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UNIVERSITY OF WATERLOO
MIDTERM EXAMINATION

WINTER 2013
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First Name:

Id.#:

Course C&O 367
Course Title Nonlinear Optimization
Instructor Henry Wolkowicz Sect. 001

Date of Exam Wed, Feb. 13, 2013
Time Period 6:00-8:30 P.M., MC 4064
Number of Exam Pages 8
(including this cover sheet)
Exam Type Closed Book/NO calculators
Additional Instructions Write your name AND answers in the booklets provided.

Provide careful justification for your answers.
Show your work/reasoning/arithmetic.
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1 Convex Functions: ==== 15 Marks

===

Let ∅ 6= C ⊆ R
n be a convex set and let f : C → R.

1. Define:

(a) f is a convex function on C;

Solution:

{x, y ∈ C, λ ∈ (0, 1)} =⇒ f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y).
(1)

(b) epi(f), epigraph of f .

Solution:

epi(f) =
{

(r, x) ∈ R
n+1 : r ≥ f(x)

}

region above the graph

2. Prove that f is a convex function if, and only if, epi(f) is a convex set.

Solution: Suppose that (1) above holds and (r, x), (s, y) ∈
epi(f), and λ ∈ (0, 1). Then by definition of epi(f) and λ,
we have λr+ (1−λ)s ≥ λf(x) + (1−λ)f(y). And by (1) we
now conclude that λr + (1 − λ)s ≥ f(λx + (1 − λ)y). This
proves that epi(f) is a convex set.

Now suppose that epi(f) is a convex set. Let x, y ∈ C and
λ ∈ (0, 1). Then the points (f(x), x), (f(y), y) are both in
epi(f). By convexity, we conclude that λ(f(x), x) + (1 −
λ)(f(y), y) ∈ epi(f), i.e., that (1) holds.

3. Let ∅ 6= S ⊆ R
n. Let ‖·‖ denote a norm on R

n. Prove that the distance
to the farthest point of S

f(x) := sup
y∈S

‖x− y‖

is a convex function.

Solution: We observe that the epigraph of the supremum of
convex functions is the intersection of the epigraphs, i.e., if
g(x) := supy∈T h(x, y), then

r ≥ g(x) iff r ≥ h(x, y), ∀y ∈ T.
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And we use the fact that the intersection of convex sets is
a convex set. We conclude using the previous result on the
characterization of convex functions and epigraphs that f(x)
is a convex function.



C&O 367 —- Winter 2013 Midterm Page 5

2 Second Order Approximation: ====

20 Marks ===

1. Consider the function f : R3 → R given by

f(x) = x1x2 + e(x1−x2) + log(x1x3)

(a) What is the gradient and Hessian of f at x = (1, 1, 1)T .

(b) Where is f differentiable? Twice differentiable?

(c) Give a second order approximation of f near x = (1, 1, 1)T . (Use
Taylor’s Theorem.)

(d) Is the direction d = (1, 1, 1)T a descent direction or ascent direc-
tion at the point x = (1, 1, 1)T .

2. Let f : R2 → R and x be defined by

f(x) = 8x2
1 + 8x2

2 − x4
1 − x4

2 − 1, x =

(

1
2
1
2

)

.

(a) What is the gradient and Hessian of f at x?

Solution: ∇f(x) =

(

16x1 − 4x3
1

16x2 − 4x3
2

)

=

(

7.5
7.5

)

,

∇2f(x) =

[

16− 12x2
1 0

0 16− 12x2
2

]

=

[

13 0
0 13

]

We note

that the Hessian is positive definite at x.

(b) Provide a second order approximation for f near x using Tay-
lor’s Theorem. Then compute the minimum x∗ of this quadratic
approximation. Justify whether or not this is a local or global
minimum.

Solution: The quadratic approximation is

m2(y) = f(x) + (y − x)T∇f(x) + 1
2
(y − x)T∇2f(x)(y − x) .

The global minimum can be obtained by taking one step
of Newton’s method from x, i.e.,

x∗ = x− (∇2f(x))−1∇f(x) =

(

1
2
1
2

)

−

[

13 0
0 13

]

−1(
7.5
7.5

)

,
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This follows from the fact that the function is a strictly
convex quadratic and the theorem in the text and in class
notes, that states that Newton’s method finds the global
minimum of a strictly convex quadratic function in one
iteration.
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3 Positive Semidefinite Matrices: ====

5 Marks ===

For each of the following matrices A, find a positive number µ such that A+µI

is positive semidefinite but not positive definite. (Justify your solutions.)

1. A =





3 7 0
7 5 0
0 0 1





2. A =





−3 0 0
0 −5 0
0 0 −1





4 Local Optimum: ==== 5 Marks ===

Show that the function f(x) = (x2−x2
1)

2+x5
1 has only one stationary point.

Show that it is neither a local maximum or a local minimum.

Solution: Set the gradient ∇f(x) =

(

−4x1(x2 − x2
1) + 4x4

1

2(x2 − x2
1)

)

=

0. The second equation implies that x2 = x2
1. Substituting into

the first equation yields x1 = x2 = 0. The Hessian at x = 0

is ∇2f(x) =

[

−4x2 + 12x2
1 + 16x3

1 −4x1

−4x1 2

]

=

[

0 0
0 2

]

, i.e., it is

positive semidefinite but x = 0 is a saddle point as a descent
direction can be found.

5 AGM: ==== 10 Marks ===

Find the minimizer of

f(x1, x2) = 4x1 +
x1

x2
2

+
4x2

x1

Solution: See page 65 of the text.
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6 Quadratic Functions: ==== 15 Marks

===

Suppose that q(x) is a quadratic function of n variables. Find necessary and
sufficient conditions for q(x) to be bounded below. (Prove the results.)

Solution: See problem 6 on assignment 2.


