CO 466/666: Continuous Optimization Problem Set 2

H. Wolkowicz

Winter 2012.
Handed out: 2012-Jan-21.
Due: 2012-Jan-30, at the start of class.

Contents

1 Line Search Methods 1
2 Trust Region Method 2
3 Derivatives/Taylor Series Approximations 2

1 Line Search Methods

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable convex function. Then f is called strongly convex if there exists $M>0$ such that

$$
\begin{equation*}
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq M\|x-y\|^{2}, \forall x, y \tag{1}
\end{equation*}
$$

The Goldstein conditions to ensure sufficient decrease and sufficiently large steplengths (similar to the Wolfe conditions) are

$$
\begin{equation*}
f\left(x_{k}\right)+(1-c) \alpha_{k} \nabla f\left(x_{k}\right)^{T} p_{k} \leq f\left(x_{k}+\alpha_{k} p_{k}\right) \leq f\left(x_{k}\right)+c \alpha_{k} \nabla f\left(x_{k}\right)^{T} p_{k}, \tag{2}
\end{equation*}
$$

where $0<c<\frac{1}{2}, x_{k}$ is the current iterate, p_{k} is the current search direction, and α_{k} is the steplength.

1. Show that an equivalent condition to (1) is

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{1}{2} m t(1-t)\|x-y\|^{2}, \forall t \in[0,1] .
$$

2. Suppose that the current point x_{k} and the search direction p_{k} are given and α_{k} is found using an exact line search. Moreover, suppose that f is a strongly convex quadratic function. Show that the conditions in (2) are satisfied.

2 Trust Region Method

Suppose that the trust region method is applied to a quadratic function with a positive definite Hessian. Show that the optimum is obtained after a finite number of iterations.

3 Derivatives/Taylor Series Approximations

Let $h: \mathbb{S}^{n} \rightarrow \mathbb{R}$ be defined as $h(X)=\operatorname{det}(X)$, where \mathbb{S}^{n} is the vector space of $n \times n$ symmetric matrices, equipped with the trace inner-product $\langle X, Y\rangle:=$ trace $X Y$. Let $g: \mathbb{R}_{++} \rightarrow \mathbb{R}$ be the \log function on the positive real line, $g(x)=\log (x)$. Let $f: \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}$ be the composite function

$$
f(X)=(g \circ h)(X)=\log \operatorname{det}(X)
$$

where \mathbb{S}_{+}^{n} is the cone of symmetric positive semidefinite matrices and \mathbb{S}_{++}^{n} is the cone of symmetric positive definite matrices, both of size $n \times n$. (In the following show the details in the derivations.)

1. Derive the gradient of h. (Hint: Recall the definition of the adjugate matrix in terms of the minors and cofactors, and compare this to the cofactor expansion for the determinant.)
2. Use Part 1 above and the chain rule to derive the gradient of f. (Hint: Recall Cramer's rule for the inverse using the determinant and the adjugate.) Then, write down the first order Taylor series approximation of f at a given positive definite matrix \bar{X} acting on the perturbation ΔX, i.e., the first order approximation of $f(X+\Delta X)$. Denote this by $f_{1}(X+\Delta X)$.
3. Do the same as in Part 2 for the second order approximation of $f(X+\Delta X)$. Denote this by $f_{2}(X+\Delta X)$.
(Hint: To derive the second derivative, apply the product differentiation rule to both sides of the equation $X^{-1} X=I$.
4. Let $X:=\left[\begin{array}{ccc}3 & 1 & 2 \\ 1 & 2 & -1 \\ 2 & -1 & 4\end{array}\right]$ and $\Delta X:=\left[\begin{array}{ccc}1 & -1 & -2 \\ -1 & 1 & 1 \\ -2 & 1 & 1\end{array}\right]$. Note that $X \succ 0$, is positive definite.
(a) Using MATLAB find the maximum steplength $\bar{\alpha}>0$ such that $X+$ $\bar{\alpha} \Delta X \succeq 0$.
(Hint: Let $S=\operatorname{sqrtm}(X)$ be the positive definite square root of X, where sqrtm denotes the MATLAB command. Sylvester's Lemma of inertia yields that a congruence maintains positive definiteness, i.e. $X \succ 0 \Longrightarrow S \backslash X / S \succ 0$, where $S \backslash X / S=S^{-1} X S^{-1}$.)
(b) Use the MATLAB command linspace to create 100 steps for plotting: steps $=\operatorname{linspace}(0, \bar{\alpha}-.1)$, where the -.1 guarantees that you stay
positive definite. On one figure, plot the three functions f, f_{1}, f_{2} at each of the 100 values in steps, e.g., using the evaluations
$f(X+\operatorname{steps}(i) * \Delta X), f_{1}(X+\operatorname{steps}(i) * \Delta X), f_{2}(X+\operatorname{steps}(i) * \Delta X)$.
Observe and comment on the quality of the approximations.
(c) Redo Part 4b above with the smaller interval, steps=linspace $(0,5)$. Observe and comment on the quality of the two approximations, i.e., the first and second order approximations.
