C&O367: Nonlinear Optimization (Winter 2013) Assignment 6 H. Wolkowicz

Posted Monday, Mar. 18

Due: Thursday, Apr. 4 10:00AM (before class)

1 Dual Convex Programs

1.1 Duality and Perturbation Function

1. Consider the program

(P)
$$\min_{\substack{\text{s.t.} \\ x_1^2 + x_2^2 \le 1 \\ x_1 \ge 1}} x_1 \ge 1$$

(a) Verify that (P) is a convex program.

Solution: The objective function x_2 is a linear function, so is convex. The functions $x_1^2 + x_2^2 - 1$ and $1 - x_1$ are also convex, so the problem is convex.

(b) Can you find a Slater point for (P)?

Solution: The only feasible point is $(1, 0)^T$, which is clearly not a Slater point.

(c) Find the optimal value MP and optimum x^* for (P). Is x^* a KKT point? Does this contradict the KKT Theorem?

Solution: The only feasible point is $(1, 0)^T$, so $x^* = (1, 0)^T$ and MP = 0. The Lagrangian is $L(x, \lambda) = x_2 + \lambda_1(x_1^2 + x_2^2 - 1) - \lambda_2(1 - x_1)$. For the KKT condition, there must be $\lambda^* \ge 0$ such that $\nabla L(x^*, \lambda^*) = 0$, so we must have:

$$\begin{pmatrix} 0\\1 \end{pmatrix} + \lambda_1^* \begin{pmatrix} 2\\0 \end{pmatrix} + \lambda_2^* \begin{pmatrix} -1\\0 \end{pmatrix} = 0$$

It is clear that there is no such a λ^* . This does not contradict the KKT theroem, because we have no Slater point.

2. Rewrite (P) as

(P2)
$$\begin{array}{ll} \min & f(x) := x_2 \\ \text{s.t.} & g(x) := 1 - x_1 \leq 0 \\ & x \in C := \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \leq 1\} \end{array}$$

(a) Derive the dual function $h(\lambda)$ for (P2) and plot it.

Solution: The Lagrangian is $L(x,\lambda)=x_2+\lambda(1-x_1).$ The Lagrangian dual function is

$$h(\lambda) = \inf_{x \in C} L(x, \lambda) = \inf_{x \in C} \{(x_2 - \lambda x_1) + \lambda\}$$

It is easy to check that for the optimal solution, $x_1^2 + x_2^2 = 1$, otherwise we can increase x_1 and so reduce the objective function. So our objective fucntion is $-\sqrt{1-x_1^2}-\lambda x_1+\lambda$, where $-1 < x_1 < 1$. By taking dervative with respect to x_1 and putting equal to 0 we have $x_1 = \frac{\lambda}{\sqrt{\lambda^2+1}}$, and so $x_2 = \frac{-1}{\sqrt{\lambda^2+1}}$. Note that you have to choose the sign of x_1 and x_2 properly to make the objective function smaller. So we have:

$$h(\lambda) = \frac{-1 - \lambda^2}{\sqrt{\lambda^2 + 1}} + \lambda = \lambda - \sqrt{\lambda^2 + 1}$$

The plot is shown in Figure 1.

Figure 1: $h(\lambda)$.

(b) Derive and solve the dual program. Is the dual optimal value MD equal to MP? Is the dual attained?

Solution: The dual problem is $\sup\{\lambda - \sqrt{\lambda^2 + 1}, \lambda \ge 0\}$. It is easy to check MD= 0 =MP, but it is not attained for the dual problem.

3. Now rewrite (P) as

(P3)
$$\begin{array}{ll} \min & f(x) = x_2 \\ \mathrm{s.t.} & g_1(x) = 1 - x_1 \leq 0 \\ & g_2(x) := x_1^2 + x_2^2 - 1 \leq 0 \end{array}$$

(a) Plot the perturbation function $MP(z), z \in \mathbb{R}^2$.

Solution: The perturbation problem is

(P3(z)) min
$$f(x) = x_2$$

s.t. $g_1(x) = 1 - z_1 \le x_1$
 $g_2(x) := x_1^2 + x_2^2 \le 1 + z_2$

The feasible set is non-empty if $z_2 \ge -1$, and $(1-z_1) \le \sqrt{1+z_2}$. You can use Matlab to solve this problem, but it can also be solved by using the figure. The feasible region is the space inside the shpere such that $1-z_1 \le x_1$. The minimum value of x_2 is achieved for a point on the circle created by the intersection of $x_1^2 + x_2^2 = 1 + z_2$ and $x_1 = 1 - z_1$ if $z_1 \le 1$, or $x_1 = 0$ if $z_1 > 1$. So we have $M(z) = -\sqrt{1+z_2} - (1-z_1)^2$ if $z_1 \le 1$, and $M(z) = -\sqrt{1+z_2}$ if $z_1 > 1$. The plot if M(z) is shown in Figure 2.

(b) Is there a nontrivial/nonvertical supporting hyperplane to the epigraph of MP?

Solution: It can be seen from the figure, and also can be checked easily by considering the gradient of M(z) close to $(z_1, z_2) = (0, 0)$ that there is no nontrivial/nonvertical supporting hyperplane to the epigraph of MP(z).

1.2 Quadratic Programs

Consider the convex quadratic program

(P3)
$$\min_{\substack{1 \\ \text{s.t.}}} \frac{\frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathsf{H} \mathbf{x} + \mathbf{d}^{\mathsf{T}} \mathbf{x}}{\text{s.t.}} \mathbf{A} \mathbf{x} \le \mathbf{b}$$

where $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$ and H, A, d are appropriate matrices/vectors with H positive definite.

1. Find/derive the Lagrangian dual function $h(\lambda)$ and Lagrangian dual program.

Solution: The lagrangian function is $L(x, \lambda) = \frac{1}{2}x^{T}Hx + d^{T}x + \lambda^{T}(Ax - b)$ for a vector $\lambda \ge 0$. Note that lagrangian is a convex function of x, so to find

Figure 2: MP(z).

the inf, we take the derivative and put it equal to zero; $Hx + d + A^T\lambda = 0$, so $x^* = -H^{-1}(d + A^T\lambda)$ The lagrangian dual function is:

$$\begin{aligned} h(\lambda) &= \frac{1}{2} (d^{\mathsf{T}} + \lambda^{\mathsf{T}} A) \mathsf{H}^{-1} (d + A^{\mathsf{T}} \lambda) - d^{\mathsf{T}} \mathsf{H}^{-1} (d + A^{\mathsf{T}} \lambda) + \lambda^{\mathsf{T}} (-A \mathsf{H}^{-1} (d + A^{\mathsf{T}} \lambda) - b) \\ &= -\frac{1}{2} (d^{\mathsf{T}} + \lambda^{\mathsf{T}} A) \mathsf{H}^{-1} (d + A^{\mathsf{T}} \lambda) - \lambda^{\mathsf{T}} b \end{aligned}$$

The dual problem is $\max\{h(\lambda) : \lambda \ge 0\}$.

2 Trust Region Methods

1. Let $f(x) := 10(x_2 - x_1^2)^2 + (1 - x_1)^2$.

(a) Draw the contour lines of the quadratic model/approximation of f at the point $x = (0, -1)^{T}$.

Solution: If you calculate the gradient and Hessain of f at $x_c = (0, -1)^T$, we have $\nabla f(x_c) = (-2 - 20)^T$ and $\nabla^2 f(x_c) = \begin{pmatrix} 42 & 0 \\ 0 & 20 \end{pmatrix}$. By substitu-

tion in the formula we have

$$\mathbf{m}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_c) + \nabla \mathbf{f}(\mathbf{x}_c)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_c) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_c)^{\mathsf{T}} \nabla^2 \mathbf{f}(\mathbf{x}_c)(\mathbf{x} - \mathbf{x}_c) = 21\mathbf{x}_1^2 + 10\mathbf{x}_2^2 - 2\mathbf{x}_1 + 10\mathbf{x}_2^2 - 2$$

The countours $\mathfrak{m}(x) = k$ can be easily drawn by using Matlab for different k.

(b) Draw the family of solutions of the trust region subproblem, TRS, as the trust region varies from $\delta = 0$ to $\delta = 2$. (Hint: Apply/use the optimality conditions for TRS.)

Solution: \bar{x} is an optimal solution for $\min\{m(x) : \|x - x_c\| \le \delta\}$, if and only if $(d = \bar{x} - x_c)$

$$\begin{array}{ll} (1) & 0 = \nabla f(x_c) + \nabla^2 f(x_c) d + \lambda d, & \lambda \ge 0 \\ (2) & \|d\| \le \delta \\ (3) & \lambda(|d\| - \delta) = 0 \\ (4) & \nabla^2 f(x_c) + \lambda I \ge 0 \end{array}$$

Here as $\lambda \geq 0$ and $\nabla^2 f(\mathbf{x}_c) \geq 0$, (4) is always satisfied. If we solve (1) we have $\mathbf{d}_1 = \frac{2}{42+\lambda}$ nad $\mathbf{d}_2 = \frac{20}{20+\lambda}$. If $\lambda = 0$, then $(\mathbf{d}_1, \mathbf{d}_2) = (\frac{1}{21}, 1)$. This satisfies constraint (2) for $\delta \geq \sqrt{\frac{1}{21^2} + 1} = 1.0235$. If $\lambda > 0$, then by (3) we have $|\mathbf{d}|| = \delta$. In this case, we can find λ by solving $\sqrt{(\frac{2}{42+\lambda})^2 + (\frac{20}{20+\lambda})^2} = \delta$. The points are shown in Figure 3 when we change δ from 2 to 0.

Figure 3: Solutions for the subproblem when we change δ from 2 to 0.

3 Penalty and Barrier Methods

1. Consider the program

(P)
$$\min_{\text{s.t.}} f(x) = x_1 + x_2$$

s.t. $x_1^2 - x_2 \le 2$

(a) Use the penalty function method with the Courant-Beltrami penalty term to solve (P).

Solution: The penalty function is $P_k(x) = x_1 + x_2 + k[(x_1^2 - x_2 - 2)^+]^2$. As it is proved in the notes we have

$$\nabla P_{k}(x) = \begin{pmatrix} 1 + 2k(2x_{1})(x_{1}^{2} - x_{2} - 2)^{+} \\ 1 - 2k(x_{1}^{2} - x_{2} - 2)^{+} \end{pmatrix}$$

 $\begin{array}{l} \nabla P_k(x)=0 \ {\rm doesn't\ have\ a\ solution\ when\ } x_1^2-x_2-2\leq 0. \ {\rm For\ } x_1^2-x_2-2>\\ 0,\ {\rm the\ solution\ for\ } \nabla P_k(x)\ =\ 0 \ {\rm is\ } (\frac{-1}{2},\frac{-7}{4}-\frac{1}{2k})^T, \ {\rm which\ converges\ to\ } x^*=(\frac{-1}{2},\frac{-7}{4})^T. \ {\rm For\ this\ point\ we\ have\ } MP=\frac{-9}{4}. \end{array}$

(b) Show that the objection function $F_k(x)$ corresponding to the absolute value penalty term has no critical points off the parabola $x_1^2 - x_2 = 2$, for k > 1, and compute the minimizer of $F_k(x)$.

Solution: We have $F_k(x) = x_1 + x_2 + k(x_1^2 - x_2 - 2)^+$. For the points $x_1^2 - x_2 > 2$, we have $F_k(x) = x_1 + x_2 + k(x_1^2 - x_2 - 2)$, and

$$\nabla F_{k}(x) = \left(\begin{array}{c} 1+2kx_{1}\\ 1-k \end{array}\right)$$

It is clear that the second component is always nozero for k > 1. This means for k > 1, the minimizer of $F_k(x)$ occors on the parabola, so we have $x_2 = x_1^2 - 2$. By substituting this in $x_1 + x_2$, the objective function becomes $x_1^2 - 2 + x_1$. By putting derivative equal to zero we have $x_1 = \frac{-1}{2}$, and by using $x_2 = x_1^2 - 2$ we have $x_2 = \frac{-7}{4}$. This means $x = (\frac{-1}{2}, \frac{-7}{4})^T$ is the optimal solution for all $F_k(x)$.

(c) Solve (P) using the log-barrier method and compare your solution with the one obtained from the penalty function method above.

Solution: For log-barrier function we have $B_k(x)=x_1+x_2-\frac{1}{k}\log(2+x_2-x_1^2).$ Then we have:

$$\nabla B_{k}(x) = \begin{pmatrix} 1 + \frac{2x_{1}}{k(2+x_{2}-x_{1}^{2})} \\ 1 + \frac{1}{k(2+x_{2}-x_{1}^{2})} \end{pmatrix}$$

By solving $\nabla B_k(x) = 0$, we get the solution $(\frac{-1}{2}, \frac{-7}{4} + \frac{1}{k})^T$, which again converges to $x^* = (\frac{-1}{2}, \frac{-7}{4})^T$.

(d) Confirm that you have the optimal solution using the KKT conditions.

Solution: Use $\lambda^* = 1$ and $x^* = (-1/2, -7/4)^T$ and apply sufficiency of the KKT conditions for this convex program.

2. Consider the program

(P)
$$\begin{array}{c} \min \quad f(x) = x^2 + 1 \\ \text{s.t.} \quad 2 \le x \le 4, x \in \mathbb{R} \end{array}$$

Plot the objective function f(x) and plot the barrier function $B_t(x) = f(x) - (1/t)(\log(x-2) + \log(4-x))$ for various values of t > 0. Include a plot of the optima $x^*(t)$.

Solution: The barrier function for t = .01, 0.1, .5 is shown in Figure 4. The objective function is shown by dashed line. The derivative set to 0 is:

$$0 = 2x - (1/t) \left(\frac{1}{x-2} - \frac{1}{4-x}\right)$$

$$0 = 2tx(x-2)(4-x) - (4-x) + (x-2)$$

$$0 = tx(x^2 - 6x + 8) + 3 - x$$

$$0 = tx^3 - 6tx^2 + (8t - 1)x + 3$$

For any t, we can find a solution for the above inequality in the interval [2, 4]. This solution as a function of t is shown in Figure 5. The minimizer of the barrier function is also shown in Figure 4 by star. From the figure, x_t converges to x = 2, which is clearly the optimal value of the problem, because $x^2 + 1$ is increasing on [2, 4].

Figure 4: Barrier function for different values of t.

- 3. Consider the convex program $\min f(x)$ s.t. $g(x) \le 0$ where f, g are sufficiently smooth/differentiable and f is coercive.
 - (a) Prove that the associated unconstrained program $\min F_k(x) := f(x) + kg^+(x)$ has a minimizer x_k for each positive integer k.

Solution: First note that f(x) is a coercive convex function, so it has a minimizer. Let's show the minimizer of f(x) by \bar{x} . We have $g^+(x) \ge 0$, this means $F_k(x)$ is also coercive. Note that $g^+(x)$ is not smooth, but it is continuous, so $F_k(x)$ is continuous. Any continuous coercive function attains its minimum. We also have $f(\bar{x})$ as lower bound for $F_k(x)$:

$$F_k(x) = f(x) + kg^+(x) \ge f(x) \ge f(\bar{x}), \quad \forall x$$

(b) Prove that if the gradient of $\phi_k(x) = f(x) + kg(x)$ is nonzero for all nonfeasible points for (P), then x_k must be feasible for (P).

Solution: Note that for the points g(x) > 0, we have $F_k(x) = \phi_k(x)$, and $F_k(x)$ is smooth. If x_k is infeasible, this means g(x) > 0, so $F_k(s)$ is smooth at x_k . By first order necessary condition, we must have $\nabla F_k(x_k) = \nabla \phi_k(x) = 0$. This is a contradiction to the gradient of $\phi_k(x)$ is nonzero for all nonfeasible points.

Figure 5: x_t as a function of t.

(c) Show by example that the sequence $\{x_k\}$ may converge to a point x^* that is not a solution of (P). (Hint: Try a simple inconsistent program (P).)

Solution: Consider the minimization problem $\min\{x^2 : x^2 + 1 \le 0\}$. This problem is infeasible. We have $F_k(x) = (k+1)x^2 + k$. x = 0 is the minimizer for all $F_k(x)$, but it is clearly not the solution for our problem.

4 Optimization with Equality Constraints

NOTE: The problems in this section can be handed in late - till April 11. The marks will be treated as bonus marks.

1. Consider the program

(P)
$$\begin{array}{l} \min \ f(x) := x^2 + y^2 \\ \text{s.t.} \ h(x) := (x-2)^3 - y^2 = 0. \end{array}$$

(a) Show that (P) admits no Lagrange multipliers and explain why.

Solution The Lagrangian would be $L(x, y, \mu) = x^2 + y^2 + \mu ((x-2)^3 - y^2)$. Taking the gradient and set it equal to zero we have:

$$\nabla L_{x}(x, y, \mu) = 2x + 3\mu(x - 2)^{2} = 0$$
(1)

$$\nabla L_{y}(x, y, \mu) = 2y - 2\mu y = 0 \tag{2}$$

(2) implies that $\mu = 1$. Substituting this value of μ into (1) gives us $3x^2 - 10x + 12 = 0$, which has no real solution. Thus, there cannot be any real value of μ that simultaneously solves this system.

(b) Solve this problem graphically.

Solution: In the feasible region, we have $x \ge 2$. The feasible region is shown by red in Figure 6. The circle centered at the origin with the minimum radius is also shown that has raduis 2 and touchs the feasible region at point $(x, y)^{T} = (2, 0)$.

(c) What happens if you apply the Beltrami-Courant quadratic penalty function method? (I.e. use the quadratic penalty function $F_k(x) = f(x) + \frac{1}{2}kh(x)^Th(x)$.

Solution: Applying the penalty function method, you get the following function

$$F_{k}(x,y) = x^{2} + y^{2} + \frac{1}{2}k((x-2)^{3} - y^{2})^{2}$$

Differentiating this, we get

$$\nabla F_{x}(x,y) = 2x + k ((x-2)^{3} - y^{2}) (3(x-2)^{2}) = 0$$

$$\nabla F_{y}(x,y) = 2y + k ((x-2)^{3} - y^{2}) (-2y) = 0$$

From the second equation, we have y = 0, or $k((x-2)^3 - y^2) = 1$. It is easy to check that the second one does not work. By substituting y = 0 in the first equation, we have $2x + k(x-2)^5 = 0$. It can be solved numerically for different values of k, and it can be seen that the value of x_k converges to 2, but the rate of convergence in really slow. We can see that $x_{100} = 1.5969$, $x_{1000} = 1.7412$, and $x_{10000} = 1.8350$.

Figure 6: Problem 4-1(b).

2. Determine all maxima and minima of $f(x, y, z) = xz + y^2$ on the sphere $x^2 + y^2 + z^2 = 4$.

Solution: We can start by taking the Lagrangian function:

$$L(x, y, z, \mu) = xz + y^{2} + \mu(x^{2} + y^{2} + z^{2} - 4)$$

If we take the gradient and set equal to zero we have:

$$\nabla L_x(x, y, z, \mu) = z + 2\mu x = 0 \tag{1}$$

$$\nabla L_{y}(x, y, z, \mu) = 2y + 2\mu y = 0$$
⁽²⁾

$$\nabla L_z(x, y, z, \mu) = x + 2\mu z = 0 \tag{3}$$

From (2) we have y = 0 or $\mu = -1$. By $\mu = -1$, from (1) and (3) we have x = z = 0, and then from $x^2 + y^2 + z^2 = 0$ we have $y = \pm 2$. By using y = 0, by substitution we can get $x = \pm\sqrt{2}$ and $z = \pm\sqrt{2}$. Hence we get 4 points $(\pm\sqrt{2}, 0, \pm\sqrt{2})^T$ which are minimum with objective value 2, and 2 points $(0, \pm 2, 0)^T$ which are maximum with objective value 4.

3. Consider the Beltrami-Courant quadratic penalty function applied to

$$\min -x_1 x_2 x_3 \text{ s.t. } 72 - x_1 - 2x_2 - 2x_3 = 0.$$

(a) Solve the problem using the quadratic penalty function method.

Solution: The penalty function is

$$F_{k}(x_{1}, x_{2}, x_{3}) = -x_{1}x_{2}x_{3} + \frac{1}{2}k(72 - x_{1} - 2x_{2} - 2x_{3})^{2}$$

We can solve this numerically using Matlab to see that the optimal solutoin is $x^* = (24, 12, 12)^T$.

(b) Verify that the explicit expression for x(k) is given by $x_2 = x_3 = 24/(1 + \sqrt{1 - 8/k})$ and $x_1 = 2x_2$, i.e. verify that this point satisfies stationarity for F_k .

Solution: By taking the gradient of F_k and setting equal to zero we have:

$$\begin{aligned} \nabla_{x_1} F_k(x_1, x_2, x_3) &= -x_2 x_3 - k(72 - x_1 - 2x_2 - 2x_3) = 0 \\ \nabla_{x_2} F_k(x_1, x_2, x_3) &= -x_1 x_3 - 2k(72 - x_1 - 2x_2 - 2x_3) = 0 \\ \nabla_{x_3} F_k(x_1, x_2, x_3) &= -x_1 x_2 - 2k(72 - x_1 - 2x_2 - 2x_3) = 0 \end{aligned}$$

By simple substitution we can see that $x_2 = x_3 = 24/\left(1 + \sqrt{1 - 8/k}\right)$ and $x_1 = 2x_2$ satisfy the above equations.

(c) Verify that $x(k) \to x^*$ as $k \to \infty$.

Solution: By the relations given in part (b), it is clear that $x(k) \rightarrow (24,12,12)^T$

(d) Find x(k) when k = 9 and verify that the Hessian of F₉ is positive definite.

Solution: For k = 9, we have $x(k) = (36, 18, 18)^T$. For the Hessian we have

$$\nabla^{2} F_{k}(x) = \begin{bmatrix} k & -x_{3} + 2k & -x_{2} + 2k \\ -x_{3} + 2k & 4k & -x_{1} + 4k \\ -x_{2} + 2k & -x_{1} + 4k & 4k \end{bmatrix}$$
$$\nabla^{2} F_{9}(x(9)) = 9 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

which is positive definite.