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1 Line Search Methods

Let f : Rn → R be a differentiable convex function. Then f is called strongly

convex if there exists M > 0 such that

(∇f(x)−∇f(y))T (x− y) ≥ M‖x− y‖2, ∀x, y. (1)

The Goldstein conditions to ensure sufficient decrease and sufficiently large
steplengths (similar to the Wolfe conditions) are

f(xk) + (1− c)αk∇f(xk)
T pk ≤ f(xk + αkpk) ≤ f(xk) + cαk∇f(xk)

T pk, (2)

where 0 < c < 1

2
, xk is the current iterate, pk is the current search direction,

and αk is the steplength.

1. Show that an equivalent condition to (1) is

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)−
1

2
mt(1− t)‖x− y‖2, ∀t ∈ [0, 1].

2. Suppose that the current point xk and the search direction pk are given
and αk is found using an exact line search. Moreover, suppose that f is
a strongly convex quadratic function. Show that the conditions in (2) are
satisfied.
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2 Trust Region Method

Suppose that the trust region method is applied to a quadratic function with
a positive definite Hessian. Show that the optimum is obtained after a finite
number of iterations.

3 Derivatives/Taylor Series Approximations

Let h : Sn → R be defined as h(X) = det(X), where S
n is the vector space

of n× n symmetric matrices, equipped with the trace inner-product 〈X,Y 〉 :=
traceXY . Let g : R++ → R be the log function on the positive real line,
g(x) = log(x). Let f : Sn++ → R be the composite function

f(X) = (g ◦ h)(X) = log det(X),

where S
n
+ is the cone of symmetric positive semidefinite matrices and S

n
++ is

the cone of symmetric positive definite matrices, both of size n × n. (In the
following show the details in the derivations.)

1. Derive the gradient of h. (Hint: Recall the definition of the adjugate matrix
in terms of the minors and cofactors, and compare this to the cofactor ex-
pansion for the determinant.)

2. Use Part 1 above and the chain rule to derive the gradient of f . (Hint:
Recall Cramer’s rule for the inverse using the determinant and the adju-
gate.) Then, write down the first order Taylor series approximation of f at
a given positive definite matrix X̄ acting on the perturbation ∆X , i.e., the
first order approximation of f(X +∆X). Denote this by f1(X +∆X).

3. Do the same as in Part 2 for the second order approximation of f(X+∆X).
Denote this by f2(X +∆X).
(Hint: To derive the second derivative, apply the product differentiation
rule to both sides of the equation X−1X = I.

4. Let X :=





3 1 2
1 2 −1
2 −1 4



 and ∆X :=





1 −1 −2
−1 1 1
−2 1 1



. Note that X ≻ 0,

is positive definite.

(a) Using MATLAB find the maximum steplength ᾱ > 0 such that X +
ᾱ∆X � 0.
(Hint: Let S = sqrtm(X) be the positive definite square root of X ,
where sqrtm denotes the MATLAB command. Sylvester’s Lemma of
inertia yields that a congruence maintains positive definiteness, i.e.
X ≻ 0 =⇒ S\X/S ≻ 0, where S\X/S = S−1XS−1. )

(b) Use the MATLAB command linspace to create 100 steps for plotting:
steps=linspace(0, ᾱ − .1), where the −.1 guarantees that you stay
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positive definite. On one figure, plot the three functions f, f1, f2 at
each of the 100 values in steps, e.g., using the evaluations

f(X+ steps(i) ∗∆X), f1(X + steps(i) ∗∆X), f2(X + steps(i) ∗∆X).

Observe and comment on the quality of the approximations.

(c) Redo Part 4b above with the smaller interval, steps=linspace(0, 5).
Observe and comment on the quality of the two approximations,
i.e., the first and second order approximations.
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