CO 466/666: Continuous Optimization Problem Set 2

H. Wolkowicz

Winter 2012. Handed out: 2012-Feb-9. Due: 2012-Feb-17, at the start of class.

Contents

1	Hyperplane Separation Theorems	1
2	Finitely Generated Cone and Theorems of the Alternative	1
3	Problems in the Text	2

1 Hyperplane Separation Theorems

- 1. Suppose that $\bar{x} \notin K$, a closed convex subset of \mathbb{R}^n . Show that there exists a hyperplane that strictly separates \bar{x} from K.
- 2. Let K, L be two nonempty convex subsets of \mathbb{R}^n . Suppose that K, L are disjoint, $K \cap L = \emptyset$. Show that there exists a hyperplane that separates the two sets, i.e. there exists a $u \in \mathbb{R}^n$ such that

$$\langle u, k \rangle \leq \langle u, l \rangle, \forall k \in K, \forall l \in L.$$

2 Finitely Generated Cone and Theorems of the Alternative

1. Let $S \subset \mathbb{R}^n$ and define the convex cone generated by S

cone
$$S := \left\{ x = \sum_{i=1}^{k} \alpha_i s_i : \alpha_i \ge 0, s_i \in S, \forall i = 1, ..., k, \text{ and } k = 1, 2, ... \right\}$$

Let $V := \{v_1, \ldots, v_t\} \subset \mathbb{R}^n$. Show that the *finitely generated cone*, K = cone V, is closed.

- 2. Prove the following Theorems of the Alternative:
 - (a) Let A be a given $p \times n$ matrix, and $b \in \mathbb{R}^n$. Then: either

$$I: \qquad Ax \le 0, b^T x > 0 \qquad \text{has a solution } x \in \mathbb{R}^n$$

or

$$II: \qquad A^T y = b, y \ge 0, \text{ has a solution } y \in \mathbb{R}^p$$

but never both.

(b) Let A, C, D be given matrices with A nonvacuous (contains at least one element). Then: either

I: $Ax > 0, Cx \ge 0, Dx = 0$ has a solution x

or

II:
$$A^T y_1 + C^T y_2 + D^T y_3 = 0, 0 \neq y_1 \ge 0, y_2 \ge 0, y_3$$
 has a solution

but never both.

(c) Can you Use Item 1 and the Lemma in class on closed convex cones to prove both theorems of the alternative above?

3 Problems in the Text

12.5, 12.10, 12.19.