C\&O367: Nonlinear Optimization (Winter 2013)
 Assignment 6
 H. Wolkowicz

Posted Monday, Mar. 18
Due: Thursday, Apr. 4 10:00AM (before class)

1 Dual Convex Programs

1.1 Duality and Perturbation Function

1. Consider the program

$$
\begin{array}{ll}
& \min \\
\text { (P) } & x_{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2} \leq 1 \\
& \\
& x_{1} \geq 1
\end{array}
$$

(a) Verify that (P) is a convex program.

Solution: The objective function x_{2} is a linear function, so is convex. The functions $x_{1}^{2}+x_{2}^{2}-1$ and $1-x_{1}$ are also convex, so the problem is convex.
(b) Can you find a Slater point for (P)?

Solution: The only feasible point is $(1,0)^{\top}$, which is clearly not a Slater point.
(c) Find the optimal value MP and optimum x^{*} for (P). Is χ^{*} a KKT point? Does this contradict the KKT Theorem?

Solution: The only feasible point is $(1,0)^{\top}$, so $x^{*}=(1,0)^{\top}$ and $M P=0$. The Lagrangian is $\mathrm{L}(x, \lambda)=x_{2}+\lambda_{1}\left(x_{1}^{2}+x_{2}^{2}-1\right)-\lambda_{2}\left(1-x_{1}\right)$. For the KKT condition, there must be $\lambda^{*} \geq 0$ such that $\nabla \mathrm{L}\left(x^{*}, \lambda^{*}\right)=0$, so we must have:

$$
\binom{0}{1}+\lambda_{1}^{*}\binom{2}{0}+\lambda_{2}^{*}\binom{-1}{0}=0
$$

It is clear that there is no such a λ^{*}. This does not contradict the KKT theroem, becuase we have no Slater point.
2. Rewrite (P) as

$$
\begin{array}{cl}
\min & f(x):=x_{2} \\
\text { s.t. } & g(x):=1-x_{1} \leq 0 \tag{P2}\\
& x \in C:=\left\{x \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}
\end{array}
$$

(a) Derive the dual function $h(\lambda)$ for (P2) and plot it.

Solution: The Lagrangian is $\mathrm{L}(x, \lambda)=x_{2}+\lambda\left(1-x_{1}\right)$. The Lagrangian dual function is

$$
h(\lambda)=\inf _{x \in C} L(x, \lambda)=\inf _{x \in C}\left\{\left(x_{2}-\lambda x_{1}\right)+\lambda\right\}
$$

It is easy to check that for the optimal solution, $x_{1}^{2}+x_{2}^{2}=1$, otherwise we can increase x_{1} and so reduce the objective function. So our objective fucntion is $-\sqrt{1-x_{1}^{2}}-\lambda x_{1}+\lambda$, where $-1<x_{1}<1$. By taking dervative with respect to x_{1} and putting equal to 0 we have $x_{1}=\frac{\lambda}{\sqrt{\lambda^{2}+1}}$, and so $x_{2}=\frac{-1}{\sqrt{\lambda^{2}+1}}$. Note that you have to choose the sign of x_{1} and x_{2} properly to make the objective function smaller. So we have:

$$
h(\lambda)=\frac{-1-\lambda^{2}}{\sqrt{\lambda^{2}+1}}+\lambda=\lambda-\sqrt{\lambda^{2}+1}
$$

The plot is shown in Figure 1.

Figure 1: $h(\lambda)$.
(b) Derive and solve the dual program. Is the dual optimal value MD equal to MP? Is the dual attained?

Solution: The dual problem is $\sup \left\{\lambda-\sqrt{\lambda^{2}+1}, \lambda \geq 0\right\}$. It is easy to check $\mathrm{MD}=0=\mathrm{MP}$, but it is not attained for the dual problem.
3. Now rewrite (P) as

$$
\begin{array}{cl}
\min & f(x)=x_{2} \\
\text { s.t. } & g_{1}(x)=1-x_{1} \leq 0 \tag{P3}\\
& g_{2}(x):=x_{1}^{2}+x_{2}^{2}-1 \leq 0
\end{array}
$$

(a) Plot the perturbation function $\operatorname{MP}(z), z \in \mathbb{R}^{2}$.

Solution: The perturbation problem is

$$
\begin{array}{lcl}
& \min & f(x)=x_{2} \\
(P 3(z)) & \text { s.t. } & g_{1}(x)=1-z_{1} \leq x_{1} \\
& g_{2}(x):=x_{1}^{2}+x_{2}^{2} \leq 1+z_{2}
\end{array}
$$

The feasible set is non-empty if $z_{2} \geq-1$, and $\left(1-z_{1}\right) \leq \sqrt{1+z_{2}}$. You can use Matlab to solve this problem, but it can also be solved by using the figure. The feasible region is the space inside the shpere such that $1-z_{1} \leq x_{1}$. The minimum value of x_{2} is achieved for a point on the circle created by the intersection of $x_{1}^{2}+x_{2}^{2}=1+z_{2}$ and $x_{1}=1-z_{1}$ if $z_{1} \leq 1$, or $x_{1}=0$ if $z_{1}>1$. So we have $M(z)=-\sqrt{1+z_{2}-\left(1-z_{1}\right)^{2}}$ if $z_{1} \leq 1$, and $\mathcal{M}(z)=-\sqrt{1+z_{2}}$ if $z_{1}>1$. The plot if $\mathcal{M}(z)$ is shown in Figure 2 .
(b) Is there a nontrivial/nonvertical supporting hyperplane to the epigraph of MP?

Solution: It can be seen from the figure, and also can be checked easily by considering the gradient of $M(z)$ close to $\left(z_{1}, z_{2}\right)=(0,0)$ that there is no nontrivial/nonvertical supporting hyperplane to the epigraph of $M P(z)$.

1.2 Quadratic Programs

Consider the convex quadratic program

$$
\begin{array}{ll}
\text { (P3) } \quad & \min \\
\text { s.t. } & \frac{1}{2} x^{\top} \mathrm{A} x \leq \mathrm{b} x
\end{array}
$$

where $x \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$ and H, A, d are appropriate matrices/vectors with H positive definite.

1. Find/derive the Lagrangian dual function $h(\lambda)$ and Lagrangian dual program.

Solution: The lagrangian function is $L(x, \lambda)=\frac{1}{2} x^{\top} H x+d^{\top} x+\lambda^{\top}(A x-b)$ for a vector $\lambda \geq 0$. Note that lagrangian is a convex function of x, so to find

Figure 2: $M P(z)$.
the inf, we take the derivative and put it equal to zero; $\mathrm{Hx}+\mathrm{d}+\mathrm{A}^{\top} \lambda=0$, so $x^{*}=-H^{-1}\left(d+A^{\top} \lambda\right)$ The lagrangian dual function is:

$$
\begin{aligned}
h(\lambda) & =\frac{1}{2}\left(d^{\top}+\lambda^{\top} A\right) H^{-1}\left(d+A^{\top} \lambda\right)-d^{\top} H^{-1}\left(d+A^{\top} \lambda\right)+\lambda^{\top}\left(-A H^{-1}\left(d+A^{\top} \lambda\right)-b\right) \\
& =-\frac{1}{2}\left(d^{\top}+\lambda^{\top} A\right) H^{-1}\left(d+A^{\top} \lambda\right)-\lambda^{\top} b
\end{aligned}
$$

The dual problem is $\max \{h(\lambda): \lambda \geq 0\}$.

2 Trust Region Methods

1. Let $f(x):=10\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$.
(a) Draw the contour lines of the quadratic model/approximation of f at the point $x=(0,-1)^{\top}$.

Solution: If you calculate the gradient and Hessain of f at $x_{c}=(0,-1)^{\top}$, we have $\nabla f\left(x_{c}\right)=(-2-20)^{\top}$ and $\nabla^{2} f\left(x_{c}\right)=\left(\begin{array}{cc}42 & 0 \\ 0 & 20\end{array}\right)$. By substitu-
tion in the formula we have

$$
m(x)=f\left(x_{c}\right)+\nabla f\left(x_{c}\right)^{\top}\left(x-x_{c}\right)+\frac{1}{2}\left(x-x_{c}\right)^{\top} \nabla^{2} f\left(x_{c}\right)\left(x-x_{c}\right)=21 x_{1}^{2}+10 x_{2}^{2}-2 x_{1}+1
$$

The countours $\mathfrak{m}(x)=k$ can be easily drawn by using Matlab for different k.
(b) Draw the family of solutions of the trust region subproblem, TRS, as the trust region varies from $\delta=0$ to $\delta=2$. (Hint: Apply/use the optimality conditions for TRS.)

Solution: \bar{x} is an optimal solution for $\min \left\{\mathfrak{m}(x):\left\|x-x_{c}\right\| \leq \delta\right\}$, if and only if $\left(d=\bar{x}-x_{c}\right)$
(1) $0=\nabla f\left(x_{c}\right)+\nabla^{2} f\left(x_{c}\right) d+\lambda d, \quad \lambda \geq 0$
(2) $\|d\| \leq \delta$
(3) $\lambda(\mid d \|-\delta)=0$
(4) $\nabla^{2} f\left(x_{c}\right)+\lambda I \geq 0$

Here as $\lambda \geq 0$ and $\nabla^{2} f\left(x_{c}\right) \geq 0$, (4) is always satisfied. If we solve (1) we have $d_{1}=\frac{2}{42+\lambda}$ nad $d_{2}=\frac{20}{20+\lambda}$. If $\lambda=0$, then $\left(d_{1}, d_{2}\right)=\left(\frac{1}{21}, 1\right)$. This satisfies constraint (2) for $\delta \geq \sqrt{\frac{1}{21^{2}}+1}=1.0235$. If $\lambda>0$, then by (3) we have $\mid \mathrm{d} \|=\delta$. In this case, we can find λ by solving $\sqrt{\left(\frac{2}{42+\lambda}\right)^{2}+\left(\frac{20}{20+\lambda}\right)^{2}}=\delta$. The points are shown in Figure 3 when we change δ from 2 to 0 .

Figure 3: Solutions for the subproblem when we change δ from 2 to 0 .

3 Penalty and Barrier Methods

1. Consider the program

$$
\begin{array}{lll}
\text { (P) } \quad & \min & f(x)=x_{1}+x_{2} \\
\text { s.t. } & x_{1}^{2}-x_{2} \leq 2
\end{array}
$$

(a) Use the penalty function method with the Courant-Beltrami penalty term to solve (P).

Solution: The penalty function is $P_{k}(x)=x_{1}+x_{2}+k\left[\left(x_{1}^{2}-x_{2}-2\right)^{+}\right]^{2}$. As it is proved in the notes we have

$$
\nabla \mathrm{P}_{\mathrm{k}}(\mathrm{x})=\binom{1+2 \mathrm{k}\left(2 \mathrm{x}_{1}\right)\left(\mathrm{x}_{1}^{2}-\mathrm{x}_{2}-2\right)^{+}}{1-2 \mathrm{k}\left(x_{1}^{2}-x_{2}-2\right)^{+}}
$$

$\nabla P_{k}(x)=0$ doesn't have a solution when $x_{1}^{2}-x_{2}-2 \leq 0$. For $x_{1}^{2}-x_{2}-2>$ 0 , the solution for $\nabla P_{k}(x)=0$ is $\left(\frac{-1}{2}, \frac{-7}{4}-\frac{1}{2 k}\right)^{\top}$, which converges to $x^{*}=\left(\frac{-1}{2}, \frac{-7}{4}\right)^{\top}$. For this point we have $M P=\frac{-9}{4}$.
(b) Show that the objection function $\mathrm{F}_{\mathrm{k}}(\mathrm{x})$ corresponding to the absolute value penalty term has no critical points off the parabola $x_{1}^{2}-x_{2}=2$, for $k>1$, and compute the minimizer of $F_{k}(x)$.

Solution: We have $F_{k}(x)=x_{1}+x_{2}+k\left(x_{1}^{2}-x_{2}-2\right)^{+}$. For the points $x_{1}^{2}-x_{2}>2$, we have $F_{k}(x)=x_{1}+x_{2}+k\left(x_{1}^{2}-x_{2}-2\right)$, and

$$
\nabla \mathrm{F}_{\mathrm{k}}(\mathrm{x})=\binom{1+2 k x_{1}}{1-\mathrm{k}}
$$

It is clear that the second component is always nozero for $k>1$. This means for $k>1$, the minimizer of $F_{k}(x)$ occors on the parabola, so we have $x_{2}=x_{1}^{2}-2$. By substituting this in $x_{1}+x_{2}$, the objective function becomes $x_{1}^{2}-2+x_{1}$. By putting derivative equal to zero we have $x_{1}=\frac{-1}{2}$, and by using $x_{2}=x_{1}^{2}-2$ we have $x_{2}=\frac{-7}{4}$. This means $x=\left(\frac{-1}{2}, \frac{-7}{4}\right)^{T^{2}}$ is the optimal solution for all $F_{k}(x)$.
(c) Solve (P) using the log-barrier method and compare your solution with the one obtained from the penalty function method above.

Solution: For log-barrier function we have $B_{k}(x)=x_{1}+x_{2}-\frac{1}{k} \log (2+$ $x_{2}-x_{1}^{2}$). Then we have:

$$
\nabla \mathrm{B}_{\mathrm{k}}(\mathrm{x})=\binom{1+\frac{2 x_{1}}{\mathrm{k}\left(2+x_{2}-x_{1}^{2}\right)}}{1+\frac{1}{\mathrm{k}\left(2+x_{2}-x_{1}^{2}\right)}}
$$

By solving $\nabla \mathrm{B}_{\mathrm{k}}(\mathrm{x})=0$, we get the solution $\left(\frac{-1}{2}, \frac{-7}{4}+\frac{1}{\mathrm{k}}\right)^{\mathrm{T}}$, which again converges to $x^{*}=\left(\frac{-1}{2}, \frac{-7}{4}\right)^{\top}$.
(d) Confirm that you have the optimal solution using the KKT conditions.

Solution: Use $\lambda^{*}=1$ and $x^{*}=(-1 / 2,-7 / 4)^{\top}$ and apply sufficiency of the KKT conditions for this convex program.
2. Consider the program

$$
\begin{array}{cl}
\min & f(x)=x^{2}+1 \\
\text { s.t. } & 2 \leq x \leq 4, x \in \mathbb{R} \tag{P}
\end{array}
$$

Plot the objective function $f(x)$ and plot the barrier function $B_{t}(x)=f(x)-(1 / t)(\log (x-$ $2)+\log (4-x))$ for various values of $t>0$. Include a plot of the optima $x^{*}(t)$.

Solution: The barrier function for $t=.01,0.1, .5$ is shown in Figure 4. The objective function is shown by dashed line. The derivative set to 0 is:

$$
\begin{aligned}
& 0=2 x-(1 / \mathrm{t})\left(\frac{1}{x-2}-\frac{1}{4-x}\right) \\
& 0=2 \mathrm{tx}(x-2)(4-x)-(4-x)+(x-2) \\
& 0=\operatorname{tx}\left(x^{2}-6 x+8\right)+3-x \\
& 0=t x^{3}-6 t x^{2}+(8 t-1) x+3
\end{aligned}
$$

For any t, we can find a solution for the above inequality in the interval $[2,4]$. This solution as a function of t is shown in Figure 5. The minimizer of the barrier function is also shown in Figure 4 by star. From the figure, x_{t} converges to $x=2$, which is clearly the optimal value of the problem, becuase $x^{2}+1$ is increasing on $[2,4]$.

Figure 4: Barrier function for different values of t.
3. Consider the convex program min $f(x)$ s.t. $g(x) \leq 0$ where f, g are sufficiently smooth/differentiable and f is coercive.
(a) Prove that the associated unconstrained program min $F_{k}(x):=f(x)+\mathrm{kg}^{+}(x)$ has a minimizer χ_{k} for each positive integer k.

Solution: First note that $f(x)$ is a coercive convex function, so it has a minimizer. Let's show the minimizer of $f(x)$ by \bar{x}. We have $g^{+}(x) \geq 0$, this means $F_{k}(x)$ is also coercive. Note that $g^{+}(x)$ is not smooth, but it is continuous, so $F_{k}(x)$ is continuous. Any continuous coercive function attains its minimum. We also have $f(\bar{x})$ as lower bound for $F_{k}(x)$:

$$
F_{k}(x)=f(x)+\mathrm{kg}^{+}(x) \geq f(x) \geq f(\bar{x}), \quad \forall x
$$

(b) Prove that if the gradient of $\phi_{k}(x)=f(x)+k g(x)$ is nonzero for all nonfeasible points for (P), then x_{k} must be feasible for (P).

Solution: Note that for the points $g(x)>0$, we have $F_{k}(x)=\phi_{k}(x)$, and $F_{k}(x)$ is smooth. If x_{k} is infeasible, this means $g(x)>0$, so $F_{k}(s)$ is smooth at x_{k}. By first order necessary condition, we must have $\nabla F_{k}\left(x_{k}\right)=$ $\nabla \phi_{\mathrm{k}}(\mathrm{x})=0$. This is a contradiction to the gradient of $\phi_{\mathrm{k}}(\mathrm{x})$ is nonzero for all nonfeasible points.

Figure 5: x_{t} as a function of t.
(c) Show by example that the sequence $\left\{x_{k}\right\}$ may converge to a point x^{*} that is not a solution of (P). (Hint: Try a simple inconsistent program (P).)

Solution: Consider the minimization problem $\min \left\{x^{2}: x^{2}+1 \leq 0\right\}$. This problem is infeasible. We have $F_{k}(x)=(k+1) x^{2}+k . x=0$ is the minimizer for all $F_{k}(x)$, but it is clearly not the solution for our problem.

4 Optimization with Equality Constraints

NOTE: The problems in this section can be handed in late - till April 11. The marks will be treated as bonus marks.

1. Consider the program

$$
\begin{array}{cl}
\min & f(x):=x^{2}+y^{2} \\
\text { s.t. } & h(x):=(x-2)^{3}-y^{2}=0 . \tag{P}
\end{array}
$$

(a) Show that (P) admits no Lagrange multipliers and explain why.

Solution The Lagrangian would be $L(x, y, \mu)=x^{2}+y^{2}+\mu\left((x-2)^{3}-y^{2}\right)$.
Taking the gradient and set it equal to zero we have:

$$
\begin{align*}
& \nabla \mathrm{L}_{x}(x, y, \mu)=2 x+3 \mu(x-2)^{2}=0 \tag{1}\\
& \nabla \mathrm{~L}_{y}(x, y, \mu)=2 y-2 \mu y=0 \tag{2}
\end{align*}
$$

(2) implies that $\mu=1$. Substituting this value of μ into (1) gives us $3 x^{2}-10 x+12=0$, which has no real solution. Thus, there cannot be any real value of μ that simultaneously solves this system.
(b) Solve this problem graphically.

Solution: In the feasible region, we have $x \geq 2$. The feasible region is shown by red in Figure 6. The circle centered at the origin with the minimum radius is also shown that has raduis 2 and touchs the feasible region at point $(x, y)^{\top}=(2,0)$.
(c) What happens if you apply the Beltrami-Courant quadratic penalty function method? (I.e. use the quadratic penalty function $F_{k}(x)=f(x)+\frac{1}{2} k h(x)^{\top} h(x)$.

Solution: Applying the penalty function method, you get the following function

$$
F_{k}(x, y)=x^{2}+y^{2}+\frac{1}{2} k\left((x-2)^{3}-y^{2}\right)^{2}
$$

Differentiating this, we get

$$
\begin{aligned}
& \nabla F_{x}(x, y)=2 x+k\left((x-2)^{3}-y^{2}\right)\left(3(x-2)^{2}\right)=0 \\
& \nabla F_{y}(x, y)=2 y+k\left((x-2)^{3}-y^{2}\right)(-2 y)=0
\end{aligned}
$$

From the second equation, we have $y=0$, or $k\left((x-2)^{3}-y^{2}\right)=1$. It is easy to check that the second one does not work. By substituting $y=0$ in the first equation, we have $2 x+k(x-2)^{5}=0$. It can be solved numerically for different values of k, and it can be seen that the value of χ_{k} converges to 2 , but the rate of convergence in really slow. We can see that $x_{100}=1.5969, x_{1000}=1.7412$, and $x_{10000}=1.8350$.

Figure 6: Problem 4-1(b).
2. Determine all maxima and minima of $f(x, y, z)=x z+y^{2}$ on the sphere $x^{2}+y^{2}+z^{2}=4$.

Solution: We can start by taking the Lagrangian function:

$$
\mathrm{L}(x, y, z, \mu)=x z+y^{2}+\mu\left(x^{2}+y^{2}+z^{2}-4\right)
$$

If we take the gradient and set equal to zero we have:

$$
\begin{align*}
& \nabla \mathrm{L}_{x}(x, y, z, \mu)=z+2 \mu x=0 \tag{1}\\
& \nabla \mathrm{~L}_{y}(x, y, z, \mu)=2 y+2 \mu y=0 \tag{2}\\
& \nabla \mathrm{~L}_{z}(x, y, z, \mu)=x+2 \mu z=0 \tag{3}
\end{align*}
$$

From (2) we have $y=0$ or $\mu=-1$. By $\mu=-1$, from (1) and (3) we have $x=z=0$, and then from $x^{2}+y^{2}+z^{2}=0$ we have $y= \pm 2$. By using $y=0$, by substitution we can get $x= \pm \sqrt{2}$ and $z= \pm \sqrt{2}$. Hence we get 4 points $(\pm \sqrt{2}, 0, \pm \sqrt{2})^{\top}$ which are minimum with objective value 2 , and 2 points $(0, \pm 2,0)^{\top}$ which are maximum with objective value 4 .
3. Consider the Beltrami-Courant quadratic penalty function applied to

$$
\min -x_{1} x_{2} x_{3} \text { s.t. } 72-x_{1}-2 x_{2}-2 x_{3}=0
$$

(a) Solve the problem using the quadratic penalty function method.

Solution: The penalty function is

$$
F_{k}\left(x_{1}, x_{2}, x_{3}\right)=-x_{1} x_{2} x_{3}+\frac{1}{2} k\left(72-x_{1}-2 x_{2}-2 x_{3}\right)^{2}
$$

We can solve this numerically using Matlab to see that the optimal solutoin is $x^{*}=(24,12,12)^{\top}$.
(b) Verify that the explicit expression for $x(k)$ is given by $x_{2}=x_{3}=24 /(1+\sqrt{1-8 / k})$ and $x_{1}=2 x_{2}$, i.e. verify that this point satisfies stationarity for F_{k}.

Solution: By taking the gradient of F_{k} and setting equal to zero we have:

$$
\begin{aligned}
& \nabla_{x_{1}} F_{k}\left(x_{1}, x_{2}, x_{3}\right)=-x_{2} x_{3}-k\left(72-x_{1}-2 x_{2}-2 x_{3}\right)=0 \\
& \nabla_{x_{2}} F_{k}\left(x_{1}, x_{2}, x_{3}\right)=-x_{1} x_{3}-2 k\left(72-x_{1}-2 x_{2}-2 x_{3}\right)=0 \\
& \nabla_{x_{3}} F_{k}\left(x_{1}, x_{2}, x_{3}\right)=-x_{1} x_{2}-2 k\left(72-x_{1}-2 x_{2}-2 x_{3}\right)=0
\end{aligned}
$$

By simple substitution we can see that $x_{2}=x_{3}=24 /(1+\sqrt{1-8 / k})$ and $x_{1}=2 x_{2}$ satisfy the above equations.
(c) Verify that $x(k) \rightarrow x^{*}$ as $k \rightarrow \infty$.

Solution: By the relations given in part (b), it is clear that $x(k) \rightarrow$ $(24,12,12)^{\top}$
(d) Find $x(k)$ when $k=9$ and verify that the Hessian of F_{9} is positive definite.

Solution: For $k=9$, we have $x(k)=(36,18,18)^{\top}$. For the Hessian we have

$$
\begin{aligned}
\nabla^{2} F_{k}(x) & =\left[\begin{array}{ccc}
k & -x_{3}+2 k & -x_{2}+2 k \\
-x_{3}+2 k & 4 k & -x_{1}+4 k \\
-x_{2}+2 k & -x_{1}+4 k & 4 k
\end{array}\right] \\
\nabla^{2} F_{9}(x(9)) & =9\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

which is positive definite.

