CO 367 – Notes on Unconstrained Optimization I

March 7, 2011

[Reference: Boyd and Vandenberghe – textbook and lecture slides]

This week we consider unconstrained minimization problems: given a C^2 function f: $\mathbb{R}^n \to \mathbb{R}$, solve

(*)
$$\min_{x \in \mathbb{R}^n} f(x),$$

that is, find the global minimizer(s) of f.

We assume that $p^* > -\infty$ and there exists some x^* such that $p^* = f(x^*)$. Recall:

1. If x^* solves (*), then the first order necessary condition holds:

$$\nabla f\left(x^*\right) = 0. \tag{1}$$

2. Suppose, in addition, that f is a convex function.

If x^* satisfies (1), then x^* solves (*).

Hence

solving (*) \equiv solving the equation $\nabla f(x) = 0$ for x.

1 How to solve (*)?

- Use *iterative methods*:
 - Start with an initial point $x^{(0)}$.
 - Produce a sequence $\{x^{(k)}\}_{k=1,\dots}$ such that
 - 1. $f(x^{(k)}) \leq f(x^{(0)})$ for all k. 2. $f(x^{(k)}) \rightarrow p^*$ as $k \rightarrow \infty$.

We would hope that the sequence $\{x^{(k)}\}$ at least has a limit point, which we would take as the solution of (*).

- But we usually don't know p^* a priori then how do we know if the objective values of our iterates $x^{(k)}$ are getting close to p^* ?
- Usually we require $\{x^{(k)}\}$ to satisfy

$$\left\|\nabla f\left(x^{(k)}\right)\right\| \to 0\tag{2}$$

instead.

• If $\{x^{(k)}\}$ has a limit point, then by continuity of f and ∇f ,

$$f\left(x^{(k)}\right) \to p^* \quad \Longrightarrow \quad f(x^*) = p^*,$$
$$\left\|\nabla f\left(x^{(k)}\right)\right\| \to 0 \quad \Longrightarrow \quad \nabla f(x^*) = 0.$$

2 Strongly convex functions

So for what kind of function f can we be sure that, if we produce a sequence $\{x^{(k)}\}$ satisfying

1. $f(x^{(k)}) \le f(x^{(0)})$ for all k, and

2.
$$\left\|\nabla f\left(x^{(k)}\right)\right\| \to 0 \text{ as } k \to \infty,$$

then

- 1. $\{x_k\}_{k=1,\dots}$ has a limit point x^* , and
- 2. The limit point x^* solves (*)?

One class of functions that enjoy this property is the class of *strongly convex functions*. A function is strongly convex on a set S if there exists some m > 0 such that

 $\nabla^2 f(x) - mI$ is positive semidefinite for all $x \in S$,

or, equivalently,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \|\nabla f(x)\|^2$$

for all $x, y \in S$.

• Let $x^{(0)} \in \text{dom } f$. If f is strongly convex on the set

$$S := \{ x \in \mathbb{R}^n : f(x) \le f(x_0) \} = f^{-1} \big((-\infty, f(x_0)] \big),$$

which is a closed set, then

- 1. S is a bounded set. (So S is a compact set.) This ensures that the sequence $\{x^{(k)}\}$ has a limit point.
- 2. $p^* > -\infty$.
- 3. $f(x) p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$.

This means that even if we don't know p^* , we can look at $\|\nabla f(x^{(k)})\|$ to determine how close $f(x^{(k)})$ is to the optimal value (provided we know m).

- 4. The limit point x^* of $\{x^{(k)}\}$ satisfies $\nabla f(x^*)$ and therefore solves (*) by convexity of f.
- Simple example/non-examples of strongly convex function:
 - $-f(x,y) = x^2 + y^2$ is strongly convex.
 - $-f(x,y) = x^4 + y^4$ is not strongly convex. In fact, it is not even strictly convex (at (0,0)).
 - $-f(x) = e^x$ is strictly convex, but not strongly convex. Note that f does not have a minimizer on \mathbb{R} : $\inf_{\mathbb{R}} f = 0$ but f(x) > 0 for all $x \in \mathbb{R}$.

3 Descent methods

An (iterative) descent method generates a sequence $\{x^{(k)}\}$ of point such that

$$f\left(x^{(k+1)}\right) < f\left(x^{(k)}\right).$$

Each iterate $x^{(k)}$ is obtained via the following: Three ingredients needed:

Algorithm 3.1: General descent method

- 1 Given(*initial point* $x^{(0)}$);
- 2 repeat
 - 1. Determine a search direction Δx .
 - 2. Line search. Choose a step size t > 0.
 - 3. $x \leftarrow x + t\Delta x$.
- 3 until stopping criterion is satisfied. ;
 - 1. search direction,
 - 2. step size, and
 - 3. stopping criterion.

3.1 Search direction Δx

• Usually require that

$$\nabla f(x)^T \Delta x < 0. \tag{3}$$

A vector satisfying (3) is called a *descent direction*.

• Reason: f convex; if $\nabla f(x)^T \Delta x < 0$ does not hold, then for all t > 0

 $f(x + t\Delta x) \ge f(x) + t\nabla f(x)^T \Delta x \ge f(x),$

so $x + t\Delta x$ does not give a lower objective value.

• How to pick Δx ?

A natural choice if $\Delta x = -\nabla f(x)$. This corresponds to steepest descent method.

3.2 Line search

Once we fix the search direction, we need to pick a point on the ray $\{x + t\Delta x : t > 0\}$. This amounts to choosing a positive parameter t, which is called the step size. There are two common types of line search:

• Exact line search.

We find t such that $f(x + t\Delta x)$ is the smallest possible on the ray. To find this t is equivalent to solving the single-variate minimization problem

$$\min_{t>0} f(x + t\Delta x).$$

It can be quite expensive to perform though. So usually we use the other alternative: backtracking.

• Backtracking line search.

Backtracking is the computationally less expensive option for choosing a step size that guarantees sufficient objective value decrease at the new iterate.

We have two parameters $\alpha \in (0, 0.5)$ and $\beta \in (0, 1)$.

- α controls the (relative) level of objective value decrease at each iteration.
- β is the backtracking parameter.

The backtracking procedure is as follows:

- We start with t = 1.

- Repeat

$$t \leftarrow \beta t$$

until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x.$$
(4)

This inequality is equivalent to

$$\frac{f(x) - f(x + t\Delta x)}{t} > \alpha \cdot \left(-\nabla f(x)^T \Delta x \right),$$

so the choice of t is such that the objective value decrease (given by the LHS) is to be at least a factor α of $-\nabla f(x)^T \Delta x$.

3.3 Stopping criterion

We usually use the first order necessary condition of optimality (1): we stop at an iterate $x^{(k)}$ if $\nabla f(x^{(k)}) \sim 0$, in the sense that

$$\left\| f\left(x^{(k)}\right) \right\| \le \varepsilon,\tag{5}$$

where $\varepsilon > 0$ is a very small number (the user-defined zero-tolerance).