CO367: Nonlinear Optimization Lecture 8, Thursday Jan. 31, 2013.

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo

February 1, 2013

Definition: $f : D \to \mathbb{R}$, $D \subset \mathbb{R}^n$ open convex set

Definition:

As above, let $f : D \to \mathbb{R}$, $D \subset \mathbb{R}^n$ open convex set. Then the epigraph of f is

 $epi(f) = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : x \in D, f(x) \le r\}.$

Theorem

Let $f : D \to \mathbb{R}$, $D \subset \mathbb{R}^n$ open convex set. Then f is a convex function if, and only if, epi(f) is a convex set.

The proof is immediate from the 0-order characterization, i.e., from the fact that the secant lines lie above the graph.

Let $h : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}$ and the composition (domains/ differentiability appropriately defined/assumed). And define the composition

 $f(\mathbf{x}) = h(g(\mathbf{x})).$

Then the second derivative

 $f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x).$

is convex if either condition holds:

- h is convex and nondecreasing and g is convex
- 2 *h* is convex and nonincreasing and g is concave

Examples of Composite Convex Functions

Let $f_i : D \to \mathbb{R}$ be convex functions, D convex set

- Set of convex functions on suitable convex domain D ⊆ ℝⁿ forms a <u>convex cone</u>, i.e., closed under addition and nonneg. scalar multipl.: g(x) := Σ_{i=1}^k λ_if_i(x), λ_i ≥ 0, ∀i (proof: e.g. use 2nd-order Hessian characterization)
- 2 $g(x) := \sup_{i \in I} \{f_i(x)\}$ (proof: use the epigraph characterization and intersection of epigraphs)

Applications of sup:

- $\lambda_{\max}(A) = \max_{\|x\|=1} x^T A x$ (largest eigenvalue)
- 2 $g(x) := \sup_{y \in C} ||x y||$ (distance to furthest point in *C*)

Arithmetic-Geometric Mean Inequality

Consider $\max\{\sqrt[n]{\prod_{i=1}^{n} x_i} : \frac{1}{n} \sum_{i=1}^{n} x_i = 1\}$. We can take logs and scale without changing the optimal *x* to get

 $\max\{\sum_{i=1}^{n} \log x_i : \sum_{i=1}^{n} x_i = 1\}.$

We can use Lagrange multipliers (one multiplier) to get the Lagrangian $L(x, \lambda) = \sum_{i=1}^{n} \log x_i + \lambda(1 - \sum_{i=1}^{n} x_i)$. and

 $\mathbf{0} = \nabla L(\mathbf{x}, \lambda) = \left((1/\mathbf{x}_i) - \lambda \right),$

i.e., all x_i are equal. The optimal solution for $\sum_{i=1}^{n} x_i = 1$ is $x_i = \frac{1}{n}$. Therefore

 $GM = \sqrt[n]{\prod_{i=1}^{n} x_i} = \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i = AM$ at the maximum for the GM. Conclusion: $GM \le AM$ with equality if, and only if all x_i are equal. Similarly: generalized AGM and other inequalities, e.g., Cauchy-Schwartz and Holder inequalities, can be proved this way.

Applications of AGM

Problem: Find the open rectangular box with a fixed surface area S_0 that has the largest volume.

Solution

$$\begin{array}{rcl} S_{0} & = & x_{1}x_{2} + 2x_{1}x_{3} + 2x_{2}x_{3} \\ & = & 3\left(\frac{x_{1}x_{2} + 2x_{1}x_{3} + 2x_{2}x_{3}}{3}\right) \\ & \geq & 3\left((x_{1}x_{2})^{1/3}(2x_{1}x_{3})^{1/3}(2x_{2}x_{3})^{1/3} \\ & = & 3(4)^{1/3}(x_{1}^{2}x_{2}^{2}x_{3}^{2})^{1/3} \\ & = & 3(4)^{1/3}V^{2/3} \end{array}$$

and *V* is max when $x_1x_2 = 2x_1x_3 = 2x_2x_3 = S_0/3$. Yields $x_1 = x_2 = \sqrt{\frac{S_0}{3}}$ and $x_3 = \frac{1}{2}\frac{S_0}{3}$

Thanks for your attention!

CO367: Nonlinear Optimization Lecture 8, Thursday Jan. 31, 2013.

Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo

February 1, 2013