
C&O367: Nonlinear Optimization
(Winter 2013)
Assignment 5
H. Wolkowicz

Posted Monday, Mar. 4

Due: Thursday, Mar. 19 10:00AM (before class)

1 Hyperplanes

1.1 Separating Hyperplanes

First we recall some definitions:

(a) K is a cone if αK ⊆ K, ∀α ≥ 0;
(b) K is a convex cone if it is a cone and K+ K ⊆ K.

(c) For a set S ⊆ Rn, the polar (or dual) cone of S is S+ := {φ : 〈φ, s〉 ≥ 0, ∀s ∈ S}.
(Note that we denote (S+)+ = S++. Also, the text uses S∗ = S+.)

1. Let A,B,C be closed convex sets in Rn such that

A+ C = B+ C.

Prove that A = B.

Solution: Suppose that the conclusion fails, i.e., without loss of generality,
we assume that there exists â ∈ A\B. Then by the separation theorem there
exists φ such that 〈φ, â〉 < α ≤ 〈φ, b〉,∀b ∈ B. But then 〈φ, â + c〉 <
〈φ, b + c〉,∀b ∈ B. This contradicts the fact that â + c = b + c, for some
b ∈ B, c ∈ C.

2. Let K ⊆ Rn. Show that K is a ccc (closed, convex, cone) if, and only if, K = K++.
(Hint: Try a Hail Mary.)

Solution: By the above definition, for any K, K+ is the intersection of
halfspaces passing through the origin, so it is always a closed and convex
cone. Hence if K = K++, K is ccc.

For the other side, assume that K is closed. We have K++ := {φ : 〈φ, s〉 ≥
0, ∀s ∈ K+}. For any x ∈ K, by definition, we have 〈φ, x〉 ≥ 0 for all φ ∈ K+,
so by definition x ∈ K++. Hence K ⊆ K++. To prove that K++ ⊆ K, we prove
contrapositive; we prove that if x /∈ K, then x /∈ K++. K is closed and x /∈ K,
so by separation theorem, there exists 0 6= a ∈ Rn and an α ∈ R such that
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y · a ≥ α, for all y ∈ K, and x · a < α. Because K is a cone, I claim that
we can choose α = 0. Tho show that, for any δ > 0 and y ∈ K, we have
δy ∈ K, so we must have δy · a ≥ α, or y · a ≥ α

δ
. By sending δ to ∞, we

have y · a ≥ 0, for all y ∈ K. By definition, a ∈ K+. But we have x · a < 0,
so again by definition x /∈ K++, as we wanted to prove.

1.2 Supporting Hyperplanes

1. Suppose that C1, C2 are convex sets in Rn such that C1 has interior points and C2 does
not contain any interior points of C1. Prove that there is a hyperplane H in Rn such
that C1 and C2 lie in the opposite closed half-spaces determined by H, i.e., there exist
an 0 6= a ∈ Rn and an α ∈ R such that

x · a ≤ α ≤ y · a, ∀x ∈ C1, ∀y ∈ C2.

(Hint: Note that C2 ∩ intC1 = ∅ if, and only if, 0 /∈ C2 − intC1.)

Solution: If C1 is convex, intC1 is also convex, then C2 − intC1 is also
convex. We have 0 /∈ C2− intC1, so by separation there exists an 0 6= a ∈ Rn
and an β ∈ R such that 0 ≤ β ≤ (c2− c1) ·a, for all c2 ∈ C2 and c1 ∈ intC1.
So we have c1 · a ≤ c2 · a. I claim that this is also true for any point in
c1 ∈ C1. This is because if c1 is on the boundry of C1, then there is a
sequence ck1 ∈ intC1 such that ck1 → c1. We have ck1 · a ≤ c2 · a for all k, so
this is also true for the limit point c1. Hence c1 · a ≤ c2 · a, for all c1 ∈ C1
and c2 ∈ C2. Now α can be picked any point between sup{c1 · a : c1 ∈ C1}
and inf{c2 · a : c1 ∈ C2}.

2. Let S = {x ∈ R2+ : x1x2 ≥ 1}. Show that the closed convex set S is an intersection of
halfspaces.

Solution: The boundry of S is {x ∈ R2 : x1x2 = 1}. I claim that S is
equal to the intersection of all supporting halfspaces at points in its boundry.
By symple calculus results, the supporting hyperplane at x = (t, 1/t) is
x1
t2
+ x2 =

2
t
. So we can express S as

S =
⋂
t>0

{x ∈ R2+ :
x1

t2
+ x2 ≥

2

t
}

For the answer to be complete, we have to check this equality. For one side,
assume that (x1, x2) ∈ RHS. So we have x1

t2
+ x2 ≥ 2

t
for all t > 0. If we hit

both sides of the inequality with x1 we have

x21
t2

+ x2x1
2x1

t
≥ 0⇒ (

x1

t
− 1)2 − 1+ x1x2 ≥ 0

For this to be true for all t > 0, we must have x1x2 ≥ 1. The other side is
also easy to prove.
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3. Suppose that S ⊆ Rn is a closed set, has nonempty interior, and has a supporting
hyperplane at every point in its boundary. Show that S is a convex set.

Solution: For any point z on the boundry of S, define the supporting half-
space as Hz = {x : αz · x ≤ bz}, such that S ⊂ Hz, and αz · z = bz. I claim
that S = ∩z∈∂(S)Hz, which is clearly convex. It is clear that S ⊆ ∩z∈∂(S)Hz.
For the other side, assume that ȳ ∈ ∩z∈∂(S)Hz. If ȳ /∈ S, pick a point
x̄ ∈ int(S). There is point z̄ on the linesegment [x̄, ȳ] such that z̄ ∈ ∂(S).
By the hypothesis, S ⊂ Hz̄. However ȳ ∈ ∩z∈∂(S)Hz, so ȳ ∈ Hz̄. This means
that the linesegment [x̄, ȳ] is on the boundry of Hz̄; [x̄, ȳ] ⊂ {x : αz̄ · x = bz̄},
so we have αz̄ · x̄ = bz̄. We picked x̄ such that x̄ ∈ int(S), so there is r > 0
such that B(x̄, r) ⊂ S, which means B(x̄, r) ⊂ Hz̄. This is a contradiction to
αz̄ · x̄ = bz̄. Hence S = ∩z∈∂(S)Hz is a convex set.

2 Optimality Conditions and Duality

Consider the primal optimization problem

min x2 + 1
s.t. (x− 2)(x− 4) ≤ 0

x ∈ R

1. What is the feasible set, the optimal value, and the optimal solution?

Solution: The feasible set is the interval [2, 4]. x2 + 1 is increasing on the
feasible region, so the optimal solution is x∗ = 2 and the optimal value is
p∗ = 5.

2. Plots and Values:

(a) Plot the objective value x2 + 1 versus x.

Solution: See next question.

(b) On the same plot show the feasible set, optimal point and value p∗, and plot the
Lagrangian L(x, λ) versus x for a few positive values of λ.

Solution: The Lagrangian is L(x, λ) = (1+ λ)x2− 6λx+ (1+ 8λ). Let’s
define f0 := x

2+ 1 and f1 := x
2− 6x+ 8, then we have L(x, λ) = f0+ λf1.

The objective value versus x is shown as f0 in Figure 1. The Lagrangian
is also plotted for some other values of λ.

(c) Verify the lower bound property p∗ ≥ infx L(x, λ) for λ ≥ 0.
Solution: We have f1(2) = 0, so all the lagrangians for λ ≥ 0 pass
through the point (2, 5). Hence 5 = p∗ ≥ infx L(x, λ).

(d) Derive and sketch the Lagrange dual function as a function of λ.
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Figure 1: Objective function and Lagrangian versus x.

Solution: In the lagrangian function, the coefficient of x2 is (1+λ), so the
lagrangian is unbounded for λ ≤ −1. For λ > −1, by a simple derivation,
the minimum of the lagrangian is get at x = 3λ

1+λ
. By substitution, we

get:

g(λ) =

{
−9λ2

1+λ
+ 1+ 8λ λ > −1

−∞ λ ≤ −1

The plot is in Figure 2.

3. State the dual problem and verify that it is a concave maximization problem. Find
the dual optimal value and dual optimal solution λ∗. Does strong duality hold?

Solution: The Lagrangian dual problem is:

max
−9λ2

1+ λ
+ 1+ 8λ

s.t. λ ≥ 0

The second derivative of the objective function in −18
(1+λ)3

which is nagative
for λ ≥ 0, so the objective function is concave. By elementary calculus, we
can see that the optimal solution is λ∗ = 2 with the dual optimal solution
equal to d∗ = 5, so here strong duality holds.

4. Let p∗(u) denote the optimal value of the perturbed problem

min x2 + 1
s.t. (x− 2)(x− 4) ≤ u

x ∈ R
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Figure 2: Lagrange dual function as a function of λ.

as a function of u. Plot p∗(u). Verify that ∂p∗(0)
∂u

= −λ∗.

Solution: The minimum of (x− 2)(x− 4) is −1, so the purtued problem is
feasible for u ≥ −1. For every u ≥ −1, the feasible region is spcified by the
roots of x2−6x−6 = u and is [3−

√
1+ u, 3+

√
1+ u]. The function x2+1

is increasing for positive values of x. For −1 ≤ u ≤ 8, the optimal solution
is x∗(u) = 3 −

√
1+ u. For u ≥ 8, the lower bound 3 −

√
1+ u goes below

zero, so x∗(u) = 0. We can write:

p∗(u) =


∞ u < −1

11+ u− 6
√
1+ u −1 ≤ u ≤ 8

1 u ≥ 8.

The plot is in Figure 3. It is easy to check that ∂p∗(0)
∂u

= −2 = −λ∗

3 CVX, Numerical Solutions

Consider the LP
min 4x1 + 15x2 + 12x3 + 2x4
s.t. 2x2 + 3x3 + x4 ≥ 1

x1 + 3x2 + x3 − x4 ≥ 1
x ≥ 0

Solve this LP using CVX installed in MATLAB.
(See http://cvxr.com/cvx/ on how to install CVX inside of MATLAB. Hand in your input
and output with the optimal value and solution.)
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Figure 3: p∗(u).
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