C\&O367: Nonlinear Optimization (Winter 2013)
 Assignment 5
 H. Wolkowicz

Posted Monday, Mar. 4
Due: Thursday, Mar. 19 10:00AM (before class)

1 Hyperplanes

1.1 Separating Hyperplanes

First we recall some definitions:
(a) K is a cone if $\alpha \mathrm{K} \subseteq \mathrm{K}, \forall \alpha \geq 0$;
(b) K is a convex cone if it is a cone and $\mathrm{K}+\mathrm{K} \subseteq \mathrm{K}$.
(c) For a set $S \subseteq \mathbb{R}^{n}$, the polar (or dual) cone of S is $S^{+}:=\{\phi:\langle\phi, s\rangle \geq 0, \forall s \in S\}$. (Note that we denote $\overline{\left.\mathrm{S}^{+}\right)^{+}}=\mathrm{S}^{++}$. Also, the text uses $\mathrm{S}^{*}=\mathrm{S}^{+}$.)

1. Let A, B, C be closed convex sets in \mathbb{R}^{n} such that

$$
A+C=B+C
$$

Prove that $A=B$.
Solution: Suppose that the conclusion fails, i.e., without loss of generality, we assume that there exists $\hat{a} \in A \backslash B$. Then by the separation theorem there exists ϕ such that $\langle\phi, \widehat{\mathrm{a}}\rangle<\alpha \leq\langle\phi, \mathrm{b}\rangle, \forall \mathrm{b} \in \mathrm{B}$. But then $\langle\phi, \hat{\mathrm{a}}+\mathrm{c}\rangle<$ $\langle\phi, \mathrm{b}+\mathrm{c}\rangle, \forall \mathrm{b} \in \mathrm{B}$. This contradicts the fact that $\hat{\mathrm{a}}+\mathrm{c}=\mathrm{b}+\mathrm{c}$, for some $b \in B, c \in C$.
2. Let $\mathrm{K} \subseteq \mathbb{R}^{n}$. Show that K is a ccc (closed, convex, cone) if, and only if, $\mathrm{K}=\mathrm{K}^{++}$. (Hint: Try a Hail Mary.)

Solution: By the above definition, for any $\mathrm{K}, \mathrm{K}^{+}$is the intersection of halfspaces passing through the origin, so it is always a closed and convex cone. Hence if $K=K^{++}, K$ is ccc.
For the other side, assume that K is closed. We have $\mathrm{K}^{++}:=\{\phi:\langle\phi, s\rangle \geq$ $\left.0, \forall s \in \mathrm{~K}^{+}\right\}$. For any $x \in \mathrm{~K}$, by definition, we have $\langle\phi, x\rangle \geq 0$ for all $\phi \in \mathrm{K}^{+}$, so by definition $x \in \mathrm{~K}^{++}$. Hence $\mathrm{K} \subseteq \mathrm{K}^{++}$. To prove that $\mathrm{K}^{++} \subseteq \mathrm{K}$, we prove contrapositive; we prove that if $x \notin \mathrm{~K}$, then $x \notin \mathrm{~K}^{++}$. K is closed and $x \notin \mathrm{~K}$, so by separation theorem, there exists $0 \neq a \in \mathbb{R}^{n}$ and an $\alpha \in \mathbb{R}$ such that
$y \cdot a \geq \alpha$, for all $y \in K$, and $x \cdot a<\alpha$. Because K is a cone, I claim that we can choose $\alpha=0$. Tho show that, for any $\delta>0$ and $y \in K$, we have $\delta y \in K$, so we must have $\delta y \cdot a \geq \alpha$, or $y \cdot a \geq \frac{\alpha}{\delta}$. By sending δ to ∞, we have $y \cdot a \geq 0$, for all $y \in K$. By definition, $a \in K^{+}$. But we have $x \cdot a<0$, so again by definition $x \notin \mathrm{~K}^{++}$, as we wanted to prove.

1.2 Supporting Hyperplanes

1. Suppose that C_{1}, C_{2} are convex sets in \mathbb{R}^{n} such that C_{1} has interior points and C_{2} does not contain any interior points of C_{1}. Prove that there is a hyperplane H in \mathbb{R}^{n} such that C_{1} and C_{2} lie in the opposite closed half-spaces determined by H , i.e., there exist an $0 \neq a \in \mathbb{R}^{n}$ and an $\alpha \in \mathbb{R}$ such that

$$
x \cdot a \leq \alpha \leq y \cdot a, \quad \forall x \in C_{1}, \forall y \in C_{2}
$$

(Hint: Note that $\mathrm{C}_{2} \cap \operatorname{int} \mathrm{C}_{1}=\emptyset$ if, and only if, $0 \notin \mathrm{C}_{2}-\operatorname{int} \mathrm{C}_{1}$.)
Solution: If C_{1} is convex, $\operatorname{int} \mathrm{C}_{1}$ is also convex, then $\mathrm{C}_{2}-\operatorname{int} \mathrm{C}_{1}$ is also convex. We have $0 \notin C_{2}-\operatorname{int} C_{1}$, so by separation there exists an $0 \neq a \in \mathbb{R}^{n}$ and an $\beta \in \mathbb{R}$ such that $0 \leq \beta \leq\left(c_{2}-c_{1}\right) \cdot a$, for all $c_{2} \in C_{2}$ and $c_{1} \in \operatorname{int} C_{1}$. So we have $c_{1} \cdot a \leq c_{2} \cdot a$. I claim that this is also true for any point in $c_{1} \in C_{1}$. This is because if c_{1} is on the boundry of C_{1}, then there is a sequence $c_{1}^{k} \in \operatorname{int} C_{1}$ such that $c_{1}^{k} \rightarrow c_{1}$. We have $c_{1}^{k} \cdot a \leq c_{2} \cdot a$ for all k, so this is also true for the limit point c_{1}. Hence $c_{1} \cdot a \leq c_{2} \cdot a$, for all $c_{1} \in C_{1}$ and $c_{2} \in C_{2}$. Now α can be picked any point between $\sup \left\{c_{1} \cdot a: c_{1} \in C_{1}\right\}$ and $\inf \left\{c_{2} \cdot a: c_{1} \in C_{2}\right\}$.
2. Let $S=\left\{x \in \mathbb{R}_{+}^{2}: x_{1} x_{2} \geq 1\right\}$. Show that the closed convex set S is an intersection of halfspaces.

Solution: The boundry of S is $\left\{x \in \mathbb{R}^{2}: x_{1} x_{2}=1\right\}$. I claim that S is equal to the intersection of all supporting halfspaces at points in its boundry. By symple calculus results, the supporting hyperplane at $x=(t, 1 / t)$ is $\frac{x_{1}}{t^{2}}+x_{2}=\frac{2}{t}$. So we can express S as

$$
S=\bigcap_{\mathrm{t}>0}\left\{x \in \mathbb{R}_{+}^{2}: \frac{x_{1}}{\mathrm{t}^{2}}+x_{2} \geq \frac{2}{\mathrm{t}}\right\}
$$

For the answer to be complete, we have to check this equality. For one side, assume that $\left(x_{1}, x_{2}\right) \in$ RHS. So we have $\frac{x_{1}}{t^{2}}+x_{2} \geq \frac{2}{t}$ for all $t>0$. If we hit both sides of the inequality with x_{1} we have

$$
\frac{x_{1}^{2}}{t^{2}}+x_{2} x_{1} \frac{2 x_{1}}{t} \geq 0 \Rightarrow\left(\frac{x_{1}}{t}-1\right)^{2}-1+x_{1} x_{2} \geq 0
$$

For this to be true for all $t>0$, we must have $x_{1} x_{2} \geq 1$. The other side is also easy to prove.
3. Suppose that $S \subseteq \mathbb{R}^{n}$ is a closed set, has nonempty interior, and has a supporting hyperplane at every point in its boundary. Show that S is a convex set.

Solution: For any point z on the boundry of S, define the supporting halfspace as $\mathrm{H}_{z}=\left\{x: \alpha_{z} \cdot x \leq \mathrm{b}_{z}\right\}$, such that $\mathrm{S} \subset \mathrm{H}_{z}$, and $\alpha_{z} \cdot z=\mathrm{b}_{z}$. I claim that $S=\cap_{z \in \partial(S)} \mathrm{H}_{z}$, which is clearly convex. It is clear that $\mathrm{S} \subseteq \cap_{z \in \partial(S)} \mathrm{H}_{z}$. For the other side, assume that $\bar{y} \in \cap_{z \in \partial(S)} \mathrm{H}_{z}$. If $\bar{y} \notin S$, pick a point $\bar{x} \in \operatorname{int}(S)$. There is point \bar{z} on the linesegment $[\bar{x}, \bar{y}]$ such that $\bar{z} \in \partial(S)$. By the hypothesis, $S \subset H_{\bar{z}}$. However $\bar{y} \in \cap_{z \in \partial(S)} H_{z}$, so $\bar{y} \in H_{\bar{z}}$. This means that the linesegment $[\bar{x}, \bar{y}]$ is on the boundry of $\mathrm{H}_{\bar{z}} ;[\bar{x}, \bar{y}] \subset\left\{x: \alpha_{\bar{z}} \cdot x=b_{\bar{z}}\right\}$, so we have $\alpha_{\bar{z}} \cdot \bar{x}=b_{\bar{z}}$. We picked \bar{x} such that $\bar{x} \in \operatorname{int}(S)$, so there is $r>0$ such that $B(\bar{x}, r) \subset S$, which means $B(\bar{x}, r) \subset H_{\bar{z}}$. This is a contradiction to $\alpha_{\bar{z}} \cdot \bar{x}=b_{\bar{z}}$. Hence $S=\cap_{z \in \partial(S)} H_{z}$ is a convex set.

2 Optimality Conditions and Duality

Consider the primal optimization problem

$$
\begin{array}{cl}
\min & x^{2}+1 \\
\text { s.t. } & (x-2)(x-4) \leq 0 \\
& x \in \mathbb{R}
\end{array}
$$

1. What is the feasible set, the optimal value, and the optimal solution?

Solution: The feasible set is the interval $[2,4] . x^{2}+1$ is increasing on the feasible region, so the optimal solution is $x^{*}=2$ and the optimal value is $p^{*}=5$.
2. Plots and Values:
(a) Plot the objective value $x^{2}+1$ versus x.

Solution: See next question.
(b) On the same plot show the feasible set, optimal point and value p^{*}, and plot the Lagrangian $L(x, \lambda)$ versus x for a few positive values of λ.

Solution: The Lagrangian is $\mathrm{L}(x, \lambda)=(1+\lambda) x^{2}-6 \lambda x+(1+8 \lambda)$. Let's define $f_{0}:=x^{2}+1$ and $f_{1}:=x^{2}-6 x+8$, then we have $L(x, \lambda)=f_{0}+\lambda f_{1}$. The objective value versus x is shown as f_{0} in Figure 1. The Lagrangian is also plotted for some other values of λ.
(c) Verify the lower bound property $\mathrm{p}^{*} \geq \inf _{x} \mathrm{~L}(x, \lambda)$ for $\lambda \geq 0$.

Solution: We have $f_{1}(2)=0$, so all the lagrangians for $\lambda \geq 0$ pass through the point $(2,5)$. Hence $5=p^{*} \geq \inf _{x} L(x, \lambda)$.
(d) Derive and sketch the Lagrange dual function as a function of λ.

Figure 1: Objective function and Lagrangian versus x.
Solution: In the lagrangian function, the coefficient of x^{2} is $(1+\lambda)$, so the lagrangian is unbounded for $\lambda \leq-1$. For $\lambda>-1$, by a simple derivation, the minimum of the lagrangian is get at $x=\frac{3 \lambda}{1+\lambda}$. By substitution, we get:

$$
g(\lambda)= \begin{cases}\frac{-9 \lambda^{2}}{1+\lambda}+1+8 \lambda & \lambda>-1 \\ -\infty & \lambda \leq-1\end{cases}
$$

The plot is in Figure 2 .
3. State the dual problem and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ^{*}. Does strong duality hold?

Solution: The Lagrangian dual problem is:

$$
\begin{array}{cl}
\max & \frac{-9 \lambda^{2}}{1+\lambda}+1+8 \lambda \\
\text { s.t. } & \lambda \geq 0
\end{array}
$$

The second derivative of the objective function in $\frac{-18}{(1+\lambda)^{3}}$ which is nagative for $\lambda \geq 0$, so the objective function is concave. By elementary calculus, we can see that the optimal solution is $\lambda^{*}=2$ with the dual optimal solution equal to $\mathrm{d}^{*}=5$, so here strong duality holds.
4. Let $\mathbf{p}^{*}(\mathfrak{u})$ denote the optimal value of the perturbed problem

$$
\begin{array}{cl}
\min & x^{2}+1 \\
\text { s.t. } & (x-2)(x-4) \leq u \\
& x \in \mathbb{R}
\end{array}
$$

Figure 2: Lagrange dual function as a function of λ.
as a function of \boldsymbol{u}. Plot $p^{*}(u)$. Verify that $\frac{\partial p^{*}(0)}{\partial u}=-\lambda^{*}$.
Solution: The minimum of $(x-2)(x-4)$ is -1 , so the purtued problem is feasible for $u \geq-1$. For every $u \geq-1$, the feasible region is spcified by the roots of $x^{2}-6 x-6=u$ and is $[3-\sqrt{1+u}, 3+\sqrt{1+u}]$. The function $x^{2}+1$ is increasing for positive values of x. For $-1 \leq u \leq 8$, the optimal solution is $x^{*}(u)=3-\sqrt{1+u}$. For $u \geq 8$, the lower bound $3-\sqrt{1+u}$ goes below zero, so $x^{*}(u)=0$. We can write:

$$
p^{*}(u)=\left\{\begin{array}{lc}
\infty & u<-1 \\
11+u-6 \sqrt{1+u} & -1 \leq u \leq 8 \\
1 & u \geq 8
\end{array}\right.
$$

The plot is in Figure 3. It is easy to check that $\frac{\partial p^{*}(0)}{\partial u}=-2=-\lambda^{*}$

3 CVX, Numerical Solutions

Consider the LP

$$
\begin{array}{cl}
\text { min } & 4 x_{1}+15 x_{2}+12 x_{3}+2 x_{4} \\
\text { s.t. } & 2 x_{2}+3 x_{3}+x_{4} \geq 1 \\
& x_{1}+3 x_{2}+x_{3}-x_{4} \geq 1 \\
& x \geq 0
\end{array}
$$

Solve this LP using CVX installed in MATLAB.
(See http://cvxr.com/cvx/ on how to install CVX inside of MATLAB. Hand in your input and output with the optimal value and solution.)

Figure 3: $\boldsymbol{p}^{*}(\mathbf{u})$.

