CO 466/666: Continuous Optimization Problem Set 5

H. Wolkowicz

Winter 2012. Handed out: 2012-Feb-27. Due: 2012-Mar-9, at the start of class.

Contents

1 Lagrange Multiplier Theorem

1

1 Lagrange Multiplier Theorem

Consider the abstract convex program discussed in class, i.e.

$$p^* := \inf_{\substack{\text{s.t.} g(x) \preceq_K 0 \\ x \in \Omega.}} f(x) \qquad (CP)$$

Here:

- X, Y are Hilbert spaces (wlog e.g., $\mathbb{R}^n, \mathbb{R}^m$, respectively) with innerproducts denoted by $\langle \cdot, \cdot \rangle$;
- $\Omega \subseteq X$ is convex; $K \subseteq Y$ is a closed convex cone with non-empty interior;
- $f: X \to \mathbb{R}$ is a convex real valued function;
- $g: X \to Y$ is a K-convex function, i.e., $g(\lambda x + (1 - \lambda)y) \preceq_K \lambda g(x) + (1 - \lambda)g(y), \forall x, y \in X, \forall 0 \le \lambda \le 1;$
- The optimal value p^* is finite valued.

Show the following:

1. g(x) is a K-convex function if, and only if, $x \mapsto \langle \phi, g(x) \rangle$ is a convex function for all $\phi \in K^+$, where K^+ is the (nonnegative) polar cone of K.

2. Show that Strong duality holds for (CP) under the Slater constraint qualification: $\exists \hat{x} \in \Omega$ such that $g(\hat{x}) \prec_K 0^1$, i.e., show that there exists an optimal Lagrange multiplier $\lambda^* \in K^+$ such that

$$p^* = \inf_{x \in \Omega} \{ f(x) + \langle \lambda^*, g(x) \rangle \}.$$
(1)

(Use the hyperplane separation argument outlined in class.)

- 3. Moreover, suppose that we have attainment in (CP), i.e., there exists $x^* \in \Omega$ such that $g(x^*) \preceq_K 0$ and $f(x^*) = p^*$. Show that complementary slackness holds, i.e., that $\langle \lambda^*, g(x^*) \rangle = 0$.
- 4. Use the above Lagrange multiplier theorem to prove strong duality for (CP), i.e. show that

$$p^* = \min_{x \in \Omega} \max_{\lambda \in K^+} \{f(x) + \langle \lambda, g(x) \rangle \} = d^* := \max_{\lambda \in K^+} \min_{x \in \Omega} \{f(x) + \langle \lambda, g(x) \rangle \}.$$

¹ equivalently $g(\hat{x}) \in int(-K)$