
C&O367: Nonlinear Optimization
(Winter 2013)
Assignment 6
H. Wolkowicz

Posted Monday, Mar. 18

Due: Thursday, Apr. 4 10:00AM (before class)

1 Dual Convex Programs

1.1 Duality and Perturbation Function

1. Consider the program

(P)
min x2
s.t. x21 + x

2
2 ≤ 1

x1 ≥ 1

(a) Verify that (P) is a convex program.

Solution: The objective function x2 is a linear function, so is convex.
The functions x21 + x

2
2 − 1 and 1 − x1 are also convex, so the problem is

convex.

(b) Can you find a Slater point for (P)?

Solution: The only feasible point is (1, 0)T , which is clearly not a Slater
point.

(c) Find the optimal value MP and optimum x∗ for (P). Is x∗ a KKT point? Does
this contradict the KKT Theorem?

Solution: The only feasible point is (1, 0)T , so x∗ = (1, 0)T and MP = 0.
The Lagrangian is L(x, λ) = x2 + λ1(x

2
1 + x

2
2 − 1) − λ2(1 − x1). For the

KKT condition, there must be λ∗ ≥ 0 such that ∇L(x∗, λ∗) = 0, so we
must have: (

0

1

)
+ λ∗1

(
2

0

)
+ λ∗2

(
−1
0

)
= 0

It is clear that there is no such a λ∗. This does not contradict the KKT
theroem, becuase we have no Slater point.

2. Rewrite (P) as

(P2)
min f(x) := x2
s.t. g(x) := 1− x1 ≤ 0

x ∈ C := {x ∈ R2 : x21 + x22 ≤ 1}
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(a) Derive the dual function h(λ) for (P2) and plot it.

Solution: The Lagrangian is L(x, λ) = x2 + λ(1 − x1). The Lagrangian
dual function is

h(λ) = inf
x∈C
L(x, λ) = inf

x∈C
{(x2 − λx1) + λ}

It is easy to check that for the optimal solution, x21 + x
2
2 = 1, otherwise

we can increase x1 and so reduce the objective function. So our objective
fucntion is −

√
1− x21−λx1+λ, where −1 < x1 < 1. By taking dervative

with respect to x1 and putting equal to 0 we have x1 = λ√
λ2+1

, and so

x2 =
−1√
λ2+1

. Note that you have to choose the sign of x1 and x2 properly
to make the objective function smaller. So we have:

h(λ) =
−1− λ2√
λ2 + 1

+ λ = λ−
√
λ2 + 1

The plot is shown in Figure 1.
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Figure 1: h(λ).

(b) Derive and solve the dual program. Is the dual optimal value MD equal to MP?
Is the dual attained?
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Solution: The dual problem is sup{λ −
√
λ2 + 1, λ ≥ 0}. It is easy to

check MD= 0 =MP, but it is not attained for the dual problem.

3. Now rewrite (P) as

(P3)
min f(x) = x2
s.t. g1(x) = 1− x1 ≤ 0

g2(x) := x
2
1 + x

2
2 − 1 ≤ 0

(a) Plot the perturbation function MP(z), z ∈ R2.
Solution: The perturbation problem is

(P3(z))
min f(x) = x2
s.t. g1(x) = 1− z1 ≤ x1

g2(x) := x
2
1 + x

2
2 ≤ 1+ z2

The feasible set is non-empty if z2 ≥ −1, and (1 − z1) ≤
√
1+ z2. You

can use Matlab to solve this problem, but it can also be solved by using
the figure. The feasible region is the space inside the shpere such that
1−z1 ≤ x1. The minimum value of x2 is achieved for a point on the circle
created by the intersection of x21 + x

2
2 = 1+ z2 and x1 = 1− z1 if z1 ≤ 1,

or x1 = 0 if z1 > 1. So we have M(z) = −
√
1+ z2 − (1− z1)2 if z1 ≤ 1,

and M(z) = −
√
1+ z2 if z1 > 1. The plot if M(z) is shown in Figure 2.

(b) Is there a nontrivial/nonvertical supporting hyperplane to the epigraph of MP?

Solution: It can be seen from the figure, and also can be checked easily
by considering the gradient of M(z) close to (z1, z2) = (0, 0) that there
is no nontrivial/nonvertical supporting hyperplane to the epigraph of
MP(z).

1.2 Quadratic Programs

Consider the convex quadratic program

(P3)
min 1

2
xTHx+ dTx

s.t. Ax ≤ b

where x ∈ Rn and b ∈ Rm and H,A, d are appropriate matrices/vectors with H positive
definite.

1. Find/derive the Lagrangian dual function h(λ) and Lagrangian dual program.

Solution: The lagrangian function is L(x, λ) = 1
2
xTHx + dTx + λT(Ax − b)

for a vector λ ≥ 0. Note that lagrangian is a convex function of x, so to find
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Figure 2: MP(z).

the inf, we take the derivative and put it equal to zero; Hx + d +ATλ = 0,
so x∗ = −H−1(d+ATλ) The lagrangian dual function is:

h(λ) =
1

2
(dT + λTA)H−1(d+ATλ) − dTH−1(d+ATλ) + λT(−AH−1(d+ATλ) − b)

= −
1

2
(dT + λTA)H−1(d+ATλ) − λTb

The dual problem is max{h(λ) : λ ≥ 0}.

2 Trust Region Methods

1. Let f(x) := 10(x2 − x
2
1)
2 + (1− x1)

2.

(a) Draw the contour lines of the quadratic model/approximation of f at the point
x = (0,−1)T .

Solution: If you calculate the gradient and Hessain of f at xc = (0,−1)T ,

we have ∇f(xc) = (−2 − 20)T and ∇2f(xc) =
(
42 0

0 20

)
. By substitu-
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tion in the formula we have

m(x) = f(xc)+∇f(xc)T(x−xc)+
1

2
(x−xc)

T∇2f(xc)(x−xc) = 21x21+10x22−2x1+1

The countoursm(x) = k can be easily drawn by using Matlab for different
k.

(b) Draw the family of solutions of the trust region subproblem, TRS, as the trust
region varies from δ = 0 to δ = 2. (Hint: Apply/use the optimality conditions for
TRS.)

Solution: x̄ is an optimal solution for min{m(x) : ‖x − xc‖ ≤ δ}, if and
only if (d = x̄− xc)

(1) 0 = ∇f(xc) +∇2f(xc)d+ λd, λ ≥ 0
(2) ‖d‖ ≤ δ
(3) λ(|d‖− δ) = 0
(4) ∇2f(xc) + λI ≥ 0 (1)

Here as λ ≥ 0 and ∇2f(xc) ≥ 0, (4) is always satisfied. If we solve (1)
we have d1 = 2

42+λ
nad d2 = 20

20+λ
. If λ = 0, then (d1, d2) = ( 1

21
, 1).

This satisfies constraint (2) for δ ≥
√

1
212

+ 1 = 1.0235. If λ > 0,

then by (3) we have |d‖ = δ. In this case, we can find λ by solving√
( 2
42+λ

)2 + ( 20
20+λ

)2 = δ. The points are shown in Figure 3 when we

change δ from 2 to 0.
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Figure 3: Solutions for the subproblem when we change δ from 2 to 0.

3 Penalty and Barrier Methods

1. Consider the program

(P)
min f(x) = x1 + x2
s.t. x21 − x2 ≤ 2

(a) Use the penalty function method with the Courant-Beltrami penalty term to solve
(P).

Solution: The penalty function is Pk(x) = x1 + x2 + k[(x
2
1 − x2 − 2)

+]2.
As it is proved in the notes we have

∇Pk(x) =
(
1+ 2k(2x1)(x

2
1 − x2 − 2)

+

1− 2k(x21 − x2 − 2)
+

)
∇Pk(x) = 0 doesn’t have a solution when x21−x2−2 ≤ 0. For x21−x2−2 >
0, the solution for ∇Pk(x) = 0 is (−1

2
, −7
4

− 1
2k
)T , which converges to

x∗ = (−1
2
, −7
4
)T . For this point we have MP = −9

4
.

(b) Show that the objection function Fk(x) corresponding to the absolute value penalty
term has no critical points off the parabola x21 − x2 = 2, for k > 1, and compute
the minimizer of Fk(x).
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Solution: We have Fk(x) = x1 + x2 + k(x
2
1 − x2 − 2)

+. For the points
x21 − x2 > 2, we have Fk(x) = x1 + x2 + k(x

2
1 − x2 − 2), and

∇Fk(x) =
(
1+ 2kx1
1− k

)
It is clear that the second component is always nozero for k > 1. This
means for k > 1, the minimizer of Fk(x) occors on the parabola, so we
have x2 = x

2
1 − 2. By substituting this in x1 + x2, the objective function

becomes x21−2+x1. By putting derivative equal to zero we have x1 =
−1
2

,
and by using x2 = x

2
1 − 2 we have x2 =

−7
4

. This means x = (−1
2
, −7
4
)T is

the optimal solution for all Fk(x).

(c) Solve (P) using the log-barrier method and compare your solution with the one
obtained from the penalty function method above.

Solution: For log-barrier function we have Bk(x) = x1 + x2 −
1
k

log(2 +
x2 − x

2
1). Then we have:

∇Bk(x) =

(
1+ 2x1

k(2+x2−x
2
1)

1+ 1
k(2+x2−x

2
1)

)
By solving ∇Bk(x) = 0, we get the solution (−1

2
, −7
4
+ 1

k
)T , which again

converges to x∗ = (−1
2
, −7
4
)T .

(d) Confirm that you have the optimal solution using the KKT conditions.

Solution: Use λ∗ = 1 and x∗ = (−1/2,−7/4)T and apply sufficiency of
the KKT conditions for this convex program.

2. Consider the program

(P)
min f(x) = x2 + 1
s.t. 2 ≤ x ≤ 4, x ∈ R

Plot the objective function f(x) and plot the barrier function Bt(x) = f(x)−(1/t)(log(x−
2) + log(4− x)) for various values of t > 0. Include a plot of the optima x∗(t).

Solution: The barrier function for t = .01, 0.1, .5 is shown in Figure 4. The
objective function is shown by dashed line. The derivative set to 0 is:

0 = 2x− (1/t)
(
1
x−2

− 1
4−x

)
0 = 2tx(x− 2)(4− x) − (4− x) + (x− 2)
0 = tx(x2 − 6x+ 8) + 3− x
0 = tx3 − 6tx2 + (8t− 1)x+ 3

For any t, we can find a solution for the above inequality in the interval
[2, 4]. This solution as a function of t is shown in Figure 5. The minimizer
of the barrier function is also shown in Figure 4 by star. From the figure,
xt converges to x = 2, which is clearly the optimal value of the problem,
becuase x2 + 1 is increasing on [2, 4].
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Figure 4: Barrier function for different values of t.

3. Consider the convex program min f(x) s.t. g(x) ≤ 0 where f, g are sufficiently smooth/differentiable
and f is coercive.

(a) Prove that the associated unconstrained program min Fk(x) := f(x) + kg
+(x) has

a minimizer xk for each positive integer k.

Solution: First note that f(x) is a coercive convex function, so it has a
minimizer. Let’s show the minimizer of f(x) by x̄. We have g+(x) ≥ 0,
this means Fk(x) is also coercive. Note that g+(x) is not smooth, but it
is continuous, so Fk(x) is continuous. Any continuous coercive function
attains its minimum. We also have f(x̄) as lower bound for Fk(x):

Fk(x) = f(x) + kg
+(x) ≥ f(x) ≥ f(x̄), ∀x

(b) Prove that if the gradient of φk(x) = f(x) + kg(x) is nonzero for all nonfeasible
points for (P), then xk must be feasible for (P).

Solution: Note that for the points g(x) > 0, we have Fk(x) = φk(x),
and Fk(x) is smooth. If xk is infeasible, this means g(x) > 0, so Fk(s) is
smooth at xk. By first order necessary condition, we must have∇Fk(xk) =
∇φk(x) = 0. This is a contradiction to the gradient of φk(x) is nonzero
for all nonfeasible points.
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Figure 5: xt as a function of t.

(c) Show by example that the sequence {xk} may converge to a point x∗ that is not a
solution of (P). (Hint: Try a simple inconsistent program (P).)

Solution: Consider the minimization problem min{x2 : x2+1 ≤ 0}. This
problem is infeasible. We have Fk(x) = (k + 1)x2 + k. x = 0 is the
minimizer for all Fk(x), but it is clearly not the solution for our problem.
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4 Optimization with Equality Constraints

NOTE: The problems in this section can be handed in late - till April 11. The marks will
be treated as bonus marks.

1. Consider the program

(P)
min f(x) := x2 + y2

s.t. h(x) := (x− 2)3 − y2 = 0.

(a) Show that (P) admits no Lagrange multipliers and explain why.

Solution The Lagrangian would be L(x, y, µ) = x2+y2+µ
(
(x− 2)3 − y2

)
.

Taking the gradient and set it equal to zero we have:

∇Lx(x, y, µ) = 2x+ 3µ(x− 2)2=0 (1)

∇Ly(x, y, µ) = 2y− 2µy=0 (2)

(2) implies that µ = 1. Substituting this value of µ into (1) gives us
3x2 − 10x + 12 = 0, which has no real solution. Thus, there cannot be
any real value of µ that simultaneously solves this system.

(b) Solve this problem graphically.

Solution: In the feasible region, we have x ≥ 2. The feasible region
is shown by red in Figure 6. The circle centered at the origin with the
minimum radius is also shown that has raduis 2 and touchs the feasible
region at point (x, y)T = (2, 0).

(c) What happens if you apply the Beltrami-Courant quadratic penalty function
method? (I.e. use the quadratic penalty function Fk(x) = f(x) +

1
2
kh(x)Th(x).

Solution: Applying the penalty function method, you get the following
function

Fk(x, y) = x
2 + y2 +

1

2
k
(
(x− 2)3 − y2

)2
Differentiating this, we get

∇Fx(x, y) = 2x+ k
(
(x− 2)3 − y2

)
(3(x− 2)2)=0

∇Fy(x, y) = 2y+ k
(
(x− 2)3 − y2

)
(−2y)=0

From the second equation, we have y = 0, or k
(
(x− 2)3 − y2

)
= 1. It

is easy to check that the second one does not work. By substituting
y = 0 in the first equation, we have 2x+ k(x− 2)5 = 0. It can be solved
numerically for different values of k, and it can be seen that the value of
xk converges to 2, but the rate of convergence in really slow. We can see
that x100 = 1.5969, x1000 = 1.7412, and x10000 = 1.8350.
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Figure 6: Problem 4-1(b).

2. Determine all maxima and minima of f(x, y, z) = xz+y2 on the sphere x2+y2+z2 = 4.

Solution: We can start by taking the Lagrangian function:

L(x, y, z, µ) = xz+ y2 + µ(x2 + y2 + z2 − 4)

If we take the gradient and set equal to zero we have:

∇Lx(x, y, z, µ) = z+ 2µx = 0 (1)

∇Ly(x, y, z, µ) = 2y+ 2µy = 0 (2)

∇Lz(x, y, z, µ) = x+ 2µz = 0 (3)

From (2) we have y = 0 or µ = −1. By µ = −1, from (1) and (3) we have
x = z = 0, and then from x2 + y2 + z2 = 0 we have y = ±2. By using
y = 0, by substitution we can get x = ±

√
2 and z = ±

√
2. Hence we get

4 points (±
√
2, 0,±

√
2)T which are minimum with objective value 2, and 2

points (0,±2, 0)T which are maximum with objective value 4.

3. Consider the Beltrami-Courant quadratic penalty function applied to

min−x1x2x3 s.t. 72− x1 − 2x2 − 2x3 = 0.
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(a) Solve the problem using the quadratic penalty function method.

Solution: The penalty function is

Fk(x1, x2, x3) = −x1x2x3 +
1

2
k(72− x1 − 2x2 − 2x3)

2

We can solve this numerically using Matlab to see that the optimal so-
lutoin is x∗ = (24, 12, 12)T .

(b) Verify that the explicit expression for x(k) is given by x2 = x3 = 24/
(
1+

√
1− 8/k

)
and x1 = 2x2, i.e. verify that this point satisfies stationarity for Fk.

Solution: By taking the gradient of Fk and setting equal to zero we have:

∇x1Fk(x1, x2, x3) = −x2x3 − k(72− x1 − 2x2 − 2x3)=0

∇x2Fk(x1, x2, x3) = −x1x3 − 2k(72− x1 − 2x2 − 2x3)=0

∇x3Fk(x1, x2, x3) = −x1x2 − 2k(72− x1 − 2x2 − 2x3)=0

By simple substitution we can see that x2 = x3 = 24/
(
1+

√
1− 8/k

)
and x1 = 2x2 satisfy the above equations.

(c) Verify that x(k) → x∗ as k→ ∞.

Solution: By the relations given in part (b), it is clear that x(k) →
(24, 12, 12)T

(d) Find x(k) when k = 9 and verify that the Hessian of F9 is positive definite.

Solution: For k = 9, we have x(k) = (36, 18, 18)T . For the Hessian we
have

∇2Fk(x) =

 k −x3 + 2k −x2 + 2k
−x3 + 2k 4k −x1 + 4k
−x2 + 2k −x1 + 4k 4k


∇2F9(x(9)) = 9

1 0 0

0 4 0

0 0 4


which is positive definite.
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