
C&O367: Nonlinear Optimization
(Winter 2013)

Assignment 4
H. Wolkowicz

Posted Mon, Feb. 8

Due: Thursday, Feb. 28 10:00AM (before class),

1 Matrices

1.1 Positive Definite Matrices

1. Let A ∈ Sn, i.e., let A be a symmetric, real n × n matrix. Show that A ≻ 0 if, and
only if, A−1 ≻ 0. (Recall that A ≻ 0 denotes that A is positive definite.)

Solution: A ≻ 0 if and only if all the eigenvalues of A are positive. If
λ1, · · · , λn are the eigenvalues of A, the eigenvalues of A−1 are 1

λ1
, · · · , 1

λn
.

Hence if all the eigenvalues of A are positive, all the eigenvalues of A−1 are
also positive and A−1 ≻ 0.

2. Let A ∈ Sn
+. Show that A has a square root A = P2 with P ∈ Sn

+. And, show that this
square root is unique if A ≻ 0.

Solution: By SVD decomposition, we can write any positive semidefinite
matirx A as A = QTDQ where QTQ = QQT = I and D = diag(λ1, · · · , λn)

is a diagonal matrix that the diagonal entries are the eigenvalues of A. Now
define P := QTD

1

2Q whereD
1

2 is a diagonal matrix where the diagonal entries
are the square root of the eigenvalues of A. Now P is positive semidefinite
and we have P2 = QTD

1

2QQTD
1

2Q = QTD
1

2D
1

2Q = QTDQ = A.

I claim that if we put the restriction P ∈ Sn
+, P is unique for all positive

semidefinite matrices. Assume that C2 = P2 = A. As the eigenvalues
of P and C are the same, we have C = UTD

1

2U, UUT = UTU = I. So
we have UTDU = QTDQ or TD = DT , where T := QUT . Note that D =

diag(λ1, · · · , λn), so if we look at TD = DT element wise, we have tijλj = λitij.

This is equivalent to tijλ
1

2

j = λ
1

2

i tij, which means TD
1

2 = D
1

2T . T = QUT , so

QUTD
1

2 = D
1

2QUT or C = UTD
1

2U = QTD
1

2Q = P.
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2 Steepest Descent

2.1 Positive Definiteness and Steepest Descent

1. Suppose that f(x) = 1
2
(x21 + αx22), where x = (x1, x2)

T and α ≥ 1. Suppose we use the
method of Steepest Descent with exact line search starting from x0 = (α, 1)T . Find
the sequence that the method generates. Hence, show that

f(xk+1)

f(xk)
=

(

α− 1

α+ 1

)2

.

(Note that this is a worst case error in terms of the condition number of the Hessian.)

Solution: I want to prove by induction that xk = [α(α−1
α+1

)k ( 1−α
α+1

)k]T . We

start from x0 = (α, 1)T , so the base of the induction is true. For the body
of induction, note that by steepest descent we have xk+1 = xk − t∇f(xk) =

((1−t)xk1, (1−αt)xk2)
T . By exact line search, we want to find t that minimizes

f(xk+1). By taking derivative with respect to t and putting equal to zero we

have t̄ =
(xk

1
)2+α2(xk

2
)2

(xk
1
)2+α3(xk

2
)2
. By substituting xk we get t = 2

1+α
. Then we have:

xk+1 =

[

(1− t)xk1
(1− αt)xk2

]

=

[

(1− 2
1+α

)α(α−1
α+1

)k

(1− 2α
1+α

)( 1−α
α+1

)k

]

=

[

α(α−1
α+1

)k+1

( 1−α
α+1

)k+1

]

,

and we are done. f(xk+1)

f(xk)
=

(

α−1
α+1

)2
is just a simple substitution.

2. Suppose that f(x) is a quadratic function on R
n, f(x) := a + bTx + 1

2
xTAx, where

a ∈ R, b ∈ R
n, A ∈ Sn is positive definite.

(a) Show that f(x) has a unique global minimizer.

Solution: We had this question before. Because A is positive definite,
f(x) is strictly convex and had a unique minimizer x∗ that is the solution
of Ax∗ + b = 0.

(b) Show that if the initial point x0 for Steepest Descent is selected so that x0 − x∗

is an eigenvector of A, then the Steepest Descent sequence {xk} with initial point
x0 reaches the optimum x∗ in one step, i.e., x1 = x∗.

Solution: If we start with x0, the next point by the steepest descent is
x1 = x0 − t(Ax0 + b). But b = −Ax∗, so x1 = x0 − t(Ax0 − Ax∗) =

x0− t(A(x0−x∗)). By hypothesis, x0−x∗ is an eigenvector of A, so there
exists λ > 0 that A(x0 − x∗) = λ(x0 − x∗). Hence x1 = x0 − tλ(x0 − x∗).
By chooseing t = 1

λ
we get x1 = x∗ as we wanted.
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2.2 Steepest Descent for Different Norms

1. Let P ≻ 0. What is the Steepest Descent direction for the quadratic norm defined by
‖z‖P :=

√

〈zTPz〉.

Solution: From the course notes, steepest descent direction is

dsd := argmin{∇f(x)Tz : ‖z‖ ≤ 1},

where the norm in the definition is the desired norm. To solve this problem,
we consider the Lagrangian L(z, λ) := ∇f(x)Tz + λ(‖z‖ − 1), λ ≥ 0, and
minimize that. To do that we put ∇L(z, λ) = 0.

For quadratic norm ‖z‖P :=
√

〈zTPz〉, we have ∇‖z‖P = 1

2
√

〈zTPz〉
Pz, so

∇L(z, λ) = ∇f(x) +
λ

2
√

〈zTPz〉
Pz = 0 ⇒ z = −(

2
√

〈zTPz〉
λ

)P−1∇f(x).

As (
2
√

〈zTPz〉

λ
) ≥ 0, the Steepest descent direction is dsd = −P−1∇f(x).

2. What is the Steepest Descent direction for the ℓ1 norm.

Solution: ℓ1 norm is not differentiable at all the points, so we can not use
the previous method. Our constraint is ‖v‖1 =

∑n
i=1 |vi| =≤ 1. To minimize

∇f(x)Tv, it is clear that we can pick the entry of ∇f(x) that has the largest

absolute value, say (∇f(x))i =
∂f(x)

∂xi
, and then put vi = ±1, and vj = 0,

j ∈ {1, · · · , n}\{i}. The sign of vi is such that ∂f(x)

∂xi
vi ≤ 0. Hence the Steepest

descent direction is dsd = sign(∂f(x)
∂xi

)ei, where ei is the ith standard basis of
R

n.

3 Linear Least Squares

1. Consider the problem minx ‖Ax− b‖2, where A is an m× n matrix, b ∈ R
m, and the

solution x ∈ R
n.

(a) What is the first order necessary condition for optimality? Is it also a sufficient
condition? If so, why?

Solution: We can write

f(x) := ‖Ax− b‖2 = (Ax− b)T(Ax− b) = xTATAx− 2bTAx+ bTb.

Hence the first order necessary condition is ∇f(x) = 2(ATA)x− 2ATb =

0. Note that for any A, ATA is always a positive semidefinite matrix.
Hence, f(x) is a convex quadratic function and so the ∇f(x) = 0 is also
a sufficient condition.
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(b) Is the optimal solution unique? Give reasons for your answer. If it is not unique,
is it a convex set? And, is there a unique element of minimal norm in this set?

Solution: The optimal solution is unique if and only if 2(ATA)x −

2ATb = 0 has a unique solution, which is equivalent to ATA being a
positive definite matrix. ATA is a positive definite matrix if and only if
A has full column rank. Let D be the set of optimal solutions. D is the
set of solutions of the linear system 2(ATA)x− 2ATb = 0, so it is clearly
closed and convex. We want to minimize ‖x‖, which is a strictly convex
function, over the set D. ‖x‖ also has a lower bound (zero is a lower
bound), so it has a unique minimizer over D.

(c) Can you give a closed form expression for the optimal solution? Specify any
assumptions that you may need.

Solution: If we assume that A has full column rank, then ATA is in-
vertible and as we explained above, we have a unique minimizer x∗ =

(ATA)−1ATb.
If A has full row rank, I want to find a formulation for the answer with
the minimum norm (we also need it for question 2). We want to solve
the problem min{ 1

2
‖x‖2 : ATAx = ATb}. I chose 1

2
‖x‖2 to simplify the

calculations. There is a Lagrangian multiplier vector λ that satisfies
x∗ − ATAλ = 0. Substituting x∗ in ATAx∗ = ATb we get ATAATAλ =

ATb. A has full row rank, so this equation is equivalent toAATAλ = b. A
has full low rank also results in AAT being invertible, so Aλ = (AAT)−1b.
Hitting both sides of the last equation with AT and using the fact that
x∗ = ATAλ we have x∗ = AT(AAT)−1b.

(d) Show that the residual Ax − b at the optimal x is orthogonal to the columns of
A.

Solution: Any optimal solution is a solution of (ATA)x−ATb = AT(Ax−

b) = 0. This is equivalent to Ax− b is orthogonal to the columns of A.

(e) Use the two different factorizations QR and SVD to solve the problem for

A =









2 −1 0

0 2 2

0 1 0

1 0 1









, b =









2

6

2

0









.

State whether or not the system AX = b is consistent and why. Also, compare
the norm of the residual that you obtain with that obtained by applying Gaussian
elimination to the normal equations.
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Solution: The QR factorization for A is:

Q =









0.8944 −0.0877 −0.2224

0 0.8771 0.2965

0 0.4385 −0.8154

0.4472 0.1754 0.4447









R =





2.2361 −0.8944 −0.4472

0 2.2804 1.9295

0 0 1.0377





Then x∗ is the solution of Rx = Qb, which is x∗ = (2, 2.8571,−.2857)T.
The SVD decomposition is A = UDV where you can get by the function
svd of MATLAB. Then x∗ is the solution to DVx = UTb. By solving this
we again get x∗ = (2, 2.8571,−.2857)T.
The system Ax = b is not sonsistent, becuase if we solve the fisrt 3
equations, we get the answer x = (2, 2, 1)T which does not satisfy the
forth equation. By using Gaussin elimination for normal equations, we
get:





5 −2 1 4

−2 6 4 12

1 4 5 12



 → R =





0 0 1 −2
7

0 1 0 20
7

1 0 0 2





From all three methods, the norm of the residual is approximately 2.2678.

2. Find the minimum norm solution of the underdetermined linear system with

A =

[

2 1 1 5

−1 −1 3 2

]

, b =

(

8

0

)

.

Solution: A has full row rank, and we derived an exact formulation for the
minimum norm solution in the answer for question 3-1-(c); x∗ = AT(AAT)−1b.
Using that we have: x∗ = (0.8767, 0.5479,−0.3288, 1.2055)T.
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