsymbol{p}_i + \boldsymbol{p}_j^T \boldsymbol{p}_j - 2\boldsymbol{p}_i^T \boldsymbol{p}_j\right)_{i,j=1}^{\prime\prime}$ $= \operatorname{diag}(B) \mathbf{e}^{\top} + \mathbf{e} \operatorname{diag}(B)^{\top} - 2B$ $=: \mathcal{D}_e(B) - 2B$ =: $\mathcal{K}(B)$ (from $B \in S^n_{\perp}$).

SNL; highly (implicit) degenerate/low rank solutions

Euclidean Distance Matrices and Semidefinite Matrices

Moore-Penrose Generalized Inverse \mathcal{K}^{\dagger}

$$B \succeq 0 \implies D = \mathcal{K}(B) = \operatorname{diag}(B) e^{\top} + e \operatorname{diag}(B)^{\top} - 2B \in \mathcal{E}$$
$$D \in \mathcal{E} \implies B = \mathcal{K}^{\dagger}(D) = -\frac{1}{2} \operatorname{JoffDiag}(D) J \succeq 0, De = 0$$

Theorem (Schoenberg, 1935)

A (hollow) matrix D (with diag (D) = 0, $D \in S_H$) is a Euclidean distance matrix if and only if

 $B = \mathcal{K}^{\dagger}(D) \succeq 0.$

And

embdim
$$(D) = \operatorname{rank} \left(\mathcal{K}^{\dagger}(D) \right), \quad \forall D \in \mathcal{E}^{n}$$

Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

- $\min_{B \geq 0} \|H \circ (\mathcal{K}(B) D)\|$; rank B = r; typical weights: $H_{ii} = 1/\sqrt{D_{ii}}$, if $ij \in E$, $H_{ij} = 0$ otherwise.
- with rank constraint: a non-convex, NP-hard program
- SDP relaxation is convex, BUT: expensive/low accuracy/implicitly highly degenerate (cliques restrict ranks of feasible Bs)

Instead: (Shall) Take Advantage of Degeneracy!

clique α , $|\alpha| = k$ (corresp. $D[\alpha]$) with embed. dim. $= t \le r < k$ \implies rank $\mathcal{K}^{\dagger}(D[\alpha]) = t \leq r \implies$ rank $\mathcal{B}[\alpha] \leq$ rank $\mathcal{K}^{\dagger}(D[\alpha]) + 1$ \implies rank B = rank $\mathcal{K}^{\dagger}(D) \leq n - |(k - t - 1)| \implies$ Slater's CQ (strict feasibility) fails

SNL; highly (implicit) degenerate/low rank solutions

Basic Single Clique/Facial Reduction

Matrix with Fixed Principal Submatrix

For $Y \in S^n$, $\alpha \subseteq \{1, ..., n\}$: $Y[\alpha]$ denotes principal submatrix formed from rows & cols with indices α .

$ar{D} \in \mathcal{E}^{k}$, $lpha \subseteq 1$: n, |lpha| = k

Define $\mathcal{E}^n(\alpha, \overline{D}) := \{ D \in \mathcal{E}^n : D[\alpha] = \overline{D} \}.$

Given \overline{D} ; find a corresponding $\underline{B} \succeq 0$; find the corresponding face; find the corresponding subspace.

BASIC THEOREM for Single Clique/Facial Reduction

THEOREM 1: Single Clique/Facial Reduction

Let:
$$\overline{D} := D[1:k] \in \mathcal{E}^{k}$$
, $k < n$, embdim $(\overline{D}) = t \le r$;
 $B := \mathcal{K}^{\dagger}(\overline{D}) = \overline{U}_{B}S\overline{U}_{B}^{\top}$, $\overline{U}_{B} \in \mathcal{M}^{k \times t}$, $\overline{U}_{B}^{\top}\overline{U}_{B} = I_{t}$, $S \in \mathcal{S}_{++}^{\top}$;
 $U_{B} := \begin{bmatrix} \overline{U}_{B} & \frac{1}{\sqrt{k}}e \end{bmatrix} \in \mathcal{M}^{k \times (t+1)}$, $U := \begin{bmatrix} U_{B} & 0 \\ 0 & I_{n-k} \end{bmatrix}$, and
 $\begin{bmatrix} V & \frac{U^{\top}e}{\|U^{\top}e\|} \end{bmatrix} \in \mathcal{M}^{n-k+t+1}$ orthogonal. Then:
face $\mathcal{K}^{\dagger} \left(\mathcal{E}^{n}(1:k,\overline{D}) \right) = \left(US_{+}^{n-k+t+1}U^{\top} \right) \cap S_{C} = (UV)S_{+}^{n-k+t}(UV)^{\top}$

Note that the minimal face is defined by the subspace $\mathcal{L} = \mathcal{R}(UV)$. We add $\frac{1}{\sqrt{k}}e$ to represent $\mathcal{N}(\mathcal{K})$; then we use V to eliminate e to recover a <u>centered</u> face.

Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

$$U_1 = \begin{bmatrix} U_1' & 0 \\ U_1'' & 0 \\ 0 & I \end{bmatrix} \text{ and } U_2 = \begin{bmatrix} I & 0 \\ 0 & U_2'' \\ 0 & U_2' \end{bmatrix}$$

Then:

$$U := \begin{bmatrix} U'_1 \\ U''_1 \\ U''_2 (U''_2)^{\dagger} U''_1 \end{bmatrix} \quad \text{or} \quad U := \begin{bmatrix} U'_1 (U''_1)^{\dagger} U''_2 \\ U''_2 \\ U''_2 \\ U''_2 \end{bmatrix}$$

 $(Q_1 =: (U_1'')^{\dagger}U_2'', Q_2 = (U_2'')^{\dagger}U_1''$ orthogonal/rotation) (Efficiently) satisfies

 $\mathcal{R}\left(U\right) = \mathcal{R}\left(U_{1}\right) \cap \mathcal{R}\left(U_{2}\right)$

Two (Intersecting) Clique Explicit Delayed Completion

COR. Intersection with Embedding Dim. r/Completion

Hypotheses of Theorem 2 holds. Let $\overline{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}$, for $i = 1, 2, \ \beta \subseteq \alpha_1 \cap \alpha_2, \gamma := \alpha_1 \cup \alpha_2, \overline{D} := D[\beta], B := \mathcal{K}^{\dagger}(\overline{D}), \quad \overline{U}_{\beta} := \overline{U}(\beta, :), \text{ where } \overline{U} \in \mathcal{M}^{k \times (t+1)} \text{ satisfies}$ intersection equation of Theorem 2. Let $\begin{bmatrix} \bar{V} & \frac{\bar{U}^{T}e}{\|\bar{U}^{T}e\|} \end{bmatrix} \in \mathcal{M}^{t+1}$ be orthogonal. Let $Z := (J\overline{U}_{\beta}\overline{V})^{\dagger}B((J\overline{U}_{\beta}\overline{V})^{\dagger})^{\top}$. If the embedding dimension for \overline{D} is r, THEN t = r in Theorem 2, and $Z \in \mathcal{S}_{+}^{r}$ is the unique solution of the equation $(J\bar{U}_{\beta}\vec{V})Z(J\bar{U}_{\beta}\vec{V})^{\top}=B$, and the exact completion is $D[\gamma] = \mathcal{K} (PP^{\top})$ where $P := UVZ^{\frac{1}{2}} \in \mathbb{R}^{|\gamma| \times r}$

SNL; highly (implicit) degenerate/low rank solutions

Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

- Given $P = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} \in \mathbb{R}^{n \times r}$ such that $D = \mathcal{K}(PP^{\top})$
- Solve the orthogonal Procrustes problem:

$$\begin{array}{ll} \min & \|A - P_2 Q\| \\ \text{s.t.} & Q^\top Q = I \end{array}$$

 $P_2^{\top}A = U\Sigma V^{\top}$ SVD decomposition; set $Q = UV^{\top}$; (Golub/Van Loan79[5], Algorithm 12.4.1)

• Set *X* := *P*₁*Q*

SNL; highly (implicit) degenerate/low rank solutions

Summary: Facial Reduction for Cliques

- Using the basic theorem: each clique corresponds to a Gram matrix/corresponding subspace/corresponding face of SDP cone (implicit rank reduction)
- In the case where two cliques intersect, the union of the cliques correspond to the (efficiently computable) intersection of the corresponding faces/subspaces
- Finally, the positions are determined using a Procrustes problem

Results - Data for Random Noisless Problems

- 2.16 GHz Intel Core 2 Duo, 2 GB of RAM
- Dimension r = 2
- Square region: $[0,1] \times [0,1]$
- m = 9 anchors
- Using only Rigid Clique Union and Rigid Node Absorption
- Error measure: Root Mean Square Deviation

$$\mathsf{RMSD} = \left(\frac{1}{n}\sum_{i=1}^{n} \|\boldsymbol{p}_i - \boldsymbol{p}_i^{\mathsf{true}}\|^2\right)^{1/2}$$

SNL; highly (implicit) degenerate/low rank solutions

Results - Large n (SDP size $O(n^2)$)

n # of Sensors Located

n # sensors \ R	0.07	0.06	0.05	0.04
2000	2000	2000	1956	1374
6000	6000	6000	6000	6000
10000	10000	10000	10000	10000

CPU Seconds

# sensors \ R	0.07	0.06	0.05	0.04
2000	1	1	1	3
6000	5	5	4	4
10000	10	10	9	8

RMSD (over located sensors)

n # sensors \ R	0.07	0.06	0.05	0.04
2000	4e-16	5e-16	6e-16	3e-16
6000	4e-16	4e-16	3e-16	3e-16
10000	3e-16	5e-16	4e-16	4e-16

SNL; highly (implicit) degenerate/low rank solutions

Results - N Huge SDPs Solved

Large-Scale Problems

# sensors	# anchors	radio range	RMSD	Time
20000	9	.025	5e-16	25s
40000	9	.02	8e-16	1m 23s
60000	9	.015	5e-16	3m 13s
100000	9	.01	6e-16	9m 8s

Size of SDPs Solved: $N = \binom{n}{2}$ (# vrbls)

 \mathcal{E}_n (density of \mathcal{G}) = πR^2 ; $M = \mathcal{E}_n(|E|) = \pi R^2 N$ (# constraints) Size of SDP Problems: $M = \begin{bmatrix} 3,078,915 & 12,315,351 & 27,709,309 & 76,969,790 \end{bmatrix}$ $N = 10^9 \begin{bmatrix} 0.2000 & 0.8000 & 1.8000 & 5.0000 \end{bmatrix}$

SNL; highly (implicit) degenerate/low rank solutions

Molecular conformation

- protein structure prediction problems;
- work with Babak et. al.11[1];
- side chain packing.

(see pages 8-22 in alternate pdf file)

Summary Part II

- Instances of degeneracy/failurs of Slater's CQ occur in many applications
- SDP relaxation of SNL is highly (implicitly) degenerate: The feasible set of this SDP is restricted to a low dim. face of the SDP cone, causing the Slater's CQ (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of intersections of faces of the SDP cone corresponding to unions of intersecting cliques
- <u>Without</u> using an SDP-solver (eg. SeDuMi or SDPT3), we quickly compute the exact solution to the SDP relaxation

- B. Alipanahi, N. Krislock, A. Ghodsi, H. Wolkowicz, L. Donaldson, and M. Li, SPROS: An SDP-based protein structure determination from NMR data, URL: compbio.cs.sfu.ca/recomb2011 (Waterloo, Ontario), 2011, poster session at RECOMB2011.
- J.M. Borwein and H. Wolkowicz, *Characterization of optimality for the abstract convex program with finite-dimensional range*, J. Austral. Math. Soc. Ser. A **30** (1980/81), no. 4, 390–411. MR 83i:90156
- F. Burkowski, Y-L. Cheung, and H. Wolkowicz, *Efficient use of semidefinite programming for selection of rotamers in protein conformations*, Tech. Report 30 pages, submitted Dec. 2012, University of Waterloo, Waterloo, Ontario, 2012.

Y-L. Cheung, S. Schurr, and H. Wolkowicz, *Preprocessing and regularization for degenerate semidefinite programs*, Tech. Report CORR 2011-02, URL: www.optimization-online.org/DB_HTML/2011/02/2929.html, University of Waterloo, Waterloo, Ontario, 2011, 49 pages.

- G.H. Golub and C.F. Van Loan, *Matrix computations*, 3nd ed., Johns Hopkins University Press, Baltimore, Maryland, 1996.
- N. Krislock, F. Rendl, and H. Wolkowicz, *Noisy sensor network localization using semidefinite representations and facial reduction*, Tech. Report CORR 2010-01, in progress, University of Waterloo, Waterloo, Ontario, 2010.
- N. Krislock and H. Wolkowicz, *Explicit sensor network localization using semidefinite representations and facial reductions*, SIAM Journal on Optimization **20** (2010), no. 5, 2679–2708.

- R. Tyrrell Rockafellar, Some convex programs whose duals are linearly constrained, Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970), Academic Press, New York, 1970, pp. 293–322.
- H. Wolkowicz and Q. Zhao, Semidefinite programming relaxations for the graph partitioning problem, Discrete Appl. Math. 96/97 (1999), 461–479, Selected for the special Editors' Choice, Edition 1999. MR 1 724 735
- Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz, Semidefinite programming relaxations for the quadratic assignment problem, J. Comb. Optim. 2 (1998), no. 1, 71–109, Semidefinite programming and interior-point approaches for combinatorial optimization problems (Fields Institute, Toronto, ON, 1996). MR 99f:90103

SNL; highly (implicit) degenerate/low rank solutions

Thanks for your attention!

Taking Advantage of Degeneracy in Cone Optimization: with Applications to Sensor Network Localization and Molecular Conformation

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo

February 28, 2013