C&0367: Nonlinear Optimization
(Winter 2013)

Assignment 5
H. Wolkowicz

Posted Monday, Mar. 4

Due: Thursday, Mar. 19 10:00AM (before class)

1 Hyperplanes

1.1 Separating Hyperplanes
First we recall some definitions:
(a) Kis a cone if aK C K,V > 0;

(b) K is a conver cone if it is a cone and K+ K C K.

(c) For a set S C R™, the polar (or dual) cone of S is ST :={d : (d,s) > 0,Vs € S}.
(Note that we denote (ST)* = S**. Also, the text uses S* = S*.)

1. Let A, B, C be closed convex sets in R™ such that
A+C=B+C.

Prove that A = B.

Solution: Suppose that the conclusion fails, i.e., without loss of generality,
we assume that there exists @ € A\B. Then by the separation theorem there
exists ¢ such that ($,a) < « < (p,b),¥b € B. But then (p,a+c) <
(p,b +c),¥b € B. This contradicts the fact that @ + ¢ = b + ¢, for some
beB,ceC.

2. Let K € R™. Show that K is a ccc (closed, convex, cone) if, and only if, K = K*.
(Hint: Try a Hail Mary.)

Solution: By the above definition, for any K, K is the intersection of
halfspaces passing through the origin, so it is always a closed and convex
cone. Hence if K = K™, K is ccc.

For the other side, assume that K is closed. We have K** :={} : ($p,s) >
0,Vs € KT}. For any x € K, by definition, we have (¢, x) > 0 for all ¢ € K,
so by definition x € K™*. Hence K C K**. To prove that K" C K, we prove
contrapositive; we prove that if x € K, then x ¢ K*". K is closed and x ¢ K,
so by separation theorem, there exists 0 # a € R™ and an « € R such that
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y-a> o forally € K, and x- a < «. Because K is a cone, I claim that
we can choose o = 0. Tho show that, for any 6 > 0 and y € K, we have
oy € K, so we must have dy - a > «, or y - a > . By sending & to oo, we
have y - a > 0, for all y € K. By definition, a € K*. But we have x - a < 0,
so again by definition x ¢ K™, as we wanted to prove.

1.2 Supporting Hyperplanes

1. Suppose that C;, C; are convex sets in R™ such that C; has interior points and C; does
not contain any interior points of C;. Prove that there is a hyperplane H in R™ such
that C; and C, lie in the opposite closed half-spaces determined by H, i.e., there exist
an 0 # a € R" and an « € R such that

x-a<a<y-a, WxeC,vyel,.
(Hint: Note that C; Nint C; = ) if, and only if, 0 ¢ C, — int Cy.)

Solution: If C; is convex, int Cy is also convex, then C, — int C; is also
convex. We have 0 ¢ C,—int Cy, so by separation there exists an 0 # a € R"
and an B € R such that 0 < B < (c;—cy)-a, forall c; € C; and ¢y € int Cy.
So we have c; - a < ¢ - a. I claim that this is also true for any point in
¢ € Cy. This is because if c¢q is on the boundry of C;, then there is a
sequence ck € int Cy such that ¢ — ¢;. We have c¢¥-a < ¢; - a for all k, so
this is also true for the limit point c;. Hence ¢; - a < ¢, - a, for all ¢; € C;4
and ¢; € C,. Now « can be picked any point between sup{c; - a: c; € Cy}
and inf{Cz -a:cy € Cz}

2. Let S ={x € Ri :x1%2 > 1}. Show that the closed convex set S is an intersection of
halfspaces.

Solution: The boundry of S is {x € R? : xyx; = 1}. I claim that S is
equal to the intersection of all supporting halfspaces at points in its boundry.
By symple calculus results, the supporting hyperplane at x = (t,1/t) is
4 +x, =%. So we can express S as

X1 2
S:ﬂ{xeRi:t—zﬁ-XzZ%}
t>0
For the answer to be complete, we have to check this equality. For one side,
assume that (x;,%x2) € RHS. So we have 33 +x; > % for all t > 0. If we hit
both sides of the inequality with x; we have
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— 4+ xx— >0=(——1 T+x1% >0
%) M= 2 (t ) 1X2 2>

For this to be true for all t > 0, we must have x;x, > 1. The other side is
also easy to prove.



3. Suppose that S C R™ is a closed set, has nonempty interior, and has a supporting
hyperplane at every point in its boundary. Show that S is a convex set.

Solution: For any point z on the boundry of S, define the supporting half-
space as H, = {x : «, - x < b,}, such that S C H,, and «, -z = b,. I claim
that S = NM,eq(s)H,, which is clearly convex. It is clear that S C N,cp(5)H..
For the other side, assume that § € Nueas)H,. If y ¢ S, pick a point
X € int(S). There is point zZ on the linesegment [x,y] such that z € 9(S).
By the hypothesis, S C H;. However y € N,ca(s)Hz, so Yy € Hz. This means
that the linesegment [X,y] is on the boundry of Hz; [X,y] C {x: &z - x = bz},
so we have oz - X = b;. We picked X such that x € int(S), so there is v > 0
such that B(X,r) C S, which means B(X,r) C H;. This is a contradiction to
&z - X = bz. Hence S = M eq(s)H; is a convex set.

2 Optimality Conditions and Duality
Consider the primal optimization problem

min  x2+ 1
st. (x—2)(x—4)<0
xeR

1. What is the feasible set, the optimal value, and the optimal solution?

Solution: The feasible set is the interval [2,4]. x? 4+ 1 is increasing on the
feasible region, so the optimal solution is x* = 2 and the optimal value is
P*=5.

2. Plots and Values:

(a) Plot the objective value x? + 1 versus x.
Solution: See next question.

(b) On the same plot show the feasible set, optimal point and value p*, and plot the
Lagrangian L(x,A) versus x for a few positive values of A.

Solution: The Lagrangian is L(x,A) = (T +A)x?> —6Ax + (1 +8A). Let’s
define fo :=x%*+1 and f; := x* — 6x + 8, then we have L(x,A) = fy + Af;.
The objective value versus x is shown as fy in Figure[I] The Lagrangian
is also plotted for some other values of A.

(c) Verify the lower bound property p* > inf, L(x,A) for A > 0.

Solution: We have f;(2) = 0, so all the lagrangians for A > 0 pass
through the point (2,5). Hence 5 = p* > inf, L(x, A).

(d) Derive and sketch the Lagrange dual function as a function of A.
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Figure 1: Objective function and Lagrangian versus x.

Solution: In the lagrangian function, the coefficient of x? is (14A), so the
lagrangian is unbounded for A < —1. For A > —1, by a simple derivation,
the minimum of the lagrangian is get at x = % By substitution, we

get:

T4+A

N L] E8 A> 1
—00 A< —1

g(A) =

The plot is in Figure

3. State the dual problem and verify that it is a concave maximization problem. Find
the dual optimal value and dual optimal solution A*. Does strong duality hold?

Solution: The Lagrangian dual problem is:
2

T+A
st. A>0

+1+8A

max

The second derivative of the objective function in ﬁ which is nagative

for A > 0, so the objective function is concave. By elementary calculus, we
can see that the optimal solution is A* = 2 with the dual optimal solution
equal to d* =5, so here strong duality holds.

4. Let p*(u) denote the optimal value of the perturbed problem

min x2+ 1
st. (x—2)(x—4)<u
xeR
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Figure 2: Lagrange dual function as a function of A.

as a function of u. Plot p*(u). Verify that %&0) = —\*.
Solution: The minimum of (x — 2)(x —4) is —1, so the purtued problem is
feasible for uw > —1. For every u > —1, the feasible region is spcified by the
roots of x> —6x —6 = w and is [3—+/T 4+ u,3+ /1 + u]. The function x>+ 1
is increasing for positive values of x. For —1 < u < 8, the optimal solution
is x*(u) =3 —+1+u. For u> 8, the lower bound 3 — +/1 + u goes below

zero, so x*(u) = 0. We can write:

o0 u< —I
Pu)=¢ TMMT+u—6y/14+u —1<u<8
1 u > 8.

The plot is in Figure . It is easy to check that %ﬁo) =—-2=—\"

3 CVX, Numerical Solutions

Consider the LP
min 4X] + ]5X2 + ]27(3 + 2X4

st 2% +3x3+x4 > 1
X1+ 3% +x3— x4 > 1
x>0

Solve this LP using CVX installed in MATLAB.
(See http://cvxr.com/cvx/ on how to install CVX inside of MATLAB. Hand in your input
and output with the optimal value and solution.)
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Figure 3: p*(u).
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