
C&O367: Nonlinear Optimization
(Winter 2013)
Assignment 3
H. Wolkowicz

Posted Sat, Feb. 2

Due: Tuesday, Feb. 12 10:00AM (before class),

1 Convex Sets and Functions

1.1 Operations that Preserve Convexity

1. Suppose that A : Rn → Rm is an affine mapping1 and that D ⊆ Rn is a convex set.
Show that A(D) is a convex set in Rm. (I.e., affine mappings preserve convexity.)

Solution: Assume that x, y ∈ A(D). This means there exists x̄, ȳ ∈ Rn
such that x = Ax̄+ b and y = Aȳ+ b. Then for any λ ∈ [0, 1], we have

λx+ (1− λ)y = A(λx̄+ (1− λ)ȳ) + λb+ (1− λ)b = A(λx̄+ (1− λȳ)) + b

so λx+ (1− λ)y = A(λx̄+ (1− λȳ)); λx+ (1− λ)y ∈ A(D) as we wanted.

2. Suppose that for each i = 1, . . . , k, the functions fi : D→ R are convex on a convex set
D ⊆ Rn, and suppose that wi > 0 are positive weights. Show that f(x) :=

∑k
i=1wifi(x)

is convex on D.

Solution: For any x, y ∈ D and any λ ∈ [0, 1] we have

f(λx+ (1− λ)y) =

k∑
i=1

wifi(λx+ (1− λ)y)

≤
k∑
i=1

wiλfi(x) +wi(1− λ)fi(y)

= λ

k∑
i=1

wifi(x) + (1− λ)

k∑
i=1

wifi(y)

= λf(x) + (1− λ)f(y),

where in the inequality I used the convexity of fi’s and wi > 0.

1A(x) = Ax+ b for appropriate matrix A and vector b.
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3. Let f1, f2 be convex functions defined on a convex set D ⊆ Rn. Show that the pointwise
maximum function

f(x) := max{f1(x), f2(x)}

is a convex function on D. (HINT: Use the epigraph characterization of convex func-
tions.) Extend this result to the supremum of an infinite number (a set) of functions.

Solution: The epigraph of f(x), say epi (f), is all the points (y, x) that we
have y ≥ f(x). For f(x) = max{f1(x), f2(x)}, y ≥ f(x) if and only if y ≥ f1(x)
and y ≥ f2(x). This means that (y, x) ∈ epi (f) if and only if (y, x) ∈ epi (f1)
and (y, x) ∈ epi (f2), so we have:

epi (f) = epi (f1) ∩ epi (f2).

f1(x) and f2(x) are convex functions, so epi (f1) and epi (f2) are convex sets.
By question 1.1.1 of assignment 2, the intersection of two convex sets is
convex. Hence epi (f) is a convex set and f(x) is a convex function. The
intersection of any collection of convex sets is convex. So if F is a set of
convex functions (can be infinite), then

g(x) := sup
f∈F

{f(x)}

is also a convex function.

4. Let ∅ 6= C ⊆ Rn. Let ‖ ·‖ denote a norm on Rn. Show that the distance to the farthest
point of C

f(x) := sup
y∈C
‖x− y‖

is a convex function.

Solution 1: Let x, z ∈ Rn and λ ∈ [0, 1]. We have:

f(λx+ (1− λ)z) = sup
y∈C
‖λx+ (1− λ)z− y‖ = sup

y∈C
‖λ(x− y) + (1− λ)(z− y)‖

≤(a) sup
y∈C

λ‖(x− y)‖+ (1− λ)‖(z− y)‖

≤(b) λ sup
y∈C
‖(x− y)‖+ (1− λ) sup

y∈C
‖(z− y)‖

= λf(x) + (1− λ)f(y),

Inequality (a) is by using the triangle inequality and λ, (1 − λ) ≥ 0. For
inequality (b), this is true for any two functions g and h;

sup
x∈C

(g(x) + h(x)) ≤ sup
x∈C

g(x) + sup
x∈C

h(x).

To prove this, let a := supx∈C(g(x) + h(x)). Then there is a sequence {xn}

in C such that g(xn) + h(xn) → a. We have g(xn) ≤ supx∈C g(x) and
h(xn) ≤ supx∈C h(x) for all n. Hence, a = limg(xn)+h(xn) ≤ supx∈C g(x)+
supx∈C h(x) as we want.
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Solution 2: By using triangle inequality, the function fy(x) = ‖x − y‖ is
a convex function. Hence, by Question 1.1.3 above, f(x) = supy∈C fy(x) =
supy∈C ‖x− y‖ is a convex function.

2 Differentiability

2.1 Gradient

Suppose that f : Rn → R is continuously differentiable and strictly convex. Show that
∇f(x) = ∇f(y) if, and only if, x = y.

Solution: It is clear that if x = y then ∇f(x) = ∇f(y). For that other side, f is
a strictly convex function, so for any two points x 6= y we have:

f(y) > f(x) +∇f(x)T(y− x)

f(x) > f(y) +∇f(y)T(x− y)

By adding these two inequality and subtracting the common terms from both
sides, we have 0 > ∇(f(x) − f(y))T(y − x). This means that f(x) − f(y) 6= 0 if
x 6= y and we are done.

2.2 Hessian

Let f : S→ R be defined by

f(x) =
(αTx)2

(βTx)
,

where S is a convex subset of Rn, α,β ∈ Rn, and where βTx > 0,∀x ∈ S. Derive an
expression for the Hessian of f and, hence, verify that f is convex over S.

Solution: By symple calculations we have:

(∇f(x))i =
2αi(α

Tx)

(βTx)
−
βi(α

Tx)2

(βTx)2
,

(∇2f(x))ij =
2αiαj

(βTx)
− 2

αiβj(α
Tx)

(βTx)2
− 2

αjβi(α
Tx)

(βTx)2
+ 2

βiβj(α
Tx)2

(βTx)3
.

This is equivalent to:

∇2f(x) = 2ααT

(βTx)
− 2

αβT(αTx)

(βTx)2
− 2

βαT(αTx)

(βTx)2
+ 2

ββT(αTx)2

(βTx)3
.
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To show that f is convex on S, we have to show that∇2f(x) is positive semidefinite
for all x ∈ S; we have to show that yT∇2f(x)y ≥ 0 for all y ∈ Rn. We can write:

yT∇2f(x)y =
2

(βTx)

[
(αTy)2 − 2

(αTy)(βTy)(αTx)

(βTx)
+

(βTy)2(αTx)2

(βTx)2

]
=

2

(βTx)

[
αTy−

(βTy)(αTx)

(βTx)

]2
≥ 0.

The last inequality is because (βTx) > 0 for x ∈ S.

3 AGM

Use AGM to solve the following:

max{xy2z3 : x3 + y2 + z = 39, and x, y, z > 0}

Solution: Let’s define a and b such that z = ay2 and x3 = by2, then we have
y2(b+ 1+ a) = 39. We can write:

xy2z3 = b
1
3a3(

39

b+ 1+ a
)
13
3 = (

39

b
12
13a

−9
13 + b

−1
13 a

−9
13 + b

−1
13 a

4
13

)
13
3 .

We use the AGM to find a lower bound on the dinaminator of the last expression
as:

b
12
13a

−9
13 + b

−1
13 a

−9
13 + b

−1
13 a

4
13 = b

12
13a

−9
13 + 3(

b
−1
13 a

−9
13

3
) + 9(

b
−1
13 a

4
13

9
)

≥ 13((
1

3
)3(
1

9
)9)

1
13

with equality iff b
12
13a

−9
13 = b

−1
13 a

−9
13

3
= b

−1
13 a

4
13

9
⇒ a = 3, , b = 1

3
Hence

xy2z3 ≤ 3 34
3 with equality iff x = 3

1
3 , y = 3, and z = 27.

4 Iterative Methods

4.1 Example in R
Consider the function

f(x) =

{
4x3 − 3x4 if λ ≥ 0
4x3 + 3x4 if λ < 0

1. Show that f is twice continuously differentiable on R.
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Solution: It is clear that

f ′(x) =

{
12x2 − 12x3 if λ > 0
12x2 + 12x3 if λ < 0

f ′′(x) =

{
24x− 36x2 if λ > 0
24x+ 36x2 if λ < 0

It is easy to check that f ′′(x) is continuous at x = 0.

2. Apply Newton’s method on f for minimization from the starting point x0 = .40. Show
the results for the first k = 6 iterations. What is xk converging to?

Solution: The Newton’s step is xk+1 = xk−
f ′(xk)
f ′′(xk)

for f ′′(xk) 6= 0. By starting
from x0 = .4 we have

x1 = 0.1, x2 = 0.0471, x3 = 0.0229, x4 = 0.0113, x5 = 0.0056, x6 = 0.0028,

xk is converging to 0.

3. Now start with the initial iteration x0 = .60. What can you conclude about the
convergence now?

Solution: By starting from x0 = .6 we have

x1 = −0.6, x2 = 0.6, x3 = −0.6, x4 = 0.6, x5 = −0.6, x6 = 0.6,

xk is swapping between 0.6 and −0.6 and is not convergent.

4.2 MATLAB Example

Use MATLAB to find the minimum of the following functions, i.e., use the routine fminunc
in MATLAB. And, solve three ways: (i) with no derivatives; (ii) with first derivatives; (iii)
with first and second derivatives. (Provide the input you used and the output obtained.)

1.
f(x) = (x21 + x

2
2)
2 − x21 − x2 + x

2
3

with starting point (1, 1, 1).

2.
f(x) = π expx2(5x21 + 3x

2
1 + 2.3x1x2 + 2x2 + 7)

(State the starting point you used.)
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