C\&O367: Nonlinear Optimization (Winter 2013)

Assignment 3
H. Wolkowicz

Posted Sat, Feb. 2

Due: Tuesday, Feb. 12 10:00AM (before class),

1 Convex Sets and Functions

1.1 Operations that Preserve Convexity

1. Suppose that $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an affine mapping ${ }^{1}$ and that $D \subseteq \mathbb{R}^{n}$ is a convex set. Show that $\mathcal{A}(\mathrm{D})$ is a convex set in \mathbb{R}^{m}. (I.e., affine mappings preserve convexity.)

Solution: Assume that $x, y \in \mathcal{A}(D)$. This means there exists $\bar{x}, \bar{y} \in \mathbb{R}^{n}$ such that $x=A \bar{x}+b$ and $y=A \bar{y}+b$. Then for any $\lambda \in[0,1]$, we have

$$
\begin{aligned}
& \lambda x+(1-\lambda) y=A(\lambda \bar{x}+(1-\lambda) \bar{y})+\lambda b+(1-\lambda) b=A(\lambda \bar{x}+(1-\lambda \bar{y}))+b \\
& \text { so } \lambda x+(1-\lambda) y=\mathcal{A}(\lambda \bar{x}+(1-\lambda \bar{y})) ; \lambda x+(1-\lambda) y \in \mathcal{A}(D) \text { as we wanted. }
\end{aligned}
$$

2. Suppose that for each $i=1, \ldots, k$, the functions $f_{i}: D \rightarrow \mathbb{R}$ are convex on a convex set $D \subseteq \mathbb{R}^{n}$, and suppose that $w_{i}>0$ are positive weights. Show that $f(x):=\sum_{i=1}^{k} w_{i} f_{i}(x)$ is convex on D .

Solution: For any $x, y \in D$ and any $\lambda \in[0,1]$ we have

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & =\sum_{i=1}^{k} w_{i} f_{i}(\lambda x+(1-\lambda) y) \\
& \leq \sum_{i=1}^{k} w_{i} \lambda f_{i}(x)+w_{i}(1-\lambda) f_{i}(y) \\
& =\lambda \sum_{i=1}^{k} w_{i} f_{i}(x)+(1-\lambda) \sum_{i=1}^{k} w_{i} f_{i}(y) \\
& =\lambda f(x)+(1-\lambda) f(y),
\end{aligned}
$$

where in the inequality I used the convexity of f_{i} 's and $w_{i}>0$.

[^0]3. Let f_{1}, f_{2} be convex functions defined on a convex set $D \subseteq \mathbb{R}^{n}$. Show that the pointwise maximum function
$$
f(x):=\max \left\{f_{1}(x), f_{2}(x)\right\}
$$
is a convex function on D. (HINT: Use the epigraph characterization of convex functions.) Extend this result to the supremum of an infinite number (a set) of functions.

Solution: The epigraph of $f(x)$, say epi (f), is all the points (y, x) that we have $y \geq f(x)$. For $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}, y \geq f(x)$ if and only if $y \geq f_{1}(x)$ and $y \geq f_{2}(x)$. This means that $(y, x) \in$ epi (f) if and only if $(y, x) \in \operatorname{epi}\left(f_{1}\right)$ and $(y, x) \in \operatorname{epi}\left(f_{2}\right)$, so we have:

$$
\operatorname{epi}(f)=\operatorname{epi}\left(f_{1}\right) \cap \operatorname{epi}\left(f_{2}\right) .
$$

$f_{1}(x)$ and $f_{2}(x)$ are convex functions, so epi $\left(f_{1}\right)$ and epi $\left(f_{2}\right)$ are convex sets. By question 1.1.1 of assignment 2, the intersection of two convex sets is convex. Hence epi (f) is a convex set and $f(x)$ is a convex function. The intersection of any collection of convex sets is convex. So if \mathcal{F} is a set of convex functions (can be infinite), then

$$
g(x):=\sup _{\mathrm{f} \in \mathcal{F}}\{\mathbf{f}(x)\}
$$

is also a convex function.
4. Let $\emptyset \neq \mathrm{C} \subseteq \mathbb{R}^{n}$. Let $\|\cdot\|$ denote a norm on \mathbb{R}^{n}. Show that the distance to the farthest point of C

$$
f(x):=\sup _{y \in C}\|x-y\|
$$

is a convex function.
Solution 1: Let $x, z \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$. We have:

$$
\begin{aligned}
& f(\lambda x+(1-\lambda) z)=\sup _{y \in C}\|\lambda x+(1-\lambda) z-y\|=\sup _{y \in C}\|\lambda(x-y)+(1-\lambda)(z-y)\| \\
& \leq^{(a)} \sup _{y \in C} \lambda\|(x-y)\|+(1-\lambda)\|(z-y)\| \\
& \leq^{(b)} \quad \lambda \sup _{y \in C}\|(x-y)\|+(1-\lambda) \sup _{y \in C}\|(z-y)\| \\
&=\lambda f(x)+(1-\lambda) f(y),
\end{aligned}
$$

Inequality (a) is by using the triangle inequality and $\lambda,(1-\lambda) \geq 0$. For inequality (b), this is true for any two functions g and h;

$$
\sup _{x \in C}(g(x)+h(x)) \leq \sup _{x \in C} g(x)+\sup _{x \in C} h(x) .
$$

To prove this, let $a:=\sup _{x \in C}(g(x)+h(x))$. Then there is a sequence $\left\{x_{n}\right\}$ in C such that $g\left(x_{n}\right)+h\left(x_{n}\right) \rightarrow a$. We have $g\left(x_{n}\right) \leq \sup _{x \in C} g(x)$ and $h\left(x_{n}\right) \leq \sup _{x \in C} h(x)$ for all n. Hence, $a=\lim g\left(x_{n}\right)+h\left(x_{n}\right) \leq \sup _{x \in C} g(x)+$ $\sup _{x \in C} h(x)$ as we want.

Solution 2: By using triangle inequality, the function $f_{y}(x)=\|x-y\|$ is a convex function. Hence, by Question 1.1.3 above, $f(x)=\sup _{y \in C} f_{y}(x)=$ $\sup _{y \in C}\|x-y\|$ is a convex function.

2 Differentiability

2.1 Gradient

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and strictly convex. Show that $\nabla f(x)=\nabla f(y)$ if, and only if, $x=y$.

Solution: It is clear that if $x=y$ then $\nabla f(x)=\nabla f(y)$. For that other side, f is a strictly convex function, so for any two points $x \neq y$ we have:

$$
\begin{aligned}
& f(y)>f(x)+\nabla f(x)^{\top}(y-x) \\
& f(x)>f(y)+\nabla f(y)^{\top}(x-y)
\end{aligned}
$$

By adding these two inequality and subtracting the common terms from both sides, we have $0>\nabla(f(x)-f(y))^{\top}(y-x)$. This means that $f(x)-f(y) \neq 0$ if $x \neq y$ and we are done.

2.2 Hessian

Let $\mathrm{f}: \mathrm{S} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{\left(\alpha^{\top} x\right)^{2}}{\left(\beta^{\top} x\right)},
$$

where S is a convex subset of $\mathbb{R}^{n}, \alpha, \beta \in \mathbb{R}^{n}$, and where $\beta^{\top} x>0, \forall x \in S$. Derive an expression for the Hessian of f and, hence, verify that f is convex over S.

Solution: By symple calculations we have:

$$
\begin{aligned}
& (\nabla f(x))_{i}=\frac{2 \alpha_{i}\left(\alpha^{\top} x\right)}{\left(\beta^{\top} x\right)}-\frac{\beta_{i}\left(\alpha^{\top} x\right)^{2}}{\left(\beta^{\top} x\right)^{2}} \\
& \left(\nabla^{2} f(x)\right)_{i j}=\frac{2 \alpha_{i} \alpha_{j}}{\left(\beta^{\top} x\right)}-2 \frac{\alpha_{i} \beta_{j}\left(\alpha^{\top} x\right)}{\left(\beta^{\top} x\right)^{2}}-2 \frac{\alpha_{j} \beta_{i}\left(\alpha^{\top} x\right)}{\left(\beta^{\top} x\right)^{2}}+2 \frac{\beta_{i} \beta_{j}\left(\alpha^{\top} x\right)^{2}}{\left(\beta^{\top} x\right)^{3}}
\end{aligned}
$$

This is equivalent to:

$$
\nabla^{2} f(x)=\frac{2 \alpha \alpha^{\top}}{\left(\beta^{\top} x\right)}-2 \frac{\alpha \beta^{\top}\left(\alpha^{\top} x\right)}{\left(\beta^{\top} x\right)^{2}}-2 \frac{\beta \alpha^{\top}\left(\alpha^{\top} x\right)}{\left(\beta^{\top} x\right)^{2}}+2 \frac{\beta \beta^{\top}\left(\alpha^{\top} x\right)^{2}}{\left(\beta^{\top} x\right)^{3}}
$$

To show that f is convex on S, we have to show that $\nabla^{2} f(x)$ is positive semidefinite for all $x \in S$; we have to show that $y^{\top} \nabla^{2} f(x) y \geq 0$ for all $y \in \mathbb{R}^{n}$. We can write:

$$
\begin{aligned}
y^{\top} \nabla^{2} f(x) y & =\frac{2}{\left(\beta^{\top} x\right)}\left[\left(\alpha^{\top} y\right)^{2}-2 \frac{\left(\alpha^{\top} y\right)\left(\beta^{\top} y\right)\left(\alpha^{\top} x\right)}{\left(\beta^{\top} x\right)}+\frac{\left(\beta^{\top} y\right)^{2}\left(\alpha^{\top} x\right)^{2}}{\left(\beta^{\top} x\right)^{2}}\right] \\
& =\frac{2}{\left(\beta^{\top} x\right)}\left[\alpha^{\top} y-\frac{\left(\beta^{\top} y\right)\left(\alpha^{\top} x\right)}{\left(\beta^{\top} x\right)}\right]^{2} \geq 0
\end{aligned}
$$

The last inequality is because $\left(\beta^{\top} x\right)>0$ for $x \in S$.

3 AGM

Use AGM to solve the following:

$$
\max \left\{x y^{2} z^{3}: x^{3}+y^{2}+z=39, \text { and } x, y, z>0\right\}
$$

Solution: Let's define a and b such that $z=a y^{2}$ and $x^{3}=b y^{2}$, then we have $y^{2}(b+1+a)=39$. We can write:

$$
x y^{2} z^{3}=b^{\frac{1}{3}} a^{3}\left(\frac{39}{b+1+a}\right)^{\frac{13}{3}}=\left(\frac{39}{b^{\frac{12}{13}} a^{\frac{-9}{13}}+b^{\frac{-1}{13}} a^{\frac{-9}{13}}+b^{\frac{-1}{13}} a^{\frac{4}{13}}}\right)^{\frac{13}{3}}
$$

We use the AGM to find a lower bound on the dinaminator of the last expression as:

$$
\begin{aligned}
b^{\frac{12}{13}} a^{\frac{-9}{13}}+b^{\frac{-1}{13}} a^{\frac{-9}{13}}+b^{\frac{-1}{13}} a^{\frac{4}{13}} & =b^{\frac{12}{13}} a^{\frac{-9}{13}}+3\left(\frac{b^{\frac{-1}{13}} a^{\frac{-9}{13}}}{3}\right)+9\left(\frac{b^{\frac{-1}{13}} a^{\frac{4}{13}}}{9}\right) \\
& \geq 13\left(\left(\frac{1}{3}\right)^{3}\left(\frac{1}{9}\right)^{9}\right)^{\frac{1}{13}}
\end{aligned}
$$

with equality iff $b^{\frac{12}{13}} \mathrm{a}^{\frac{-9}{13}}=\frac{\mathrm{b}^{\frac{-1}{13}} \mathrm{a}^{-\frac{9}{3}}}{3}=\frac{\mathrm{b}^{\frac{-1}{13}} a^{\frac{4}{13}}}{9} \Rightarrow \mathrm{a}=3, \quad, \mathrm{~b}=\frac{1}{3}$ Hence $x y^{2} z^{3} \leq 3^{\frac{34}{3}}$ with equality iff $x=3^{\frac{1}{3}}, y=3$, and $z=27$.

4 Iterative Methods

4.1 Example in \mathbb{R}

Consider the function

$$
f(x)= \begin{cases}4 x^{3}-3 x^{4} & \text { if } \lambda \geq 0 \\ 4 x^{3}+3 x^{4} & \text { if } \lambda<0\end{cases}
$$

1. Show that f is twice continuously differentiable on \mathbb{R}.

Solution: It is clear that

$$
\begin{aligned}
& f^{\prime}(x)= \begin{cases}12 x^{2}-12 x^{3} & \text { if } \lambda>0 \\
12 x^{2}+12 x^{3} & \text { if } \lambda<0\end{cases} \\
& f^{\prime \prime}(x)= \begin{cases}24 x-36 x^{2} & \text { if } \lambda>0 \\
24 x+36 x^{2} & \text { if } \lambda<0\end{cases}
\end{aligned}
$$

It is easy to check that $f^{\prime \prime}(x)$ is continuous at $x=0$.
2. Apply Newton's method on f for minimization from the starting point $x_{0}=.40$. Show the results for the first $k=6$ iterations. What is χ_{k} converging to?

Solution: The Newton's step is $x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}$ for $f^{\prime \prime}\left(x_{k}\right) \neq 0$. By starting from $x_{0}=.4$ we have

$$
x_{1}=0.1, x_{2}=0.0471, x_{3}=0.0229, x_{4}=0.0113, x_{5}=0.0056, \quad x_{6}=0.0028
$$

x_{k} is converging to 0 .
3. Now start with the initial iteration $x_{0}=.60$. What can you conclude about the convergence now?

Solution: By starting from $x_{0}=.6$ we have

$$
x_{1}=-0.6, \quad x_{2}=0.6, \quad x_{3}=-0.6, \quad x_{4}=0.6, \quad x_{5}=-0.6, \quad x_{6}=0.6
$$

χ_{k} is swapping between 0.6 and -0.6 and is not convergent.

4.2 MATLAB Example

Use MATLAB to find the minimum of the following functions, i.e., use the routine fminunc in MATLAB. And, solve three ways: (i) with no derivatives; (ii) with first derivatives; (iii) with first and second derivatives. (Provide the input you used and the output obtained.)
1.

$$
f(x)=\left(x_{1}^{2}+x_{2}^{2}\right)^{2}-x_{1}^{2}-x_{2}+x_{3}^{2}
$$

with starting point $(1,1,1)$.
2.

$$
f(x)=\pi \exp ^{x_{2}}\left(5 x_{1}^{2}+3 x_{1}^{2}+2.3 x_{1} x_{2}+2 x_{2}+7\right)
$$

(State the starting point you used.)

[^0]: ${ }^{1} \mathcal{A}(x)=A x+b$ for appropriate matrix A and vector b.

