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Definition: f : D — R, D < R" open convex set

f is a convex function iff
@ (0-order: secant lines lie above the graph)

FOXH(L=A)y) < M(X)+(1-N)f(y),¥0 < A < 1,¥x,y € D.
iff
@ (l-order: tangent planes lie below the graph)
Vi) (y —x) <f(y) —f(x),vx,y €D
iff
© (ll-order: Hessians are psd (curvature) )

V2f(x) = 0,¥x €D  (psd)




Epigraph

Definition:
As above, letf : D — R, D ¢ R" open convex set. Then the
epigraph of f is

epi(f) = {(x,r) e R" xR :x € D,f(x) <r}.

Letf: D — R, D ¢ R" open convex set. Then f is a convex
function if, and only if, epi(f) is a convex set.

The proof is immediate from the O-order characterization,
i.e., from the fact that the secant lines lie above the graph.




Convex Function Preserving Operations

Leth: R — R, g :R" — R and the composition (domains/
differentiability appropriately defined/assumed). And define the
composition

f(x) = h(g(x)).

Then the second derivative

£(x) = h"(g(x))g'(x)? + h'(g(x))g" (x)-

is convex if either condition holds:

© his convex and nondecreasing and g is convex
@ h is convex and nonincreasing and g is concave




Examples of Composite Convex Functions

© g convex implies exp(g(x)) is convex
© g convex, nonnegative, p > 1 implies (g(x))P is convex

© g convex, implies —log(—g(x)) is convex on
{x :g(x) < 0}.




Further Convexity Preserving Operations

Let be convex functions, |’ convex set

© set of convex functions on suitable convex domain D C R"
forms a convex cone, i.e., closed under addition and
nonneg. scalar multipl.: g(x) := Z, Aifi(X), Aj > 0, Vi
(proof: e.g. use 2nd-order Hessian characterization)

Q g(x) := sup; {fi(x)} (proof: use the epigraph
characterization and intersection of epigraphs)

Applications of sup:
O Mnax(A) = max, 1 X" Ax (largest eigenvalue)

Q 9(x) = sup,c [[x — y|| (distance to furthest point in C)




AGM

Arithmetic-Geometric Mean Inequality

Consider max{{/T["; % : >/ ; x; = 1}. We can take logs
and scale without changing the optimal x to get

max{}>i_logxi : Y7L, xi = 1}.

We can use Lagrange multipliers (one multiplier) to get the
Lagrangian L(x, A) = >, logx + A(1 — Y., %;). and

0= VL(x,A) = ((1/x) - A,

i.e., all x; are equal. The optimal solution for > | x; = 1 is
xj = L. Therefore

GM = {/ [T x = % = %Zinzlxi =AM

at the maximum for the GM. Conclusion: GM < AM with
equality if, and only if all x; are equal.

-



Other Inequalities

Similarly: generalized AGM and other inequalities,
e.g., Cauchy-Schwartz and Holder inequalities, can be proved
this way.




Applications of AGM

Problem: Find the open rectangular box with a fixed surface
area Sy that has the largest volume.

Solution

| A\

Sop = X1X2 + 2X1X3 + 2XoX3
& X1Xo+2X1 X3 +2Xo X3
3

3 ((x1%2)Y/3(2x1%3) /3 (2%2%3)/3)
LR NI
3(4)1/3V 2/3

v

and V is max when x;x, = 2x3X3 = 2XoX3 = Sp/3. Yields

So
3

X1 = Xo = %andxgz%
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Thanks for your attention!
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