C&0367: Nonlinear Optimization
(Winter 2013)

Assignment 4
H. Wolkowicz

Posted Mon, Feb. 8

Due: Thursday, Feb. 28 10:00AM (before class),

1 Matrices

1.1 Positive Definite Matrices

1. Let A € 8™, i.e., let A be a symmetric, real n X n matrix. Show that A > 0 if, and
only if, A=" = 0. (Recall that A = 0 denotes that A is positive definite.)

Solution: A > 0 if and only if all the eigenvalues of A are positive. If

A1, -+, An are the eigenvalues of A, the eigenvalues of A~ are -, -, .
) ) ) O Y An

Hence if all the eigenvalues of A are positive, all the eigenvalues of A~ are
also positive and A~" = 0.

2. Let A € S'. Show that A has a square root A = P? with P € S™. And, show that this
square root is unique if A > 0.

Solution: By SVD decomposition, we can write any positive semidefinite
matirx A as A = Q"DQ where Q"Q = QQ" =T and D = diag(A, - -+ ,An)
is a diagonal matrix that the diagonal entries are the eigenvalues of A. Now
define P := QTD% Q where Dz isa diagonal matrix where the diagonal entries
are the square root of the eigenvalues of A. Now P is positive semidefinite
and we have P2 = Q"Dz2QQ"D2Q = Q'D:D:zQ = Q"'DQ = A.

I claim that if we put the restriction P € ST, P is unique for all positive
semidefinite matrices. Assume that C> = P> = A. As the eigenvalues
of P and C are the same, we have C = UTD%U, uu =uu =1 So
we have U'DU = Q'DQ or TD = DT, where T := QU'. Note that D =
diag(Ar, -+, An), so if we look at TD = DT element wise, we have tiA; = Aity;.

1 1
This is equivalent to ti]?\jz = A/ tyj, which means TD: =D:T. T= QU', so
QU™Dz =D2QU" or C=U"D2U=Q"D2Q =P,



2 Steepest Descent

2.1 Positive Definiteness and Steepest Descent

1. Suppose that f(x) = %(xf + ax3), where x = (x7,x2)" and o« > 1. Suppose we use the
method of Steepest Descent with exact line search starting from x° = (o, 1)". Find
the sequence that the method generates. Hence, show that

fx) fax—1 2
f(x¥) _(oc+1) '

(Note that this is a worst case error in terms of the condition number of the Hessian.)

Solution: I want to prove by induction that x* = [oc(g‘(—j)k (=547 We
start from x° = (&, 1)7, so the base of the induction is true. For the body
of induction, note that by steepest descent we have x**1 = x* —tVf(x¥) =
(1—t)xk, (T—oct)x5)T. By exact line search, we want to find t that minimizes

f(x*1). By taking derivative with respect to t and putting equal to zero we

— k)2 2, k)2
have t = % By substituting x* we get t = 1%0( Then we have:
1 2
R [ (1 —t)x¥ ]:[( —@)(x(tx_—}k]:[(x%m]
(1 - at)xs (11— ) () (et ]
1 2. . . o
and we are done. %ﬁ)) = (z—;}) is just a simple substitution.

2. Suppose that f(x) is a quadratic function on R", f(x) == a + b'x + %XTAX, where
a€eR,be R A €S is positive definite.

(a) Show that f(x) has a unique global minimizer.

Solution: We had this question before. Because A is positive definite,
f(x) is strictly convex and had a unique minimizer x* that is the solution
of Ax* +b =0.

(b) Show that if the initial point x° for Steepest Descent is selected so that x° — x*
is an eigenvector of A, then the Steepest Descent sequence {x*} with initial point

x° reaches the optimum x* in one step, i.e., x' = x*.

Solution: If we start with x°, the next point by the steepest descent is
x' = x% —t(Ax® +b). But b = —Ax*, so x! = x® — t(Ax® — Ax*) =
x° —t(A(x®—x*)). By hypothesis, x® —x* is an eigenvector of A, so there
exists A > 0 that A(x® —x*) = A(x® — x*). Hence x' = x® —tA(x® — x*).
By chooseing t = % we get x! = x* as we wanted.



2.2 Steepest Descent for Different Norms
1. Let P = 0. What is the Steepest Descent direction for the quadratic norm defined by
zllp := /(2"Pz).
Solution: From the course notes, steepest descent direction is

deq == argmin{Vf(x)'z: ||z|| < 1},

where the norm in the definition is the desired norm. To solve this problem,
we consider the Lagrangian L(z,A) := Vf(x)'z + A(||z]| — 1), A > 0, and
minimize that. To do that we put VL(z,A) = 0.

For quadratic norm ||z||p := /(z"Pz), we have V/||z||p = 3 (12sz> Pz, so
A 2./{z"P
VL(z,A) = Vf(x) + ——=Pz=0 = ZZ—(M)Pqu(X).
2:/{z"Pz) A
As (2 <§TPZ>) > 0, the Steepest descent direction is dgq = —P~'VF(x).

2. What is the Steepest Descent direction for the £; norm.

Solution: ¢; norm is not differentiable at all the points, so we can not use

the previous method. Our constraint is ||v]|; = >_I'; [wi| =< 1. To minimize
Vf(x)v, it is clear that we can pick the entry of Vf(x) that has the largest
of(x)

absolute value, say (Vf(x)); = 5., and then put vi = %1, and v; = 0,

je{l,--- ,n\{i}. The sign of v; is such that a;i’f)vi < 0. Hence the Steepest
f(x) '
aXi

Jei, where e; is the ith standard basis of

descent direction is d¢q = sign(
R™.

3 Linear Least Squares

1. Consider the problem min, ||[Ax — b||?, where A is an m X n matrix, b € R™, and the
solution x € R™

(a) What is the first order necessary condition for optimality? Is it also a sufficient
condition? If so, why?

Solution: We can write
f(x) == |[[Ax —b|[* = (Ax —b)T(Ax —b) =x"ATAx —2b"Ax + b'b.

Hence the first order necessary condition is Vf(x) = 2(ATA)x —2ATb =
0. Note that for any A, ATA is always a positive semidefinite matrix.
Hence, f(x) is a convex quadratic function and so the Vf(x) = 0 is also
a sufficient condition.



(b) Is the optimal solution unique? Give reasons for your answer. If it is not unique,
is it a convex set? And, is there a unique element of minimal norm in this set?

Solution: The optimal solution is unique if and only if 2(ATA)x —
2A™0 = 0 has a unique solution, which is equivalent to ATA being a
positive definite matrix. ATA is a positive definite matrix if and only if
A has full column rank. Let D be the set of optimal solutions. D is the
set of solutions of the linear system 2(ATA)x —2ATb =0, so it is clearly
closed and convex. We want to minimize [|x||, which is a strictly convex
function, over the set D. ||x|| also has a lower bound (zero is a lower
bound), so it has a unique minimizer over D.

(c) Can you give a closed form expression for the optimal solution? Specify any
assumptions that you may need.

Solution: If we assume that A has full column rank, then ATA is in-
vertible and as we explained above, we have a unique minimizer x* =
(ATA)TATb.

If A has full row rank, I want to find a formulation for the answer with
the minimum norm (we also need it for question 2). We want to solve
the problem min{]x[? : ATAx = ATb}. I chose 1||x||* to simplify the
calculations. There is a Lagrangian multiplier vector A that satisfies
x* — ATAN = 0. Substituting x* in ATAx* = ATb we get ATAATAN =
ATb. A has full row rank, so this equation is equivalent to AATAA =b. A
has full low rank also results in AAT being invertible, so AA = (AAT)™'b.
Hitting both sides of the last equation with AT and using the fact that
x* = ATAA we have x* = AT(AAT) 'b.

(d) Show that the residual Ax —b at the optimal x is orthogonal to the columns of
A.

Solution: Any optimal solution is a solution of (ATA)x—ATb = AT(Ax—
b) = 0. This is equivalent to Ax — b is orthogonal to the columns of A.

(e) Use the two different factorizations QR and SVD to solve the problem for
—1

2 0

0 2
A:O O,b:
1 1

o =N
S NN

State whether or not the system AX = b is consistent and why. Also, compare
the norm of the residual that you obtain with that obtained by applying Gaussian
elimination to the normal equations.



Solution: The QR factorization for A is:

0.8944 —0.0877 —0.2224
0 0.8771  0.2965 2.2361 —0.8944 —0.4472

Q= - R = 0 2.2804  1.9295
0 0.4385 0.8154 0 0 1.0377

0.4472 0.1754  0.4447

Then x* is the solution of Rx = Qb, which is x* = (2,2.8571,—.2857)".
The SVD decomposition is A = UDV where you can get by the function
svd of MATLAB. Then x* is the solution to DVx = U"b. By solving this
we again get x* = (2,2.8571,—.2857)".

The system Ax = b is not sonsistent, becuase if we solve the fisrt 3
equations, we get the answer x = (2,2,1)" which does not satisfy the
forth equation. By using Gaussin elimination for normal equations, we

get:
5 -2 1 4 001 2
-2 6 4 12| sR=|010 2
1 4 5 12 100 2

From all three methods, the norm of the residual is approximately 2.2678.

2. Find the minimum norm solution of the underdetermined linear system with

2 1 15 8
A:L 13 2}’ bz(o)'

Solution: A has full row rank, and we derived an exact formulation for the
minimum norm solution in the answer for question 3-1-(c); x* = AT(AAT)'b.
Using that we have: x* = (0.8767,0.5479, —0.3288,1.2055)".
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