C\&O367: Nonlinear Optimization (Winter 2013)

Assignment 1
H. Wolkowicz

Posted Sat. 2013-Jan-12

Due: Tues., 2013-Jan-22, 10:00AM (before class),

1 Local/Global Minimizers/Maximizers

1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
f(x)=1000\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \tag{1}
\end{equation*}
$$

(a) Show that the point $x^{*}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{\top}$ is the only local minimum for f on \mathbb{R}^{2} and, in fact is a strict local minimum.

Solution: We set the gradient to 0 :

$$
\nabla f(x)=\binom{-4000 x_{1}\left(x_{2}-x_{1}^{2}\right)-2\left(1-x_{1}\right)}{2000\left(x_{2}-x_{1}^{2}\right)}=0
$$

Then the second row implies that $x_{2}-x_{1}^{2}=0$. The first row now implies $1-x_{1}=0$ Both together now imply that x^{*} is the only critical (stationary) point. To check whether it is a strict local minimum we find the Hessian

$$
\nabla^{2} f(x)=\left[\begin{array}{cc}
-4000 x_{2}+12000 x_{1}^{2}+2 & -4000 x_{1} \\
-4000 x_{1} & 2000
\end{array}\right]
$$

and

$$
\nabla^{2} f\left(x^{*}\right)=\left[\begin{array}{cc}
8002 & -4000 \\
-4000 & 2000
\end{array}\right]
$$

is positive definite by the leading principal minors test, i.e. $8002>$ $0,((8002)(2000)-(4000)(4000))>0$. Therefore χ^{*} is indeed a strict local minimum.
(b) What can you say about x^{*} and the test for a global minimum? Is x^{*} a (strict) global minimum?

Solution: Note that the test for a global minimum fails since $\nabla^{2} f(x)$ has a negative diagonal element whenever $-4000 x_{2}+12000 x_{1}^{2}+2<0$. However, $f\left(x^{*}\right)=0$ and $f(x) \geq 0, \forall x$, clearly means that x^{*} is a global minimum. And it is clearly the only point where $f(x)=0$ and so is a strict global minimum.
(c) Use the MATLAB surf and/or mesh command to provide plots of f for values $0 \leq x_{1} \leq 2,0 \leq x_{2} \leq 2$ in steps of .1. (Hand in the plot(s), and in colour if possible. Include a printout of the commands you used.)

Solution:

```
[X,Y] = meshgrid(0:.1:2);
f= 1000*(Y-X.^2).^2 + (1-X).^2;
figure(1)
surf(X,Y,f)
figure(2)
mesh(X,Y,f)
```

(d) Documentation http://www.mathworks.com/help/optim/index.html is for the MATLAB toolbox.
Use the MATLAB function fminunc to minimize the function in equation (1) above. Use options and optimset so that your program first runs without using gradients and Hessians and then runs with using gradients and Hessians during the iterations. Hand in your program and the appropriate output parameters. Use initial starting points $(00)^{\top}$ and $(-10-10)^{\top}$.

Solution:

```
%options = optimset('Hessian','off');
options = optimset('Hessian','on');
options = optimset('GradObj','on');
x0=zeros(2,1);
[x,fval,exitflag,output,grad] = fminunc(@myfun,x0,options);
```

with function myfun:

```
function [f,g,H] = myfun(x)
n=length(x);
f= 1000*(x(2)-x(1)^2)^2+(1-x(1))^2;
g=[ -4000*x(1)*(x(2)-x(1)~2) - 2*(1-x(1))
    2000*(x(2)-x(1)^2)];
H= [ -4000*x(2)+12000*x(1)^2+2 -4000*x(1)
    -4000*x(1) 2000];
```

2. Find the local and global minimizers and maximizers of the following functions. (Carefully state your reasoning.)
(a) $f(x)=\frac{1}{5} x^{5}-\frac{13}{4} * x^{4}+\frac{59}{3} x^{3}-\frac{107}{2} x^{2}+60 x-3$.

Solution: The derivative of f can be factored to get $f^{\prime}(x)=(x-1) *$ $(x-3) *(x-4) *(x-5)$ (One can use the symbolic toolbox in MATLAB.) The evaluation of the second derivative at the points $1,3,4,5$ yield: $-24,4,-3,8$, respectively. Therefore the points $x=1,3,4,5$ are respectively local max, min, max, min. Since the degree of f is 5 is clear
that it is unbounded above and unbounded below. Therefore, the local \min / \max are not global.
(b) $f(x)=x^{2} e^{-x^{2}}$

Solution: We have $f^{\prime}(x)=2 x\left(1-x^{2}\right) e^{-x^{2}}$. Hence, the critical points are $x=0,-1,1$. The evaluation of the second derivative at the points $0,-1,1$ yield: $2,-4 e^{-1},-4 e^{-1}$, respectively. Therefore the points $x=0,-1,1$ are respectively local min, max, max. Also not that $f(x) \geq 0$ for all points, so $x=0$ is a global min. For global max, we have $f^{\prime}(x)>0$ for $x \in(-\infty,-1)$ and $x \in(0,1)$, and $f^{\prime}(x)<0$ for $x \in(-1,0)$ and $x \in(1, \infty)$. We also have $f(1)=f(-1)$, so $x=-1$ and $x=1$ are global max.

2 Symmetric Matrices and Quadratic Forms

1. Classify the matrices according to whether they are positive or negative definite or semidefinite or indefinite.
(a) $\left[\begin{array}{lll}8 & 5 & 5 \\ 5 & 4 & 5 \\ 5 & 5 & 2\end{array}\right]$

Solution: Indefinite after checking eigenvalues or determinant. Also $\{1,3\}$ minor is negative $16-25<0$.
(b) $\left[\begin{array}{ccc}10 & 6 & 7 \\ 6 & 8 & 3 \\ 7 & 3 & 8\end{array}\right]$

Solution: This matirx is positive definite. You can prove that by computing the determinant of the leading principle minors. We have:

$$
\Delta_{1}=10, \quad \Delta_{2}=44, \quad \Delta_{3}=122
$$

2. (a) Write the quadratic form associated with the matrix $\left[\begin{array}{cccc}10 & 6 & 7 & 3 \\ 6 & 8 & 3 & 3 \\ 7 & 3 & 8 & -4 \\ 3 & 3 & -4 & -8\end{array}\right]$

Solution: $10 x_{1}^{2}+8 x_{2}^{2}+8 x_{3}^{2}-8 x_{4}^{2}+12 x_{1} x_{2}+14 x_{1} x_{3}+6 x_{1} x_{4}+6 x_{2} x_{3}+$ $6 x_{2} x_{4}-8 x_{3} x_{4}$
(b) Write the following quadratic form in the form $x^{\top} A x$ for an appropriate matrix A: $\quad x_{1} x_{4}-3 x_{2} x_{3}+7 x_{3} x_{1}+9 x_{3}^{2}-3.2 x_{4} x_{3}+3 x_{2} x_{4}$.

Solution: $A=\left[\begin{array}{cccc}0 & 0 & 3.5 & .5 \\ 0 & 0 & -1.5 & 1.5 \\ 3.5 & -1.5 & 9 & -1.6 \\ .5 & 1.5 & -1.6 & 0\end{array}\right]$

3 Critical Points

Show that although the origin is a critical point of the function $f(x)=x_{1}^{5}-x_{1} x_{2}^{6}$, it is neither a local maximizer nor a local minimizer of $f\left(x_{1}, x_{2}\right)$.

Solution: The gradient is $\nabla f(x)=\binom{5 x_{1}^{4}-x_{2}^{6}}{-6 x_{1} x_{2}^{5}}$, which is 0 at the origin. We would like to show that it is a saddle point, i.e., if the Hessian has a positive and a negative eigenvalue, then the corresponding eigenvectors will be directions of increase and decrease, respectively. More precisely, if $\mathrm{H} v=\lambda \nu$ with $\lambda>0$, then $\mathrm{f}(0+\alpha v)=\mathrm{f}(0)+\alpha^{2} \frac{1}{2} \nu^{\top} \mathrm{H} v+\mathrm{o}\left(\alpha^{2}\right)$ shows that v is a direction of increase. (A similar argument holds for the negative eigenvalue.)
Now the Hessian is

$$
H=\left[\begin{array}{cc}
20 x_{1}^{3} & -6 x_{2}^{5} \\
-6 x_{2}^{5} & -30 x_{1} x_{2}^{4}
\end{array}\right]
$$

But this is 0 at the origin and so this does not obviously help.
However, along the curve $x_{1}=x_{2}^{2}$, we see that $f(x)<0$ for x_{2} small, while along the line $x_{1}=x_{2}$, with $x_{1}>0$, we see that $f(x)>0$ for x_{2} small. Therefore, we do not have a local max or min.

4 Coercive Functions

Show carefully if the following functions are coercive or not.

1. $f(x, y, z)=\log \left(x^{2} y^{2} z^{2}\right)-x-y-z$

Solution: This function is not coercive. To prove that, let's define $a=$ $\left(r, \frac{1}{r}, 1\right)$ for $r>0$. Clearly we have $\lim _{r \rightarrow \infty}\|a\|=+\infty$. However,

$$
f(a)=\log \left(\frac{r^{2}}{r^{2}}\right)-r-\frac{1}{r}-1=-r-\frac{1}{r}-1,
$$

where goes to $-\infty$ when $r \rightarrow+\infty$. Hence, $f(x, y, z)$ is not coercive.
2. $f(x, y, z)=x^{2}+y^{2}+z^{2}-\sin (x y z)$

Solution: This function is coercive. First of all note that $|\sin (x y z)| \leq 1$ for all values of (x, y, z). When $\|(x, y, z)\| \rightarrow+\infty$, at least one of $|x|,|y|$, and $|z|$ goes to $+\infty$. Hence we clearly have

$$
\lim _{\|(x, y, z)\| \rightarrow+\infty} f(x, y, z)=+\infty
$$

