Quadratic program (QP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

least-squares

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}
$$

- analytical solution $x^{\star}=A^{\dagger} b\left(A^{\dagger}\right.$ is pseudo-inverse $)$
- can add linear constraints, e.g., $l \preceq x \preceq u$

linear program with random cost

$$
\begin{array}{ll}
\operatorname{minimize} & \bar{c}^{T} x+\gamma x^{T} \Sigma x=\mathbf{E} c^{T} x+\gamma \operatorname{var}\left(c^{T} x\right) \\
\text { subject to } & G x \preceq h, \quad A x=b
\end{array}
$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^{T} x$ is random variable with mean $\bar{c}^{T} x$ and variance $x^{T} \Sigma x$
- $\gamma>0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

