C\&O367: Nonlinear Optimization (Winter 2013)
 Assignment 4
 H. Wolkowicz

Posted Mon, Feb. 8

Due: Thursday, Feb. 28 10:00AM (before class),

1 Matrices

1.1 Positive Definite Matrices

1. Let $A \in \mathcal{S}^{n}$, i.e., let A be a symmetric, real $n \times n$ matrix. Show that $A \succ 0$ if, and only if, $A^{-1} \succ 0$. (Recall that $A \succ 0$ denotes that A is positive definite.)

Solution: $A \succ 0$ if and only if all the eigenvalues of A are positive. If $\lambda_{1}, \cdots, \lambda_{n}$ are the eigenvalues of A, the eigenvalues of A^{-1} are $\frac{1}{\lambda_{1}}, \cdots, \frac{1}{\lambda_{n}}$. Hence if all the eigenvalues of A are positive, all the eigenvalues of A^{-1} are also positive and $A^{-1} \succ 0$.
2. Let $A \in \mathcal{S}_{+}^{n}$. Show that A has a square root $A=P^{2}$ with $P \in \mathcal{S}_{+}^{n}$. And, show that this square root is unique if $A \succ 0$.

Solution: By SVD decomposition, we can write any positive semidefinite $\operatorname{matirx} A$ as $A=Q^{\top} D Q$ where $Q^{\top} Q=Q^{\top}=I$ and $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ is a diagonal matrix that the diagonal entries are the eigenvalues of A. Now define $P:=Q^{\top} D^{\frac{1}{2}} Q$ where $D^{\frac{1}{2}}$ is a diagonal matrix where the diagonal entries are the square root of the eigenvalues of A. Now P is positive semidefinite and we have $P^{2}=Q^{\top} D^{\frac{1}{2}} Q Q^{\top} D^{\frac{1}{2}} Q=Q^{\top} D^{\frac{1}{2}} D^{\frac{1}{2}} Q=Q^{\top} D Q=A$.
I claim that if we put the restriction $\mathrm{P} \in \mathcal{S}_{+}^{n}, \mathrm{P}$ is unique for all positive semidefinite matrices. Assume that $C^{2}=P^{2}=A$. As the eigenvalues of P and C are the same, we have $C=U^{\top} D^{\frac{1}{2}} U, U U^{\top}=U^{\top} U=I$. So we have $U^{\top} D U=Q^{\top} D Q$ or $T D=D T$, where $T:=\mathrm{QU}^{\top}$. Note that $\mathrm{D}=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, so if we look at TD $=$ DT element wise, we have $t_{i j} \lambda_{j}=\lambda_{i} t_{i j}$. This is equivalent to $\mathrm{t}_{\mathrm{ij}} \lambda_{j}^{\frac{1}{2}}=\lambda_{i}^{\frac{1}{2}} \mathrm{t}_{\mathrm{ij}}$, which means $\mathrm{TD}^{\frac{1}{2}}=\mathrm{D}^{\frac{1}{2}} \mathrm{~T} . \mathrm{T}=\mathrm{QU}^{\top}$, so $\mathrm{QU}^{\top} D^{\frac{1}{2}}=\mathrm{D}^{\frac{1}{2}} \mathrm{QU}^{\top}$ or $\mathrm{C}=\mathrm{U}^{\top} \mathrm{D}^{\frac{1}{2}} \mathrm{U}=\mathrm{Q}^{\top} \mathrm{D}^{\frac{1}{2}} \mathrm{Q}=\mathrm{P}$.

2 Steepest Descent

2.1 Positive Definiteness and Steepest Descent

1. Suppose that $f(x)=\frac{1}{2}\left(x_{1}^{2}+\alpha x_{2}^{2}\right)$, where $x=\left(x_{1}, x_{2}\right)^{\top}$ and $\alpha \geq 1$. Suppose we use the method of Steepest Descent with exact line search starting from $x^{0}=(\alpha, 1)^{\top}$. Find the sequence that the method generates. Hence, show that

$$
\frac{f\left(x^{k+1}\right)}{f\left(x^{k}\right)}=\left(\frac{\alpha-1}{\alpha+1}\right)^{2}
$$

(Note that this is a worst case error in terms of the condition number of the Hessian.)
Solution: I want to prove by induction that $x^{k}=\left[\begin{array}{ll}\left(\frac{\alpha-1}{\alpha+1}\right)^{k} & \left.\left(\frac{1-\alpha}{\alpha+1}\right)^{k}\right]^{\top} \text {. We }\end{array}\right.$ start from $\chi^{0}=(\alpha, 1)^{\top}$, so the base of the induction is true. For the body of induction, note that by steepest descent we have $x^{k+1}=x^{k}-\mathrm{t} \nabla \mathrm{f}\left(\mathrm{x}^{\mathrm{k}}\right)=$ $\left((1-t) x_{1}^{k},(1-\alpha t) x_{2}^{k}\right)^{\top}$. By exact line search, we want to find t that minimizes $f\left(x^{k+1}\right)$. By taking derivative with respect to t and putting equal to zero we have $\bar{t}=\frac{\left(x_{1}^{k}\right)^{2}+\alpha^{2}\left(x_{2}^{k}\right)^{2}}{\left(x_{1}^{k}\right)^{2}+\alpha^{3}\left(x_{2}^{k}\right)^{2}}$. By substituting x^{k} we get $t=\frac{2}{1+\alpha}$. Then we have:

$$
x^{k+1}=\left[\begin{array}{c}
(1-t) x_{1}^{k} \\
(1-\alpha t) x_{2}^{k}
\end{array}\right]=\left[\begin{array}{c}
\left(1-\frac{2}{1+\alpha}\right) \alpha\left(\frac{\alpha-1}{\alpha+1}\right)^{k} \\
\left(1-\frac{2 \alpha}{1+\alpha}\right)\left(\frac{1-\alpha}{\alpha+1}\right)^{k}
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(\frac{\alpha-1}{\alpha+1}\right)^{k+1} \\
\left(\frac{1-\alpha}{\alpha+1}\right)^{k+1}
\end{array}\right],
$$

and we are done. $\frac{f\left(x^{k+1}\right)}{f\left(x^{k}\right)}=\left(\frac{\alpha-1}{\alpha+1}\right)^{2}$ is just a simple substitution.
2. Suppose that $f(x)$ is a quadratic function on $\mathbb{R}^{n}, f(x):=a+b^{\top} x+\frac{1}{2} x^{\top} A x$, where $a \in \mathbb{R}, b \in \mathbb{R}^{n}, A \in \mathcal{S}^{n}$ is positive definite.
(a) Show that $f(x)$ has a unique global minimizer.

Solution: We had this question before. Because \mathcal{A} is positive definite, $f(x)$ is strictly convex and had a unique minimizer x^{*} that is the solution of $A x^{*}+b=0$.
(b) Show that if the initial point x^{0} for Steepest Descent is selected so that $x^{0}-x^{*}$ is an eigenvector of A, then the Steepest Descent sequence $\left\{x^{k}\right\}$ with initial point χ^{0} reaches the optimum x^{*} in one step, i.e., $x^{1}=x^{*}$.

Solution: If we start with χ^{0}, the next point by the steepest descent is $x^{1}=x^{0}-t\left(A x^{0}+b\right)$. But $b=-A x^{*}$, so $x^{1}=x^{0}-t\left(A x^{0}-A x^{*}\right)=$ $x^{0}-t\left(A\left(x^{0}-x^{*}\right)\right)$. By hypothesis, $x^{0}-x^{*}$ is an eigenvector of A, so there exists $\lambda>0$ that $A\left(x^{0}-x^{*}\right)=\lambda\left(x^{0}-x^{*}\right)$. Hence $x^{1}=x^{0}-t \lambda\left(x^{0}-x^{*}\right)$. By chooseing $t=\frac{1}{\lambda}$ we get $x^{1}=x^{*}$ as we wanted.

2.2 Steepest Descent for Different Norms

1. Let $\mathrm{P} \succ 0$. What is the Steepest Descent direction for the quadratic norm defined by $\|z\|_{\mathrm{P}}:=\sqrt{\left\langle z^{\mathrm{T}} \mathrm{P} z\right\rangle}$.

Solution: From the course notes, steepest descent direction is

$$
\mathrm{d}_{\mathrm{sd}}:=\operatorname{argmin}\left\{\nabla f(x)^{\top} z:\|z\| \leq 1\right\},
$$

where the norm in the definition is the desired norm. To solve this problem, we consider the Lagrangian $\mathrm{L}(z, \lambda):=\nabla \mathrm{f}(\mathrm{x})^{\top} z+\lambda(\|z\|-1), \lambda \geq 0$, and minimize that. To do that we put $\nabla \mathrm{L}(z, \lambda)=0$.
For quadratic norm $\|z\|_{\mathrm{P}}:=\sqrt{\left\langle z^{\mathrm{T}} \mathrm{P} z\right\rangle}$, we have $\nabla\|z\|_{\mathrm{P}}=\frac{1}{2 \sqrt{\left\langle z^{\mathrm{T} P}\right\rangle}} \mathrm{P} z$, so

$$
\nabla \mathrm{L}(z, \lambda)=\nabla \mathrm{f}(x)+\frac{\lambda}{2 \sqrt{\left\langle z^{\top} \mathrm{Pz}\right\rangle}} \mathrm{P} z=0 \Rightarrow z=-\left(\frac{2 \sqrt{\left\langle z^{\top} \mathrm{P} z\right\rangle}}{\lambda}\right) \mathrm{P}^{-1} \nabla \mathrm{f}(\mathrm{x})
$$

As $\left(\frac{2 \sqrt{\left\langle z^{\top} P z\right\rangle}}{\lambda}\right) \geq 0$, the Steepest descent direction is $d_{s d}=-P^{-1} \nabla f(x)$.
2. What is the Steepest Descent direction for the ℓ_{1} norm.

Solution: ℓ_{1} norm is not differentiable at all the points, so we can not use the previous method. Our constraint is $\|v\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right|=\leq 1$. To minimize $\nabla \mathrm{f}(\mathrm{x})^{\top} v$, it is clear that we can pick the entry of $\nabla \mathrm{f}(\mathrm{x})$ that has the largest absolute value, say $(\nabla f(x))_{i}=\frac{\partial f(x)}{\partial x_{i}}$, and then put $v_{i}= \pm 1$, and $v_{j}=0$, $j \in\{1, \cdots, n\} \backslash\{i\}$. The sign of v_{i} is such that $\frac{\partial f(x)}{\partial x_{i}} v_{i} \leq 0$. Hence the Steepest descent direction is $d_{s d}=\operatorname{sign}\left(\frac{\partial f(x)}{\partial x_{i}}\right) e_{i}$, where e_{i} is the i th standard basis of \mathbb{R}^{n}.

3 Linear Least Squares

1. Consider the problem $\min _{x}\|A x-b\|^{2}$, where A is an $\mathfrak{m} \times \mathfrak{n}$ matrix, $b \in \mathbb{R}^{m}$, and the solution $x \in \mathbb{R}^{n}$.
(a) What is the first order necessary condition for optimality? Is it also a sufficient condition? If so, why?

Solution: We can write

$$
f(x):=\|A x-b\|^{2}=(A x-b)^{\top}(A x-b)=x^{\top} A^{\top} A x-2 b^{\top} A x+b^{\top} b
$$

Hence the first order necessary condition is $\nabla f(x)=2\left(A^{\top} A\right) x-2 A^{\top} b=$ 0 . Note that for any $A, A^{\top} A$ is always a positive semidefinite matrix. Hence, $f(x)$ is a convex quadratic function and so the $\nabla f(x)=0$ is also a sufficient condition.
(b) Is the optimal solution unique? Give reasons for your answer. If it is not unique, is it a convex set? And, is there a unique element of minimal norm in this set?

Solution: The optimal solution is unique if and only if $2\left(A^{\top} A\right) x-$ $2 A^{\top} b=0$ has a unique solution, which is equivalent to $A^{\top} A$ being a positive definite matrix. $A^{\top} A$ is a positive definite matrix if and only if A has full column rank. Let D be the set of optimal solutions. D is the set of solutions of the linear system $2\left(A^{\top} A\right) x-2 A^{\top} b=0$, so it is clearly closed and convex. We want to minimize $\|x\|$, which is a strictly convex function, over the set D. $\|x\|$ also has a lower bound (zero is a lower bound), so it has a unique minimizer over D .
(c) Can you give a closed form expression for the optimal solution? Specify any assumptions that you may need.

Solution: If we assume that A has full column rank, then $A^{\top} A$ is invertible and as we explained above, we have a unique minimizer $x^{*}=$ $\left(A^{\top} A\right)^{-1} A^{\top} b$.
If A has full row rank, I want to find a formulation for the answer with the minimum norm (we also need it for question 2). We want to solve the problem $\min \left\{\frac{1}{2}\|x\|^{2}: A^{\top} A x=A^{\top} b\right\}$. I chose $\frac{1}{2}\|x\|^{2}$ to simplify the calculations. There is a Lagrangian multiplier vector λ that satisfies $x^{*}-A^{\top} A \lambda=0$. Substituting x^{*} in $A^{\top} A x^{*}=A^{\top} b$ we get $A^{\top} A A^{\top} A \lambda=$ $A^{\top} b$. A has full row rank, so this equation is equivalent to $A A^{\top} A \lambda=b$. A has full low rank also results in $A A^{\top}$ being invertible, so $A \lambda=\left(A A^{\top}\right)^{-1} b$. Hitting both sides of the last equation with A^{\top} and using the fact that $x^{*}=A^{\top} A \lambda$ we have $x^{*}=A^{\top}\left(A A^{\top}\right)^{-1} b$.
(d) Show that the residual $A x-b$ at the optimal x is orthogonal to the columns of A.

Solution: Any optimal solution is a solution of $\left(A^{\top} A\right) x-A^{\top} b=A^{\top}(A x-$ $b)=0$. This is equivalent to $A x-b$ is orthogonal to the columns of A.
(e) Use the two different factorizations QR and SVD to solve the problem for

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 2 & 2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \quad b=\left(\begin{array}{l}
2 \\
6 \\
2 \\
0
\end{array}\right)
$$

State whether or not the system $A X=\mathrm{b}$ is consistent and why. Also, compare the norm of the residual that you obtain with that obtained by applying Gaussian elimination to the normal equations.

Solution: The QR factorization for A is:

$$
\mathrm{Q}=\left[\begin{array}{ccc}
0.8944 & -0.0877 & -0.2224 \\
0 & 0.8771 & 0.2965 \\
0 & 0.4385 & -0.8154 \\
0.4472 & 0.1754 & 0.4447
\end{array}\right] \quad \mathrm{R}=\left[\begin{array}{ccc}
2.2361 & -0.8944 & -0.4472 \\
0 & 2.2804 & 1.9295 \\
0 & 0 & 1.0377
\end{array}\right]
$$

Then x^{*} is the solution of $R x=\mathrm{Qb}$, which is $\chi^{*}=(2,2.8571,-.2857)^{\top}$. The SVD decomposition is $A=$ UDV where you can get by the function svd of MATLAB. Then x^{*} is the solution to $D V x=U^{\top} b$. By solving this we again get $x^{*}=(2,2.8571,-.2857)^{\top}$.
The system $\mathrm{Ax}=\mathrm{b}$ is not sonsistent, becuase if we solve the fisrt 3 equations, we get the answer $x=(2,2,1)^{\top}$ which does not satisfy the forth equation. By using Gaussin elimination for normal equations, we get:

$$
\left[\begin{array}{cccc}
5 & -2 & 1 & 4 \\
-2 & 6 & 4 & 12 \\
1 & 4 & 5 & 12
\end{array}\right] \rightarrow R=\left[\begin{array}{cccc}
0 & 0 & 1 & \frac{-2}{7} \\
0 & 1 & 0 & \frac{20}{7} \\
1 & 0 & 0 & 2
\end{array}\right]
$$

From all three methods, the norm of the residual is approximately 2.2678.
2. Find the minimum norm solution of the underdetermined linear system with

$$
A=\left[\begin{array}{cccc}
2 & 1 & 1 & 5 \\
-1 & -1 & 3 & 2
\end{array}\right], \quad b=\binom{8}{0}
$$

Solution: \mathcal{A} has full row rank, and we derived an exact formulation for the minimum norm solution in the answer for question 3-1-(c); $\chi^{*}=A^{\top}\left(A A^{\top}\right)^{-1} b$. Using that we have: $x^{*}=(0.8767,0.5479,-0.3288,1.2055)^{\top}$.

