Surname: \qquad

First Name:

\qquad
Id.\#: \qquad

Course Course Title Instructor	C\&O 367
	Nonlinear Optimization
Henry Wolkowicz Sect. 001	

Contents

1 Convex Functions:

$$
====15 \text { Marks }===3
$$

2 Second Order Approximation: $====\underline{20 \text { Marks }}===5$
3 Positive Semidefinite Matrices: $====\underline{5 \text { Marks }}===7$

4 Local Optimum:
5 AGM:
6 Quadratic Functions: $\quad====\underline{15 \text { Marks }}===8$

1 Convex Functions: $====15$ Marks

$==$
Let $\emptyset \neq C \subseteq \mathbb{R}^{n}$ be a convex set and let $f: C \rightarrow \mathbb{R}$.

1. Define:
(a) f is a convex function on C;

Solution:

$$
\begin{equation*}
\{x, y \in C, \lambda \in(0,1)\} \Longrightarrow f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) . \tag{1}
\end{equation*}
$$

(b) epi (f), epigraph of f.

Solution:

$$
\operatorname{epi}(f)=\left\{(r, x) \in \mathbb{R}^{n+1}: r \geq f(x)\right\} \quad \text { region above the graph }
$$

2. Prove that f is a convex function if, and only if, epi (f) is a convex set.

Solution: Suppose that (1) above holds and $(r, x),(s, y) \in$ $\operatorname{epi}(f)$, and $\lambda \in(0,1)$. Then by definition of epi (f) and λ, we have $\lambda r+(1-\lambda) s \geq \lambda f(x)+(1-\lambda) f(y)$. And by (1) we now conclude that $\lambda r+(1-\lambda) s \geq f(\lambda x+(1-\lambda) y)$. This proves that epi (f) is a convex set.
Now suppose that epi (f) is a convex set. Let $x, y \in C$ and $\lambda \in(0,1)$. Then the points $(f(x), x),(f(y), y)$ are both in epi (f). By convexity, we conclude that $\lambda(f(x), x)+(1-$ $\lambda)(f(y), y) \in \operatorname{epi}(f)$, i.e., that (1) holds.
3. Let $\emptyset \neq S \subseteq \mathbb{R}^{n}$. Let $\|\cdot\|$ denote a norm on \mathbb{R}^{n}. Prove that the distance to the farthest point of S

$$
f(x):=\sup _{y \in S}\|x-y\|
$$

is a convex function.
Solution: We observe that the epigraph of the supremum of convex functions is the intersection of the epigraphs, i.e., if $g(x):=\sup _{y \in T} h(x, y)$, then

$$
r \geq g(x) \text { ff } r \geq h(x, y), \forall y \in T .
$$

And we use the fact that the intersection of convex sets is a convex set. We conclude using the previous result on the characterization of convex functions and epigraphs that $f(x)$ is a convex function.

2 Second Order Approximation: $====$

 20 Marks $==$1. Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
f(x)=x_{1} x_{2}+e^{\left(x_{1}-x_{2}\right)}+\log \left(x_{1} x_{3}\right)
$$

(a) What is the gradient and Hessian of f at $x=(1,1,1)^{T}$.
(b) Where is f differentiable? Twice differentiable?
(c) Give a second order approximation of f near $x=(1,1,1)^{T}$. (Use Taylor's Theorem.)
(d) Is the direction $d=(1,1,1)^{T}$ a descent direction or ascent direction at the point $x=(1,1,1)^{T}$.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and x be defined by

$$
f(x)=8 x_{1}^{2}+8 x_{2}^{2}-x_{1}^{4}-x_{2}^{4}-1, \quad x=\binom{\frac{1}{2}}{\frac{1}{2}} .
$$

(a) What is the gradient and Hessian of f at x ?

$$
\begin{aligned}
& \text { Solution: } \nabla f(x)=\binom{16 x_{1}-4 x_{1}^{3}}{16 x_{2}-4 x_{2}^{3}}=\binom{7.5}{7.5} \\
& \nabla^{2} f(x)=\left[\begin{array}{cc}
16-12 x_{1}^{2} & 0 \\
0 & 16-12 x_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
13 & 0 \\
0 & 13
\end{array}\right] \text { We note }
\end{aligned}
$$ that the Hessian is positive definite at x.

(b) Provide a second order approximation for f near x using Taylor's Theorem. Then compute the minimum x^{*} of this quadratic approximation. Justify whether or not this is a local or global minimum.

Solution: The quadratic approximation is

$$
m_{2}(y)=f(x)+(y-x)^{T} \nabla f(x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(x)(y-x) .
$$

The global minimum can be obtained by taking one step of Newton's method from x, i.e.,

$$
x^{*}=x-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)=\binom{\frac{1}{2}}{\frac{1}{2}}-\left[\begin{array}{cc}
13 & 0 \\
0 & 13
\end{array}\right]^{-1}\binom{7.5}{7.5},
$$

This follows from the fact that the function is a strictly convex quadratic and the theorem in the text and in class notes, that states that Newton's method finds the global minimum of a strictly convex quadratic function in one iteration.

3 Positive Semidefinite Matrices: $====$ $\underline{5 \text { Marks }}==$

For each of the following matrices A, find a positive number μ such that $A+\mu I$ is positive semidefinite but not positive definite. (Justify your solutions.)

1. $A=\left[\begin{array}{lll}3 & 7 & 0 \\ 7 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$
2. $A=\left[\begin{array}{ccc}-3 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -1\end{array}\right]$

4 Local Optimum: $====\underline{5 \text { Marks }}===$

Show that the function $f(x)=\left(x_{2}-x_{1}^{2}\right)^{2}+x_{1}^{5}$ has only one stationary point. Show that it is neither a local maximum or a local minimum.

Solution: Set the gradient $\nabla f(x)=\binom{-4 x_{1}\left(x_{2}-x_{1}^{2}\right)+4 x_{1}^{4}}{2\left(x_{2}-x_{1}^{2}\right)}=$
0 . The second equation implies that $x_{2}=x_{1}^{2}$. Substituting into the first equation yields $x_{1}=x_{2}=0$. The Hessian at $x=0$ is $\nabla^{2} f(x)=\left[\begin{array}{cc}-4 x_{2}+12 x_{1}^{2}+16 x_{1}^{3} & -4 x_{1} \\ -4 x_{1} & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right]$, i.e., it is positive semidefinite but $x=0$ is a saddle point as a descent direction can be found.

5 AGM: $\quad====\underline{10 \text { Marks }===}$

Find the minimizer of

$$
f\left(x_{1}, x_{2}\right)=4 x_{1}+\frac{x_{1}}{x_{2}^{2}}+\frac{4 x_{2}}{x_{1}}
$$

Solution: See page 65 of the text.

6 Quadratic Functions: $====15$ Marks = =

Suppose that $q(x)$ is a quadratic function of n variables. Find necessary and sufficient conditions for $q(x)$ to be bounded below. (Prove the results.)

Solution: See problem 6 on assignment 2 .

