C\&O 769, Topics in Semidefinite Programming and Applications (Winter 2013)
 Assignment 2
 H. Wolkowicz

Due: Tueday Mar. 12, 1:00PM (before class),

1 Linear Transformations

1. Consider the linear transformation

$$
\mathcal{A}: \mathbb{R}^{\mathrm{n}^{2}} \rightarrow \mathbb{R}^{\mathrm{n}^{2}}, \quad \mathcal{A}(\mathrm{x})=\operatorname{vec}(\operatorname{UMat}(\mathrm{x}) \mathrm{U})
$$

where $\mathrm{U} \in \mathcal{S}^{n}, \operatorname{vec}(\mathrm{X})$ is the vectorization of the $\mathfrak{n} \times \mathfrak{n}$ matrix X, columnwise, and Mat $=\mathrm{vec}^{-1}$ forms the matrix from the column vector.
(a) Find the adjoint of \mathcal{A}. (Deduce that \mathcal{A} is self-adjoint.)
(b) Form the matrix representation of \mathcal{A} explicitly in terms of \mathbf{U}. (Hint: Use \otimes. And note that \mathcal{A} is symmetric.)
(c) Suppose that $\mathrm{U} \succeq 0$. Show that \mathcal{A} is a positive semidefinite operator, i.e., show that $\langle x, \mathcal{A} x\rangle \geq 0, \forall x \in \mathbb{R}^{n^{2}}$.
2. Consider the quadratic form $\mathrm{q}: \mathbb{M}^{n} \rightarrow \mathbb{R}$

$$
\mathrm{q}(\mathrm{X})=\langle X, A X B\rangle
$$

where $X \in \mathbb{M}^{n}$ the space of $n \times n$ real matrices and $A, B \in \mathcal{S}^{n}$. Can you extend the above statements to this quadratic form?

2 Nearest Matrix Problems and SNL

Consider the SNL problem with n sensors and m anchors. Assume that you have partial information based on a given radio range.

1. Write down the SNL problem as an ℓ_{2} nearest matrix completion problem. (Use the Gram matrix $B=P P^{\top}$ and the $E D M$ representation $D=\mathcal{K}(B)$ to obtain a quadratic objective function.)
2. Generate some random data with $n=20, m=5$. Solve the SDP relaxation using CVX. Use the optimal solution to get an estimate for the SNL optimum.
