# CO 367 - Notes on Unconstrained Optimization I 

March 7, 2011
[Reference: Boyd and Vandenberghe - textbook and lecture slides]
This week we consider unconstrained minimization problems: given a $C^{2}$ function $f$ : $\mathbb{R}^{n} \rightarrow \mathbb{R}$, solve

$$
(*) \quad \min _{x \in \mathbb{R}^{n}} f(x)
$$

that is, find the global minimizer(s) of $f$.
We assume that $p^{*}>-\infty$ and there exists some $x^{*}$ such that $p^{*}=f\left(x^{*}\right)$.
Recall:

1. If $x^{*}$ solves $(*)$, then the first order necessary condition holds:

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=0 \tag{1}
\end{equation*}
$$

2. Suppose, in addition, that $f$ is a convex function.

If $x^{*}$ satisfies (11), then $x^{*}$ solves $(*)$.
Hence

$$
\text { solving }(*) \equiv \text { solving the equation } \nabla f(x)=0 \text { for } x
$$

## 1 How to solve (*)?

- Use iterative methods:
- Start with an initial point $x^{(0)}$.
- Produce a sequence $\left\{x^{(k)}\right\}_{k=1, \ldots}$ such that

1. $f\left(x^{(k)}\right) \leq f\left(x^{(0)}\right)$ for all $k$.
2. $f\left(x^{(k)}\right) \rightarrow p^{*}$ as $k \rightarrow \infty$.

We would hope that the sequence $\left\{x^{(k)}\right\}$ at least has a limit point, which we would take as the solution of $(*)$.

- But we usually don't know $p^{*}$ a priori - then how do we know if the objective values of our iterates $x^{(k)}$ are getting close to $p^{*}$ ?
- Usually we require $\left\{x^{(k)}\right\}$ to satisfy

$$
\begin{equation*}
\left\|\nabla f\left(x^{(k)}\right)\right\| \rightarrow 0 \tag{2}
\end{equation*}
$$

instead.

- If $\left\{x^{(k)}\right\}$ has a limit point, then by continuity of $f$ and $\nabla f$,

$$
\begin{aligned}
f\left(x^{(k)}\right) \rightarrow p^{*} & \Longrightarrow \quad f\left(x^{*}\right)=p^{*} \\
\left\|\nabla f\left(x^{(k)}\right)\right\| \rightarrow 0 & \Longrightarrow \quad \nabla f\left(x^{*}\right)=0 .
\end{aligned}
$$

## 2 Strongly convex functions

So for what kind of function $f$ can we be sure that, if we produce a sequence $\left\{x^{(k)}\right\}$ satisfying

1. $f\left(x^{(k)}\right) \leq f\left(x^{(0)}\right)$ for all $k$, and
2. $\left\|\nabla f\left(x^{(k)}\right)\right\| \rightarrow 0$ as $k \rightarrow \infty$,
then
3. $\left\{x_{k}\right\}_{k=1, \ldots}$ has a limit point $x^{*}$, and
4. The limit point $x^{*}$ solves $(*)$ ?

One class of functions that enjoy this property is the class of strongly convex functions. A function is strongly convex on a set $S$ if there exists some $m>0$ such that

$$
\nabla^{2} f(x)-m I \text { is positive semidefinite for all } x \in S
$$

or, equivalently,

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|\nabla f(x)\|^{2}
$$

for all $x, y \in S$.

- Let $x^{(0)} \in \operatorname{dom} f$. If $f$ is strongly convex on the set

$$
S:=\left\{x \in \mathbb{R}^{n}: f(x) \leq f\left(x_{0}\right)\right\}=f^{-1}\left(\left(-\infty, f\left(x_{0}\right)\right]\right),
$$

which is a closed set, then

1. $S$ is a bounded set. (So $S$ is a compact set.)

This ensures that the sequence $\left\{x^{(k)}\right\}$ has a limit point.
2. $p^{*}>-\infty$.
3. $f(x)-p^{*} \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}$.

This means that even if we don't know $p^{*}$, we can look at $\left\|\nabla f\left(x^{(k)}\right)\right\|$ to determine how close $f\left(x^{(k)}\right)$ is to the optimal value (provided we know $m$ ).
4. The limit point $x^{*}$ of $\left\{x^{(k)}\right\}$ satisfies $\nabla f\left(x^{*}\right)$ and therefore solves $(*)$ by convexity of $f$.

- Simple example/non-examples of strongly convex function:
$-f(x, y)=x^{2}+y^{2}$ is strongly convex.
$-f(x, y)=x^{4}+y^{4}$ is not strongly convex. In fact, it is not even strictly convex (at $(0,0)$ ).
$-f(x)=e^{x}$ is strictly convex, but not strongly convex. Note that $f$ does not have a minimizer on $\mathbb{R}: \inf _{\mathbb{R}} f=0$ but $f(x)>0$ for all $x \in \mathbb{R}$.


## 3 Descent methods

An (iterative) descent method generates a sequence $\left\{x^{(k)}\right\}$ of point such that

$$
f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

Each iterate $x^{(k)}$ is obtained via the following: Three ingredients needed:

```
Algorithm 3.1: General descent method
    1 Given( initial point }\mp@subsup{x}{}{(0)}\mathrm{ );
    2 repeat
            1. Determine a search direction \Deltax.
            2. Line search. Choose a step size t>0.
            3. }x\leftarrowx+t\Deltax
    3 until stopping criterion is satisfied. ;
```

1. search direction,
2. step size, and
3. stopping criterion.

### 3.1 Search direction $\Delta x$

- Usually require that

$$
\begin{equation*}
\nabla f(x)^{T} \Delta x<0 \tag{3}
\end{equation*}
$$

A vector satisfying (3) is called a descent direction.

- Reason: $f$ convex; if $\nabla f(x)^{T} \Delta x<0$ does not hold, then for all $t>0$

$$
f(x+t \Delta x) \geq f(x)+t \nabla f(x)^{T} \Delta x \geq f(x)
$$

so $x+t \Delta x$ does not give a lower objective value.

- How to pick $\Delta x$ ?

A natural choice if $\Delta x=-\nabla f(x)$.
This corresponds to steepest descent method.

### 3.2 Line search

Once we fix the search direction, we need to pick a point on the ray $\{x+t \Delta x: t>0\}$. This amounts to choosing a positive parameter $t$, which is called the step size. There are two common types of line search:

- Exact line search.

We find $t$ such that $f(x+t \Delta x)$ is the smallest possible on the ray. To find this $t$ is equivalent to solving the single-variate minimization problem

$$
\min _{t>0} f(x+t \Delta x) .
$$

It can be quite expensive to perform though. So usually we use the other alternative: backtracking.

- Backtracking line search.

Backtracking is the computationally less expensive option for choosing a step size that guarantees sufficient objective value decrease at the new iterate.
We have two parameters $\alpha \in(0,0.5)$ and $\beta \in(0,1)$.
$-\alpha$ controls the (relative) level of objective value decrease at each iteration.
$-\beta$ is the backtracking parameter.
The backtracking procedure is as follows:

- We start with $t=1$.
- Repeat

$$
t \leftarrow \beta t
$$

until

$$
\begin{equation*}
f(x+t \Delta x)<f(x)+\alpha t \nabla f(x)^{T} \Delta x . \tag{4}
\end{equation*}
$$

This inequality is equivalent to

$$
\frac{f(x)-f(x+t \Delta x)}{t}>\alpha \cdot\left(-\nabla f(x)^{T} \Delta x\right),
$$

so the choice of $t$ is such that the objective value decrease (given by the LHS) is to be at least a factor $\alpha$ of $-\nabla f(x)^{T} \Delta x$.

### 3.3 Stopping criterion

We usually use the first order necessary condition of optimality (1): we stop at an iterate $x^{(k)}$ if $\nabla f\left(x^{(k)}\right) \sim 0$, in the sense that

$$
\begin{equation*}
\left\|f\left(x^{(k)}\right)\right\| \leq \varepsilon \tag{5}
\end{equation*}
$$

where $\varepsilon>0$ is a very small number (the user-defined zero-tolerance).

