Taking Advantage of Degeneracy in Cone Optimization: with Applications to Sensor Network Localization and Molecular Conformation

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo
February 28, 2013

Motivation: Loss of Slater CQ/Facial reduction

- optimization algorithms rely on the KKT system; and require that some constraint qualification (CQ) holds (Slater's CQ for convex conic optimization)
- However, surprisingly many conic opt, SDP relaxations, instances arising from applications (QAP, GP, strengthened MC, SNL, POP, Molecular Conformation)
do not satisfy Slater's CQ/are degenerate
- lack of Slater's CQ results in: unbounded dual solutions; theoretical and numerical difficulties, in particular for primal-dual interior-point methods.
- solution:
- theoretical facial reduction (Borwein, W.'81[2])
- preprocess for regularized smaller problem (Cheung, Schurr, W.'11[4])
- take advantage of degeneracy (Krislock, W.'10[7]; Krislock, Rendl, W.'10[6])

Outline: Regularization/Facial Reduction

(9) Preprocessing/Regularization

- Abstract convex program
- LP case
- CP case
- Cone optimization/SDP case
(2) Applications: QAP, GP, SNL, Molecular conformation ... - SNL; highly (implicit) degenerate/low rank solutions

Background/Abstract convex program

(ACP) inf $f(x)$ s.t. $g(x) \preceq_{K} 0, x \in \Omega$

where:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex; $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is K-convex
- $K \subset \mathbb{R}^{m}$ closed convex cone; $\Omega \subseteq \mathbb{R}^{n}$ convex set
- $a \preceq_{K} b \Longleftrightarrow b-a \in K$
- $g(\alpha x+(1-\alpha y)) \preceq_{K} \alpha g(x)+(1-\alpha) g(y)$, $\forall x, y \in \mathbb{R}^{n}, \forall \alpha \in[0,1]$

Slater's CQ: $\exists \hat{x} \in \Omega$ s.t. $g(\hat{x}) \in-\operatorname{int} K \quad\left(g(x) \prec_{K} 0\right)$

- guarantees strong duality
- essential for efficiency/stability in primal-dual interior-point methods

Case of Linear Programming, LP

Primal-Dual Pair:

n) constr. matrix/set

$$
\begin{array}{llllll}
\text { (LP-P) } & \max & b^{\top} y & \text { (LP-D) } & \text { min } & c^{\top} x \\
\text { s.t. } & A^{\top} y \leq c
\end{array} \quad \text { s.t. } A x=b, x \geq 0
$$

Slater's CQ for (LP-P) / Theorem of alternative

$\exists \hat{y}$ s.t. $c-A^{\top} \hat{y}>0, \quad\left(\left(c-A^{\top} \hat{y}\right)_{i}>0, \forall i \in \mathcal{P}=\mathcal{P}^{<}\right)$
iff
$A d=0, c^{\top} d=0, d \geq 0 \Longrightarrow d=0 \quad(*)$

implicit equality constraints:

Finding solution $0 \neq d^{*}$ to $(*)$ with max number of non-zeros determines

$$
d_{i}^{*}>0 \Longrightarrow\left(c-A^{\top} y\right)_{i}=0, \forall y \in \mathcal{F}^{y} \quad\left(i \in \mathcal{P}^{=}\right)
$$

Rewrite implicit-equalities to equalities/ Regularize LP

Facial Reduction: A $y \leq c$; minimal face f

$$
\begin{array}{ccl|lll}
& \max & b^{\top} y \\
\left(\mathrm{LP}_{\text {reg }}-\mathrm{P}\right) & \text { s.t. } & \begin{array}{l}
\text { min } \\
\left(A^{<}\right)^{\top} y \leq c^{<} \\
\left(A^{=}\right)
\end{array} & \left(c^{<}\right)^{\top} x^{<}+\left(c^{=}\right)^{\top} x^{=} \\
& \left(\mathrm{LP}_{\text {reg }} \text {-D }\right) & \text { s.t. } & {\left[A^{<} \quad A^{=}\right]\left(\begin{array}{c}
x \\
x^{<} \\
x^{=}
\end{array}\right)=b} \\
& & & x^{<} \geq 0, x=\text { free }
\end{array}
$$

Mangasarian-Fromovitz CQ (MFCQ) holds

(after deleting redundant equality constraints!)

$$
\left(\begin{array}{cc}
\frac{i \in \mathcal{P}<}{} & \underline{i \in \mathcal{P}^{=}} \\
\exists \hat{y}: & \left(A^{<}\right)^{\top} \hat{y}<c^{<} \\
\left(A^{=}\right)^{\top} \hat{y}=c^{=}
\end{array}\right) \quad\left(A^{=}\right)^{\top} \text { is onto }
$$

MFCQ holds if dual optimal set is compact
Numerical difficulties if MFCQ fails; in particular for interior point methods! Modelling issue?

Facial Reduction

Linear Programming Example,

$$
\begin{aligned}
\min & \left(\begin{array}{lcrrr}
2 & 6 & -1 & -2 & 7
\end{array}\right) x \\
\text { s.t. } & {\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
1 & -1 & -1 & 0 & 1
\end{array}\right] x=\binom{1}{-1} }
\end{aligned}
$$

Sum the two constraints:

$$
2 x_{1}+x_{4}+x_{5}=0 \Longrightarrow x_{1}=x_{4}=x_{5}=0
$$

yields the equivalent simplified problem in a smaller face

$$
\begin{array}{ll}
\min & \left(\begin{array}{ll}
6 & -1
\end{array}\right)\binom{x_{2}}{x_{3}} \\
\text { s.t. } & {\left[\begin{array}{ll}
1 & 1
\end{array}\right]\binom{x_{2}}{x_{3}}=1} \\
& x_{2}, x_{3} \geq 0, x_{1}=x_{4}=x_{5}=0
\end{array}
$$

Case of ordinary convex programming, CP

$$
\text { (CP) } \sup _{y} b^{\top} y \text { s.t. } g(y) \leq 0,
$$

where

- $b \in \mathbb{R}^{m} ; g(y)=\left(g_{i}(y)\right) \in \mathbb{R}^{n}, g_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ convex $\forall i \in \mathbb{P}$
- Slater's CQ: $\exists \hat{y}$ s.t. $g_{i}(\hat{y})<0, \forall i \quad$ (implies MFCQ)
- Slater's CQ fails implies implicit equality constraints exist, i.e.:

$$
\begin{aligned}
& \mathcal{P}^{=}:=\left\{i \in \mathcal{P}: g(y) \leq 0 \Longrightarrow g_{i}(y)=0\right\} \neq \emptyset \\
& \text { Let } \mathcal{P}^{<}:=\mathcal{P} \backslash \mathcal{P}^{=} \text {and } \\
& g^{<}:=\left(g_{i}\right)_{i \in \mathcal{P}<}, g^{=}:=\left(g_{i}\right)_{i \in \mathcal{P}=}
\end{aligned}
$$

Rewrite implicit equalities to equalities/ Regularize CP

(CP) is equivalent to is minimal face

| | sup | $b^{\top} y$ |
| :---: | :---: | :---: | :---: |
| $\left(\mathrm{CP}_{\text {reg }}\right)$ | s.t. | $g^{<}(y) \leq 0$ |
| | $y \in \mathcal{F}=$ | or $\left(g^{=}(y)=0\right)$ |

where $\mathcal{F}^{=}:=\left\{y: g^{=}(y)=0\right\}$. Then

$$
\mathcal{F}^{=}=\left\{y: g^{=}(y) \leq 0\right\}, \quad \text { so is a convex set! }
$$

Slater's CQ holds for ($\mathrm{CP}_{\text {reg }}$)

$$
\exists \hat{y} \in \mathcal{F}^{=}: g^{<}(\hat{y})<0
$$

modelling issue again?

Faithfully convex case

Faithfully convex function f (Rockafellar70 [8])

f affine on a line segment only if affine on complete line containing the segment (e.g. analytic convex functions)
$F^{=}=\left\{y: g^{=}(y)=0\right\}$ is an affine set

Then:
$\mathcal{F}^{=}=\{y: V y=V \hat{y}\} \quad$ for some \hat{y} and full-row-rank matrix V. Then MFCQ holds for

$$
\begin{array}{ccc}
& \text { sup } b^{\top} y \\
\left(\mathrm{CP}_{\mathrm{reg}}\right) & \text { s.t. } g^{<}(y) & \leq 0 \\
& & V y=V \hat{y}
\end{array}
$$

Semidefinite Programming, SDP

$$
\begin{array}{ll}
\text { (SDP-P) } & v_{P}=\sup _{y \in \mathbb{R}^{m}} b^{\top} y \text { s.t. } g(y):=\mathcal{A}^{*} y-c \preceq \mathcal{S}_{+}^{n} 0 \\
\text { (SDP-D) } & v_{D}=\inf _{x \in \mathcal{S}^{n}}\langle c, x\rangle \text { s.t. } \mathcal{A} x=b, x \succeq \mathcal{S}_{+}^{n} 0
\end{array}
$$

where

- PSD cone $\mathcal{S}_{+}^{n} \subset \mathcal{S}^{n}$ symm. matrices
- $c \in \mathcal{S}^{n}, b \in \mathbb{R}^{m}$
- $\mathcal{A}: \mathcal{S}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, with adjoint \mathcal{A}^{*}

Slater's CQ/Theorem of Alternative

Assume that $\exists \tilde{y}$ s.t. $c-\mathcal{A}^{*} \tilde{y} \succeq 0$.

$$
\exists \hat{y} \text { s.t. } s=c-\mathcal{A}^{*} \hat{y} \succ 0
$$

holds iff

$$
\begin{equation*}
\mathcal{A d}=0,\langle c, d\rangle=0, d \succeq 0 \Longrightarrow d=0 \tag{*}
\end{equation*}
$$

Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of K, denoted $F \unlhd K$, if $x, y \in K$ and $x+y \in F \Longrightarrow x, y \in F$ ($F \triangleleft K$ proper face)

Conjugate Face

If $F \unlhd K$, the conjugate face (or complementary face) of F is
$F^{c}:=F^{\perp} \cap K^{*} \unlhd K^{*}$
If $x \in \operatorname{ri}(F)$, then $F^{c}=\{x\}^{\perp} \cap K^{*}$.

Minimal Faces

$f_{P}:=$ face $\mathcal{F}_{P}^{S} \unlhd K, \quad \mathcal{F}_{P}^{S}$ is primal feasible set
$f_{D}:=$ face $\mathcal{F}_{D}^{X} \unlhd K^{*}, \quad \mathcal{F}_{D}^{X}$ is dual feasible set

Regularization Using Minimal Face

Borwein-W: 81 [2], $f_{P}=$ face F_{P}^{s}

(SDP-P) is equivalent to the regularized

$$
\left(\operatorname{SDP}_{r e g}-\mathrm{P}\right) \quad V_{R P}:=\sup _{y}\left\{\langle b, y\rangle: \mathcal{A}^{*} y \preceq_{f_{P}} c\right\}
$$

$\left(\right.$ slack $\left.s=c-\mathcal{A}^{*} y \in f_{p}\right)$

Lagrangian Dual DRP Satisfies Strong Duality:

$$
\begin{aligned}
\left(\mathrm{SDP}_{r e g}-\mathrm{D}\right) \quad v_{D R P} & :=\inf _{x}\left\{\langle c, x\rangle: \mathcal{A} x=b, x \succeq_{f_{P}^{*}} 0\right\} \\
& =v_{P}=v_{R P}
\end{aligned}
$$

and $v_{D R P}$ is attained.

SDP Regularization process

Alternative to Slater CQ

$$
\mathcal{A} d=0,\langle c, d\rangle=0,0 \neq d \succeq_{\mathcal{S}_{+}^{n}} 0
$$

Determine a proper face

Let d solve (*) with $d=P d_{+} P^{\top}, d_{+} \succ 0$, and $[P Q] \in \mathbb{R}^{n \times n}$ orthogonal. Then

$$
\begin{aligned}
c-\mathcal{A}^{*} y \succeq \mathcal{S}_{+}^{n} 0 & \Longrightarrow\left\langle c-\mathcal{A}^{*} y, d^{*}\right\rangle=0 \\
& \Longrightarrow \mathcal{F}_{P}^{s} \subseteq \mathcal{S}_{+}^{n} \cap\left\{d^{*}\right\}^{\perp}=Q \mathcal{S}_{+}^{\bar{n}} Q^{\top} \triangleleft \mathcal{S}_{+}^{n}
\end{aligned}
$$

(implicit rank reduction, $\bar{n}<n$)

Regularizing SDP

- at most $n-1$ iterations to satisfy Slater's CQ.
- to check Theorem of Alternative

$$
\begin{equation*}
\mathcal{A} d=0,\langle c, d\rangle=0,0 \neq d \succeq_{\mathcal{S}_{+}^{n}} 0 \tag{*}
\end{equation*}
$$

use auxiliary problem

$$
\begin{aligned}
(A P) \quad \min _{\delta, d} \delta \text { s.t. } & \left\|\left[\begin{array}{c}
\mathcal{A} d \\
\langle c, d\rangle
\end{array}\right]\right\|_{2} \leq \delta, \\
& \operatorname{trace}(d)=\sqrt{n} \\
& d \succeq 0
\end{aligned}
$$

- Both (AP) and its dual satisfy Slater's CQ.

Regularizing SDP

Minimal face containing

$$
f_{P}=Q \mathcal{S}_{+}^{\bar{n}} Q^{\top}
$$

for some $n \times n$ orthogonal matrix $U=[P Q]$

(SPD-P) is equivalent to

$$
\sup _{y} b^{\top} y \text { s.t. } g^{\prec}(y) \preceq 0, g^{=}(y)=0,
$$

where

$$
\begin{aligned}
& g^{\prec}(y):=Q^{\top}\left(\mathcal{A}^{*} y-c\right) Q \\
& g^{=}(y):=\left[\begin{array}{c}
P^{\top}\left(\mathcal{A}^{*} y-c\right) P \\
P^{\top}\left(\mathcal{A}^{*} y-c\right) Q+Q^{\top}\left(\mathcal{A}^{*} y-c\right) P
\end{array}\right] .
\end{aligned}
$$

Slater's CQ holds for the reduced program:
$\exists \hat{y}$ s.t. $g^{\prec}(y) \prec 0$ and $g^{=}(y)=0$.

Conclusion Part I

- Minimal representations of the data regularize (P); use min. face f_{P} (and/or implicit rank reduction)
- goal: a backwards stable preprocessing algorithm to handle (feasible) conic problems for which Slater's CQ (almost) fails

Part II: Applications of SDP where Slater's CQ fails

Instances of SDP relaxations of NP-hard combinatorial optimization problems with row and column sum and 0,1 constraints

- Quadratic Assignment (Zhao-Karish-Rendl-W.'96 [10])
- Graph partitioning (W.-Zhao'99 [9])

Low rank problems

- Sensor network localization (SNL) problem (Krislock-W.'10[7], Krislock-Rendl-W.'10[6])
- Molecular conformation (Burkowski-Cheung-W.'11 [3])
- general SDP relaxation of low-rank matrix completion problem

SNL (K-W10[7],K-R-W10[6])

Highly (implicit) degenerate/low-rank problem

- high (implicit) degeneracy translates to low rank solutions
- fast, high accuracy solutions

SNL - a Fundamental Problem of Distance Geometry; easy to describe - dates back to Grasssmann 1886

- r : embedding dimension
- n ad hoc wireless sensors $p_{1}, \ldots, p_{n} \in \mathbb{R}^{r}$ to locate in \mathbb{R}^{r};
- m of the sensors p_{n-m+1}, \ldots, p_{n} are anchors (positions known, using e.g. GPS)
- pairwise distances $D_{i j}=\left\|p_{i}-p_{j}\right\|^{2}, i j \in E$, are known within radio range $R>0$
-

$$
P^{\top}=\left[\begin{array}{lll}
p_{1} & \ldots & p_{n}
\end{array}\right]=\left[\begin{array}{ll}
X^{\top} & A^{\top}
\end{array}\right] \in \mathbb{R}^{r \times n}
$$

Sensor Localization Problem/Partial EDM

Underlying Graph Realization/Partial EDM NP-Hard

Graph

- node set $\mathcal{V}=\{1, \ldots, n\}$
- edge set $(i, j) \in \mathcal{E} ; \omega_{i j}=\left\|p_{i}-p_{j}\right\|^{2}$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of \mathcal{G} in \mathbb{R}^{r} : a mapping of nodes $v_{i} \mapsto p_{i} \in \mathbb{R}^{r}$ with squared distances given by ω.

Corresponding Partial Euclidean Distance Matrix, EDM

$$
D_{i j}=\left\{\begin{array}{cl}
d_{i j}^{2} & \text { if }(i, j) \in \mathcal{E} \\
0 & \text { otherwise (unknown distance) }
\end{array}\right.
$$

$d_{i j}^{2}=\omega_{i j}$ are known squared Euclidean distances between sensors p_{i}, p_{j}; anchors correspond to a clique.

Connections to Semidefinite Programming (SDP)

rank $B=r ;$ let $D \in \mathcal{E}^{n}$ corresponding EDM; $e=\left(\begin{array}{lll}1 & \ldots & 1\end{array}\right)^{\top}$

$$
\begin{aligned}
\left(\text { to } D \in \mathcal{E}^{n}\right) \quad D & =\left(\left\|p_{i}-p_{j}\right\|_{2}^{2}\right)_{i, j=1}^{n} \\
& =\left(p_{i}^{\top} p_{i}+p_{j}^{\top} p_{j}-2 p_{i}^{\top} p_{j}\right)_{i, j=1}^{n} \\
& ={\operatorname{diag}(B) e^{\top}+e \operatorname{diag}(B)^{\top}-2 B}_{\mathcal{D}_{e}(B)-2 B} \\
& \left.=: \mathcal{K}(B) \text { (from } B \in \mathcal{S}_{+}^{n}\right) .
\end{aligned}
$$

Euclidean Distance Matrices and Semidefinite Matrices

Moore-Penrose Generalized Inverse

$$
\begin{aligned}
B \succeq 0 & \Longrightarrow \quad D=\mathcal{K}(B)=\operatorname{diag}(B) e^{\top}+e \operatorname{diag}(B)^{\top}-2 B \in \mathcal{E} \\
D \in \mathcal{E} & \Longrightarrow \quad B=\mathcal{K}^{\dagger}(D)=-\frac{1}{2} \operatorname{JoffDiag}(D) J \succeq 0, D e=0
\end{aligned}
$$

Theorem (Schoenberg, 1935)

A (hollow) matrix D (with $\operatorname{diag}(D)=0, D \in S_{H}$) is a
Euclidean distance matrix
if and only if

$$
B=\mathcal{K}^{\dagger}(D) \succeq 0 .
$$

And

$$
\operatorname{embdim}(D)=\operatorname{rank}\left(\mathcal{K}^{\dagger}(D)\right), \quad \forall D \in \mathcal{E}^{n}
$$

Popular Techniques; SDP Relax.; Highly Degen.

Nearest, Weighted, SDP Approx. (relax/discard rank B)

- $\min _{B \succeq 0}\|H \circ(\mathcal{K}(B)-D)\|$; rank $B=r$; typical weights: $H_{i j}=1 / \sqrt{D_{i j}}$, if $i j \in E, H_{i j}=0$ otherwise.
- with rank constraint: a non-convex, NP-hard program
- SDP relaxation is convex, BUT: expensive/low accuracy/implicitly highly degenerate (cliques restrict ranks of feasible Bs)

Instead: (Shall) Take Advantage of Degeneracy!

clique $\alpha,|\alpha|=k$ (corresp. $D[\alpha]$) with embed. dim. $=t \leq r<k$ $\Longrightarrow \operatorname{rank}^{\dagger}(D[\alpha])=t \leq r \Longrightarrow \operatorname{rank} B[\alpha] \leq \operatorname{rank} \mathcal{K}^{\dagger}(D[\alpha])+1$ $\Longrightarrow \operatorname{rank} B=\operatorname{rank} \mathcal{K}^{\dagger}(D) \leq n-(k-t-1) \Longrightarrow$
Slater's CQ (strict feasibility) fails

Basic Single Clique/Facial Reduction

Matrix with Fixed Principal Submatrix

For $Y \in \mathcal{S}^{n}, \alpha \subseteq\{1, \ldots, n\}: Y[\alpha]$ denotes principal submatrix formed from rows \& cols with indices α.

Given \bar{D}; find a corresponding $B \succeq 0$; find the corresponding face; find the corresponding subspace.
if $\alpha=1: k$; embedding dim embdim (\bar{D})

$$
D=\left[\begin{array}{cc}
\bar{D} & \cdot \\
\cdot & \cdot
\end{array}\right] .
$$

BASIC THEOREM for Single Clique/Facial Reduction

THEOREM 1: Single Clique/Facial Reduction

Let: $\bar{D}:=D[1: k] \in \mathcal{E}^{k}, k<n$, embdim $(\bar{D})=t \leq r$;
$B:=\mathcal{K}^{\dagger}(\bar{D})=\bar{U}_{B} S \bar{U}_{B}^{\top}, \bar{U}_{B} \in \mathcal{M}^{k \times t}, \bar{U}_{B}^{\top} \bar{U}_{B}=I_{t}, S \in \mathcal{S}_{++}^{\top} ;$
$U_{B}:=\left[\begin{array}{ll}\bar{U}_{B} & \frac{1}{\sqrt{k}} e\end{array}\right] \in \mathcal{M}^{k \times(t+1)}, U:=\left[\begin{array}{cc}U_{B} & 0 \\ 0 & I_{n-k}\end{array}\right]$, and
$\left[\begin{array}{ll}V & \frac{U^{\top} e}{\left\|U^{\top} e\right\|}\end{array}\right] \in \mathcal{M}^{n-k+t+1}$ orthogonal. Then:

$$
\begin{aligned}
\text { face } \mathcal{K}^{\dagger}\left(\mathcal{E}^{n}(1: k, \bar{D})\right) & =\left(U \mathcal{S}_{+}^{n-k+t+1} U^{\top}\right) \cap \mathcal{S}_{C} \\
& =(U V) \mathcal{S}_{+}^{n-k+t}(U V)^{\top}
\end{aligned}
$$

Note that the minimal face is defined by the subspace $\mathcal{L}=\mathcal{R}(U V)$. We add $\frac{1}{\sqrt{k}}$ e to represent $\mathcal{N}(\mathcal{K})$; then we use V to eliminate e to recover a centered face.

Expense/Work of (Two) Clique/Facial Reductions

Subspace Intersection for Two Intersecting Cliques/Faces

Suppose:

$$
U_{1}=\left[\begin{array}{cc}
U_{1}^{\prime} & 0 \\
U_{1}^{\prime \prime} & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad U_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & U_{2}^{\prime \prime} \\
0 & U_{2}^{\prime}
\end{array}\right]
$$

Then:

$$
U:=\left[\begin{array}{c}
U_{1}^{\prime} \\
U_{1}^{\prime \prime} \\
U_{2}^{\prime}\left(U_{2}^{\prime \prime}\right)^{\dagger} U_{1}^{\prime \prime}
\end{array}\right] \quad \text { or } \quad U:=\left[\begin{array}{c}
U_{1}^{\prime}\left(U_{1}^{\prime \prime}\right)^{\dagger} U_{2}^{\prime \prime} \\
U_{2}^{\prime \prime} \\
U_{2}^{\prime}
\end{array}\right]
$$

$\left(Q_{1}=:\left(U_{1}^{\prime \prime}\right)^{\dagger} U_{2}^{\prime \prime}, Q_{2}=\left(U_{2}^{\prime \prime}\right)^{\dagger} U_{1}^{\prime \prime}\right.$ orthogonal/rotation)
(Efficiently) satisfies

$$
\mathcal{R}(U)=\mathcal{R}\left(U_{1}\right) \cap \mathcal{R}\left(U_{2}\right)
$$

Two (Intersecting) Clique Explicit Delayed Completion

COR. Intersection with Embedding Dim. ז/Completion

Hypotheses of Theorem 2 holds. Let $\bar{D}_{i}:=D\left[\alpha_{i}\right] \in \mathcal{E}^{k_{i}}$, for
$i=1,2, \beta \subseteq \alpha_{1} \cap \alpha_{2}, \gamma:=\alpha_{1} \cup \alpha_{2}, \bar{D}:=D[\beta], B:=$
$\mathcal{K}^{\dagger}(\bar{D}), \quad \bar{U}_{\beta}:=\bar{U}(\beta,:)$, where $\bar{U} \in \mathcal{M}^{k \times(t+1)}$ satisfies
intersection equation of Theorem 2. Let $\left[\begin{array}{ll}\bar{V} & \frac{\bar{U}^{\top} e}{\left\|U^{t} e\right\|}\end{array}\right] \in \mathcal{M}^{t+1}$
be orthogonal. Let $Z:=\left(J \bar{U}_{\beta} \bar{V}\right)^{\dagger} B\left(\left(J \bar{U}_{\beta} \bar{V}\right)^{\dagger}\right)^{\top}$. If the
embedding dimension for \bar{D} is r, THEN $t=r$ in Theorem 2, and $Z \in \mathcal{S}_{+}^{r}$ is the unique solution of the equation
$\left(J \bar{U}_{\beta} \bar{V}\right) Z\left(J \bar{U}_{\beta} \bar{V}\right)^{\top}=B$, and the exact completion is

$$
D[\gamma]=\mathcal{K}\left(P P^{\top}\right) \text { where } P:=U V Z^{\frac{1}{2}} \in \mathbb{R}^{|\gamma| \times r}
$$

Completing SNL (Delayed use of Anchor Locations)

Rotate to Align the Anchor Positions

- Given $P=\left[\begin{array}{l}P_{1} \\ P_{2}\end{array}\right] \in \mathbb{R}^{n \times r}$ such that $D=\mathcal{K}\left(P P^{\top}\right)$
- Solve the orthogonal Procrustes problem:

$$
\begin{array}{cc}
\min & \left\|A-P_{2} Q\right\| \\
\text { s.t. } & Q^{\top} Q=1
\end{array}
$$

$P_{2}^{\top} A=U \Sigma V^{\top}$ SVD decomposition; set $Q=U V^{\top}$;
(Golub/Van Loan79[5], Algorithm 12.4.1)

- Set $X:=P_{1} Q$

Summary: Facial Reduction for Cliques

- Using the basic theorem: each clique corresponds to a Gram matrix/corresponding subspace/corresponding face of SDP cone (implicit rank reduction)
- In the case where two cliques intersect, the union of the cliques correspond to the (efficiently computable) intersection of the corresponding faces/subspaces
- Finally, the positions are determined using a Procrustes problem

Results - Data for Random Noisless Problems

- 2.16 GHz Intel Core 2 Duo, 2 GB of RAM
- Dimension $r=2$
- Square region: $[0,1] \times[0,1]$
- $m=9$ anchors
- Using only Rigid Clique Union and Rigid Node Absorption
- Error measure: Root Mean Square Deviation

$$
\operatorname{RMSD}=\left(\frac{1}{n} \sum_{i=1}^{n}\left\|p_{i}-p_{i}^{\text {tree }}\right\|^{2}\right)^{1 / 2}
$$

Results - Large n
 (SDP size $O\left(n^{2}\right)$)

n\# of Sensors Located

n \# sensors $\backslash R$	0.07	0.06	0.05	0.04
2000	2000	2000	1956	1374
6000	6000	6000	6000	6000
10000	10000	10000	10000	10000

CPU Seconds

\# sensors $\backslash R$	0.07	0.06	0.05	0.04
2000	1	1	1	3
6000	5	5	4	4
10000	10	10	9	8

RMSD (over located sensors)

n \# sensors $\backslash R$	0.07	0.06	0.05	0.04
2000	$4 e-16$	$5 e-16$	$6 e-16$	$3 e-16$
6000	$4 e-16$	$4 e-16$	$3 e-16$	$3 e-16$
10000	$3 e-16$	$5 e-16$	$4 e-16$	$4 e-16$

Results - N Huge SDPs Solved

Large-Scale Problems

\# sensors	\# anchors	radio range	RMSD	Time
20000	9	.025	$5 e-16$	25 s
40000	9	.02	$8 e-16$	1 m 23 s
60000	9	.015	$5 e-16$	3 m 13 s
100000	9	.01	$6 e-16$	9 m 8 s

Size of SDPs Solved: $N=\binom{n}{2}$ (\# vrbls)

$\mathcal{E}_{n}($ density of $\mathcal{G})=\pi R^{2} ; M=\mathcal{E}_{n}(|E|)=\pi R^{2} N$ (\# constraints)
Size of SDP Problems:

$$
\begin{aligned}
& M=\left[\begin{array}{lllll}
3,078,915 & 12,315,351 & 27,709,309 & 76,969,790
\end{array}\right] \\
& N=10^{9}\left[\begin{array}{lllll}
0.2000 & 0.8000 & 1.8000 & 5.0000
\end{array}\right]
\end{aligned}
$$

Molecular conformation

- protein structure prediction problems;
- work with Babak et. al.11[1];
- side chain packing.
(see pages 8-22 in alternate pdf file)

Summary Part II

- Instances of degeneracy/failurs of Slater's CQ occur in many applications
- SDP relaxation of SNL is highly (implicitly) degenerate: The feasible set of this SDP is restricted to a low dim. face of the SDP cone, causing the Slater's CQ (strict feasibility) to fail
- We take advantage of this degeneracy by finding explicit representations of intersections of faces of the SDP cone corresponding to unions of intersecting cliques
- Without using an SDP-solver (eg. SeDuMi or SDPT3), we quickly compute the exact solution to the SDP relaxation
B. Alipanahi, N. Krislock, A. Ghodsi, H. Wolkowicz, L. Donaldson, and M. Li, SPROS: An SDP-based protein structure determination from NMR data, URL: compbio.cs.sfu.ca/recomb2011 (Waterloo, Ontario), 2011, poster session at RECOMB2011.
- J.M. Borwein and H. Wolkowicz, Characterization of optimality for the abstract convex program with finite-dimensional range, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 4, 390-411. MR 83i:90156
(ivi F. Burkowski, Y-L. Cheung, and H. Wolkowicz, Efficient use of semidefinite programming for selection of rotamers in protein conformations, Tech. Report 30 pages, submitted Dec. 2012, University of Waterloo, Waterloo, Ontario, 2012.

圊 Y－L．Cheung，S．Schurr，and H．Wolkowicz，Preprocessing and regularization for degenerate semidefinite programs，Tech． Report CORR 2011－02，URL： www．optimization－online．org／DB＿HTML／2011／02／2929．html， University of Waterloo，Waterloo，Ontario，2011， 49 pages．
in G．H．Golub and C．F．Van Loan，Matrix computations， $3^{\text {nd }}$ ed．， Johns Hopkins University Press，Baltimore，Maryland， 1996.

圁 N．Krislock，F．Rendl，and H．Wolkowicz，Noisy sensor network localization using semidefinite representations and facial reduction，Tech．Report CORR 2010－01，in progress，University of Waterloo，Waterloo，Ontario， 2010.

目 N．Krislock and H．Wolkowicz，Explicit sensor network localization using semidefinite representations and facial reductions，SIAM Journal on Optimization 20 （2010），no．5，2679－2708．

R R. Tyrrell Rockafellar, Some convex programs whose duals are linearly constrained, Nonlinear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970), Academic Press, New York, 1970, pp. 293-322.

E
H. Wolkowicz and Q. Zhao, Semidefinite programming relaxations for the graph partitioning problem, Discrete Appl. Math. 96/97 (1999), 461-479, Selected for the special Editors' Choice, Edition 1999. MR 1724735
(R. Qhao, S.E. Karisch, F. Rendl, and H. Wolkowicz, Semidefinite programming relaxations for the quadratic assignment problem, J. Comb. Optim. 2 (1998), no. 1, 71-109, Semidefinite programming and interior-point approaches for combinatorial optimization problems (Fields Institute, Toronto, ON, 1996). MR 99f:90103

Thanks for your attention!

Taking Advantage of Degeneracy in Cone Optimization: with Applications to Sensor Network Localization and Molecular Conformation

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo
February 28, 2013

