CO 367 — Notes on Unconstrained Optimization I

March 7, 2011

[Reference: Boyd and Vandenberghe — textbook and lecture slides]

This week we consider unconstrained minimization problems: given a C? function f :

R"™ — R, solve
(x)  min f(z),

that is, find the global minimizer(s) of f.
We assume that p* > —oo and there exists some z* such that p* = f(z*).

Recall:

1. If * solves (%), then the first order necessary condition holds:

Vf(z*)=0. (1)

2. Suppose, in addition, that f is a convex function.
If 2* satisfies (1)), then z* solves ().

Hence
solving (x) = solving the equation V f(x) = 0 for x.

1 How to solve (x)?

o Use iterative methods:
— Start with an initial point 2(©).
— Produce a sequence {x(k)}k:1 _such that
1. f (x(k)) <f ({L‘(O)) for all k.
2. f (x(k)) — p*as k — oo.

We would hope that the sequence {:L‘(k)} at least has a limit point, which we would
take as the solution of (x).



e But we usually don’t know p* a priori — then how do we know if the objective values

k)

of our iterates z(¥) are getting close to p*?

e Usually we require {x(k)} to satisfy

fos ()]0 :
instead.

o If {x(k)} has a limit point, then by continuity of f and V f,

f(w(k))%p* = f() =p",

HVf <x<k>)H—>o — Vi) =0

2 Strongly convex functions

So for what kind of function f can we be sure that, if we produce a sequence {x(k)}

satisfying
L f(z®) < £ (2©) for all k, and
2. |Vf (2®)]| = 0as k — oo,
then
L. {p};—; . has a limit point z*, and
2. The limit point * solves (x) 7

One class of functions that enjoy this property is the class of strongly convex functions.
A function is strongly convex on a set S if there exists some m > 0 such that

V2 f(xz) — ml is positive semidefinite for all z € S,

or, equivalently,

F) = f(@) + V@) (y - 2) + 3 V@)

for all z,y € S.

o Let (9 € dom f. If f is strongly convex on the set

S:={zxeR": f(z) < f(xo)} = f_l((—oo,f(:vo)]),

which is a closed set, then



1. S is a bounded set. (So S is a compact set.)
This ensures that the sequence {x(k)} has a limit point.
2. p* > —o0.
1 2
3. flx)—p* < —|IVf(2)5-
f@) —p < o IV @)E
This means that even if we don’t know p*, we can look at ||V f(z*®)|| to determine

how close f(z(*)) is to the optimal value (provided we know m).

4. The limit point x* of {x(k)} satisfies V f(x*) and therefore solves (x) by con-
vexity of f.

e Simple example/non-examples of strongly convex function:

f(z,y) = 22 + 42 is strongly convex.

flx,y) = z* + y is not strongly convex. In fact, it is not even strictly convex

( (0,0)).

— f(x) = € is strictly convex, but not strongly convex. Note that f does not
have a minimizer on R: infg f =0 but f(z) > 0 for all z € R.

3 Descent methods

An (iterative) descent method generates a sequence {x(k)} of point such that

() <5 (a0,

Each iterate z(®) is obtained via the following: Three ingredients needed:

Algorithm 3.1: General descent method
1 Given( initial point z(9));
2 repeat

1. Determine a search direction Ax.
2. Line search. Choose a step size t > 0.
3. v+ x+tAx.

3 until stopping criterion is satisfied. ;

1. search direction,
2. step size, and

3. stopping criterion.



3.1 Search direction Az

e Usually require that
Vi) Az <o. (3)

A vector satisfying is called a descent direction.

e Reason: f convex; if Vf(z)” Az < 0 does not hold, then for all ¢ > 0
fz+tAz) > f(z) +tVf(x) Az > f(x),

so = + tAz does not give a lower objective value.

e How to pick Az?
A natural choice if Ax = -V f(z).
This corresponds to steepest descent method.

3.2 Line search

Once we fix the search direction, we need to pick a point on the ray {x +tAz:t > 0}.
This amounts to choosing a positive parameter ¢, which is called the step size. There are
two common types of line search:

e FExact line search.

We find t such that f(z + tAz) is the smallest possible on the ray. To find this ¢ is
equivalent to solving the single-variate minimization problem

i tAx).
min f(z + tAz)
It can be quite expensive to perform though. So usually we use the other alternative:
backtracking.

e Backtracking line search.

Backtracking is the computationally less expensive option for choosing a step size
that guarantees sufficient objective value decrease at the new iterate.

We have two parameters o € (0,0.5) and S € (0, 1).

— « controls the (relative) level of objective value decrease at each iteration.

— [ is the backtracking parameter.
The backtracking procedure is as follows:

— We start with ¢t = 1.



— Repeat
t+ [t

until
fz+tAz) < f(z) + atVf(z)T Az. (4)

This inequality is equivalent to

f(z) — fz + tAx)
t

> - (—Vf(x)TAx) )

so the choice of t is such that the objective value decrease (given by the LHS) is to
be at least a factor a of —V f(x)T Axz.

3.3 Stopping criterion

We usually use the first order necessary condition of optimality : we stop at an iterate
) if V f (:c(k)) ~ 0, in the sense that

I ()] < g

where £ > 0 is a very small number (the user-defined zero-tolerance).
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