C&O 769, Topics in Semidefinite Programming and Applications (Winter 2013) Assignment 2 H. Wolkowicz

Due: Tueday Mar. 12, 1:00PM (before class),

1 Linear Transformations

1. Consider the linear transformation

$$\mathcal{A}: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}, \qquad \mathcal{A}(x) = \operatorname{vec}(U\operatorname{Mat}(x)U),$$

where $U \in S^n$, vec(X) is the vectorization of the $n \times n$ matrix X, columnwise, and Mat = vec^{-1} forms the matrix from the column vector.

- (a) Find the *adjoint* of \mathcal{A} . (Deduce that \mathcal{A} is self-adjoint.)
- (b) Form the matrix representation of \mathcal{A} explicitly in terms of \mathcal{U} . (Hint: Use \otimes . And note that \mathcal{A} is symmetric.)
- (c) Suppose that $U \succeq 0$. Show that \mathcal{A} is a positive semidefinite operator, i.e., show that $\langle x, \mathcal{A}x \rangle \geq 0, \forall x \in \mathbb{R}^{n^2}$.
- 2. Consider the quadratic form $q: \mathbb{M}^n \to \mathbb{R}$

$$q(X) = \langle X, AXB \rangle,$$

where $X \in \mathbb{M}^n$ the space of $n \times n$ real matrices and $A, B \in S^n$. Can you extend the above statements to this quadratic form?

2 Nearest Matrix Problems and SNL

Consider the SNL problem with n sensors and m anchors. Assume that you have partial information based on a given radio range.

- 1. Write down the SNL problem as an ℓ_2 nearest matrix completion problem. (Use the Gram matrix $B = PP^T$ and the EDM representation $D = \mathcal{K}(B)$ to obtain a quadratic objective function.)
- 2. Generate some random data with n = 20, m = 5. Solve the SDP relaxation using CVX. Use the optimal solution to get an estimate for the SNL optimum.