
CO 367 – Notes on Unconstrained Optimization I

March 7, 2011

[Reference: Boyd and Vandenberghe – textbook and lecture slides]

This week we consider unconstrained minimization problems: given a C2 function f :

Rn → R, solve

(∗) min
x∈Rn

f(x),

that is, find the global minimizer(s) of f .

We assume that p∗ > −∞ and there exists some x∗ such that p∗ = f(x∗).

Recall:

1. If x∗ solves (∗), then the first order necessary condition holds:

∇f (x∗) = 0. (1)

2. Suppose, in addition, that f is a convex function.

If x∗ satisfies (1), then x∗ solves (∗).

Hence

solving (∗) ≡ solving the equation ∇f(x) = 0 for x.

1 How to solve (∗) ?

• Use iterative methods:

– Start with an initial point x(0).

– Produce a sequence
{
x(k)

}
k=1,...

such that

1. f
(
x(k)

)
≤ f

(
x(0)

)
for all k.

2. f
(
x(k)

)
→ p∗ as k →∞.

We would hope that the sequence
{
x(k)

}
at least has a limit point, which we would

take as the solution of (∗).
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• But we usually don’t know p∗ a priori — then how do we know if the objective values

of our iterates x(k) are getting close to p∗?

• Usually we require
{
x(k)

}
to satisfy∥∥∥∇f (x(k))∥∥∥→ 0 (2)

instead.

• If
{
x(k)

}
has a limit point, then by continuity of f and ∇f ,

f
(
x(k)

)
→ p∗ =⇒ f(x∗) = p∗,∥∥∥∇f (x(k))∥∥∥→ 0 =⇒ ∇f(x∗) = 0.

2 Strongly convex functions

So for what kind of function f can we be sure that, if we produce a sequence
{
x(k)

}
satisfying

1. f
(
x(k)

)
≤ f

(
x(0)

)
for all k, and

2.
∥∥∇f (x(k))∥∥→ 0 as k →∞,

then

1. {xk}k=1,... has a limit point x∗, and

2. The limit point x∗ solves (∗) ?

One class of functions that enjoy this property is the class of strongly convex functions.

A function is strongly convex on a set S if there exists some m > 0 such that

∇2f(x)−mI is positive semidefinite for all x ∈ S,

or, equivalently,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖∇f(x)‖2

for all x, y ∈ S.

• Let x(0) ∈ dom f . If f is strongly convex on the set

S := {x ∈ Rn : f(x) ≤ f(x0)} = f−1
(
(−∞, f(x0)]

)
,

which is a closed set, then
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1. S is a bounded set. (So S is a compact set.)

This ensures that the sequence
{
x(k)

}
has a limit point.

2. p∗ > −∞.

3. f(x)− p∗ ≤ 1

2m
‖∇f(x)‖22.

This means that even if we don’t know p∗, we can look at ‖∇f(x(k))‖ to determine

how close f(x(k)) is to the optimal value (provided we know m).

4. The limit point x∗ of
{
x(k)

}
satisfies ∇f(x∗) and therefore solves (∗) by con-

vexity of f .

• Simple example/non-examples of strongly convex function:

– f(x, y) = x2 + y2 is strongly convex.

– f(x, y) = x4 + y4 is not strongly convex. In fact, it is not even strictly convex

(at (0, 0)).

– f(x) = ex is strictly convex, but not strongly convex. Note that f does not

have a minimizer on R: infR f = 0 but f(x) > 0 for all x ∈ R.

3 Descent methods

An (iterative) descent method generates a sequence
{
x(k)

}
of point such that

f
(
x(k+1)

)
< f

(
x(k)

)
.

Each iterate x(k) is obtained via the following: Three ingredients needed:

Algorithm 3.1: General descent method

Given( initial point x(0));1

repeat2

1. Determine a search direction ∆x.

2. Line search. Choose a step size t > 0.

3. x← x+ t∆x.

until stopping criterion is satisfied. ;3

1. search direction,

2. step size, and

3. stopping criterion.
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3.1 Search direction ∆x

• Usually require that

∇f(x)T∆x < 0. (3)

A vector satisfying (3) is called a descent direction.

• Reason: f convex; if ∇f(x)T∆x < 0 does not hold, then for all t > 0

f(x+ t∆x) ≥ f(x) + t∇f(x)T∆x ≥ f(x),

so x+ t∆x does not give a lower objective value.

• How to pick ∆x?

A natural choice if ∆x = −∇f(x).

This corresponds to steepest descent method.

3.2 Line search

Once we fix the search direction, we need to pick a point on the ray {x+ t∆x : t > 0}.
This amounts to choosing a positive parameter t, which is called the step size. There are

two common types of line search:

• Exact line search.

We find t such that f(x+ t∆x) is the smallest possible on the ray. To find this t is

equivalent to solving the single-variate minimization problem

min
t>0

f(x+ t∆x).

It can be quite expensive to perform though. So usually we use the other alternative:

backtracking.

• Backtracking line search.

Backtracking is the computationally less expensive option for choosing a step size

that guarantees sufficient objective value decrease at the new iterate.

We have two parameters α ∈ (0, 0.5) and β ∈ (0, 1).

– α controls the (relative) level of objective value decrease at each iteration.

– β is the backtracking parameter.

The backtracking procedure is as follows:

– We start with t = 1.
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– Repeat

t← βt

until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x. (4)

This inequality is equivalent to

f(x)− f(x+ t∆x)

t
> α ·

(
−∇f(x)T∆x

)
,

so the choice of t is such that the objective value decrease (given by the LHS) is to

be at least a factor α of −∇f(x)T∆x.

3.3 Stopping criterion

We usually use the first order necessary condition of optimality (1): we stop at an iterate

x(k) if ∇f
(
x(k)

)
∼ 0, in the sense that∥∥∥f (x(k))∥∥∥ ≤ ε, (5)

where ε > 0 is a very small number (the user-defined zero-tolerance).
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